def test_block_tree_to_matrix_valueerror(): # test that value error is raised when dimensions don't match inner = {"a": 1, "b": 1} outer = 1 block_tree = {"a": 1} # should have same structure as inner with pytest.raises(ValueError): block_tree_to_matrix(block_tree, inner, outer)
def derivative_flatten(derivative_eval): flat = block_tree_to_matrix( derivative_eval, outer_tree=func_eval[key], inner_tree=params, ) return flat
def test_block_tree_to_matrix_array_and_scalar(): t1 = {"c": np.arange(3), "d": (2.0, 1)} t2 = {"a": 1.0, "b": np.arange(2)} expected = np.arange(15).reshape(5, 3) block_tree = { "c": { "a": np.array([0, 3, 6]), "b": np.array([[1, 2], [4, 5], [7, 8]]) }, "d": ( { "a": np.array(9), "b": np.array([10, 11]) }, { "a": np.array(12), "b": np.array([13, 14]) }, ), } calculated = block_tree_to_matrix(block_tree, t1, t2) assert_array_equal(expected, calculated)
def get_weighting_matrix(moments_cov, method, empirical_moments, clip_value=1e-6, return_type="pytree"): """Calculate a weighting matrix from moments_cov. Args: moments_cov (pandas.DataFrame or numpy.ndarray): Square DataFrame or Array with the covariance matrix of the moment conditions for msm estimation. method (str): One of "optimal", "diagonal". empirical_moments (pytree): Pytree containing empirical moments. Used to get the tree structure clip_value (float): Bound at which diagonal elements of the moments_cov are clipped to avoid dividing by zero. return_type (str): One of "pytree", "array" or "pytree_and_array" Returns: pandas.DataFrame or numpy.ndarray: Weighting matrix with the same shape as moments_cov. """ fast_path = isinstance(moments_cov, np.ndarray) and moments_cov.ndim == 2 if fast_path: _internal_cov = moments_cov else: _internal_cov = block_tree_to_matrix( moments_cov, outer_tree=empirical_moments, inner_tree=empirical_moments, ) if method == "optimal": array_weights = robust_inverse(_internal_cov) elif method == "diagonal": diagonal_values = 1 / np.clip(np.diagonal(_internal_cov), clip_value, np.inf) array_weights = np.diag(diagonal_values) else: raise ValueError(f"Invalid method: {method}") if return_type == "array" or (fast_path and "_and_" not in return_type): out = array_weights elif fast_path: out = (array_weights, array_weights) else: tree_weights = matrix_to_block_tree( array_weights, outer_tree=empirical_moments, inner_tree=empirical_moments, ) if return_type == "pytree": out = tree_weights else: out = (tree_weights, array_weights) return out
def _internal_jacobian(x): """Return Jacobian of constraint at internal parameters. The constraint function is written to be evaluated on a selection of the external parameters. The optimizer, however, only works on internal parameters. These can be significantly different from the external parameters, due to estimagic's reparametrization features. In this function we compute the Jacobian of the constraint at the internal parameters using information on the Jacobian of the constraint at the selected external parameters. """ params = converter.params_from_internal(x) selected = external_selector(params) jac = jacobian(selected) jac_matrix = block_tree_to_matrix(jac, constraint_eval, selected) jac_extended = _extend_jacobian(jac_matrix, selection_indices, n_params) jac_internal = converter.derivative_to_internal(jac_extended, x, jac_is_flat=True) return np.atleast_2d(jac_internal)
def test_block_tree_to_matrix_only_params_dfs(): expected = np.arange(25).reshape(5, 5) tree = { "a": pd.DataFrame(index=["a", "b"]).assign(value=[1, 2]), "b": pd.DataFrame(index=["j", "k", "l"]).assign(value=[3, 4, 5]), } block_tree = { "a": { "a": pd.DataFrame([[0, 1], [5, 6]], columns=["a", "b"], index=["a", "b"]), "b": pd.DataFrame([[2, 3, 4], [7, 8, 9]], columns=["j", "k", "l"], index=["a", "b"]), }, "b": { "a": pd.DataFrame( [[10, 11], [15, 16], [20, 21]], index=["j", "k", "l"], columns=["a", "b"], ), "b": pd.DataFrame( [[12, 13, 14], [17, 18, 19], [22, 23, 24]], index=["j", "k", "l"], columns=["j", "k", "l"], ), }, } calculated = block_tree_to_matrix(block_tree, tree, tree) assert_array_equal(expected, calculated)
def test_get_moments_cov_runs_with_pytrees(): rng = get_rng(1234) data = rng.normal(scale=[10, 5, 1], size=(100, 3)) data = pd.DataFrame(data=data) def calc_moments(data, keys): means = data.mean() means.index = keys return means.to_dict() moment_kwargs = {"keys": ["a", "b", "c"]} calculated = get_moments_cov( data=data, calculate_moments=calc_moments, moment_kwargs=moment_kwargs, bootstrap_kwargs={"n_draws": 100}, ) fake_tree = {"a": 1, "b": 2, "c": 3} cov = block_tree_to_matrix(calculated, fake_tree, fake_tree) assert cov.shape == (3, 3) assert cov[0, 0] > cov[1, 1] > cov[2, 2]
def estimate_ml( loglike, params, optimize_options, *, lower_bounds=None, upper_bounds=None, constraints=None, logging=False, log_options=None, loglike_kwargs=None, numdiff_options=None, jacobian=None, jacobian_kwargs=None, hessian=None, hessian_kwargs=None, design_info=None, ): """Do a maximum likelihood (ml) estimation. This is a high level interface of our lower level functions for maximization, numerical differentiation and inference. It does the full workflow for maximum likelihood estimation with just one function call. While we have good defaults, you can still configure each aspect of each step via the optional arguments of this function. If you find it easier to do the maximization separately, you can do so and just provide the optimal parameters as ``params`` and set ``optimize_options=False`` Args: loglike (callable): Likelihood function that takes a params (and potentially other keyword arguments) and returns a dictionary that has at least the entries "value" (a scalar float) and "contributions" (a 1d numpy array or pytree) with the log likelihood contribution per individual. params (pytree): A pytree containing the estimated or start parameters of the likelihood model. If the supplied parameters are estimated parameters, set optimize_options to False. Pytrees can be a numpy array, a pandas Series, a DataFrame with "value" column, a float and any kind of (nested) dictionary or list containing these elements. See :ref:`params` for examples. optimize_options (dict, str or False): Keyword arguments that govern the numerical optimization. Valid entries are all arguments of :func:`~estimagic.optimization.optimize.minimize` except for those that are passed explicilty to ``estimate_ml``. If you pass False as optimize_options you signal that ``params`` are already the optimal parameters and no numerical optimization is needed. If you pass a str as optimize_options it is used as the ``algorithm`` option. lower_bounds (pytree): A pytree with the same structure as params with lower bounds for the parameters. Can be ``-np.inf`` for parameters with no lower bound. upper_bounds (pytree): As lower_bounds. Can be ``np.inf`` for parameters with no upper bound. constraints (list, dict): List with constraint dictionaries or single dict. See :ref:`constraints`. logging (pathlib.Path, str or False): Path to sqlite3 file (which typically has the file extension ``.db``. If the file does not exist, it will be created. The dashboard can only be used when logging is used. log_options (dict): Additional keyword arguments to configure the logging. - "fast_logging": A boolean that determines if "unsafe" settings are used to speed up write processes to the database. This should only be used for very short running criterion functions where the main purpose of the log is a real-time dashboard and it would not be catastrophic to get a corrupted database in case of a sudden system shutdown. If one evaluation of the criterion function (and gradient if applicable) takes more than 100 ms, the logging overhead is negligible. - "if_table_exists": (str) One of "extend", "replace", "raise". What to do if the tables we want to write to already exist. Default "extend". - "if_database_exists": (str): One of "extend", "replace", "raise". What to do if the database we want to write to already exists. Default "extend". loglike_kwargs (dict): Additional keyword arguments for loglike. numdiff_options (dict): Keyword arguments for the calculation of numerical derivatives for the calculation of standard errors. See :ref:`first_derivative` for details. jacobian (callable or None): A function that takes ``params`` and potentially other keyword arguments and returns the jacobian of loglike["contributions"] with respect to the params. Note that you only need to pass a Jacobian function if you have a closed form Jacobian. If you pass None, a numerical Jacobian will be calculated. jacobian_kwargs (dict): Additional keyword arguments for the Jacobian function. hessian (callable or None or False): A function that takes ``params`` and potentially other keyword arguments and returns the Hessian of loglike["value"] with respect to the params. If you pass None, a numerical Hessian will be calculated. If you pass ``False``, you signal that no Hessian should be calculated. Thus, no result that requires the Hessian will be calculated. hessian_kwargs (dict): Additional keyword arguments for the Hessian function. design_info (pandas.DataFrame): DataFrame with one row per observation that contains some or all of the variables "psu" (primary sampling unit), "strata" and "fpc" (finite population corrector). See :ref:`robust_likelihood_inference` for details. Returns: LikelihoodResult: A LikelihoodResult object. """ # ================================================================================== # Check and process inputs # ================================================================================== is_optimized = optimize_options is False if not is_optimized: if isinstance(optimize_options, str): optimize_options = {"algorithm": optimize_options} check_optimization_options( optimize_options, usage="estimate_ml", algorithm_mandatory=True, ) jac_case = get_derivative_case(jacobian) hess_case = get_derivative_case(hessian) check_numdiff_options(numdiff_options, "estimate_ml") numdiff_options = {} if numdiff_options in (None, False) else numdiff_options loglike_kwargs = {} if loglike_kwargs is None else loglike_kwargs constraints = [] if constraints is None else constraints jacobian_kwargs = {} if jacobian_kwargs is None else jacobian_kwargs hessian_kwargs = {} if hessian_kwargs is None else hessian_kwargs # ================================================================================== # Calculate estimates via maximization (if necessary) # ================================================================================== if is_optimized: estimates = params opt_res = None else: opt_res = maximize( criterion=loglike, criterion_kwargs=loglike_kwargs, params=params, lower_bounds=lower_bounds, upper_bounds=upper_bounds, constraints=constraints, logging=logging, log_options=log_options, **optimize_options, ) estimates = opt_res.params # ================================================================================== # Do first function evaluations at estimated parameters # ================================================================================== try: loglike_eval = loglike(estimates, **loglike_kwargs) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating loglike at estimated params." raise InvalidFunctionError(msg) from e if callable(jacobian): try: jacobian_eval = jacobian(estimates, **jacobian_kwargs) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating closed form jacobian at estimated params." raise InvalidFunctionError(msg) from e else: jacobian_eval = None if callable(hessian): try: hessian_eval = hessian(estimates, **hessian_kwargs) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating closed form hessian at estimated params." raise InvalidFunctionError(msg) from e else: hessian_eval = None # ================================================================================== # Get the converter for params and function outputs # ================================================================================== converter, internal_estimates = get_converter( params=estimates, constraints=constraints, lower_bounds=lower_bounds, upper_bounds=upper_bounds, func_eval=loglike_eval, primary_key="contributions", scaling=False, scaling_options=None, derivative_eval=jacobian_eval, ) # ================================================================================== # Calculate internal jacobian # ================================================================================== if jac_case == "closed-form": int_jac = converter.derivative_to_internal(jacobian_eval, internal_estimates.values) elif jac_case == "numerical": def func(x): p = converter.params_from_internal(x) loglike_eval = loglike(p, **loglike_kwargs)["contributions"] out = converter.func_to_internal(loglike_eval) return out jac_res = first_derivative( func=func, params=internal_estimates.values, lower_bounds=internal_estimates.lower_bounds, upper_bounds=internal_estimates.upper_bounds, **numdiff_options, ) int_jac = jac_res["derivative"] else: int_jac = None if constraints in [None, [] ] and jacobian_eval is None and int_jac is not None: loglike_contribs = loglike_eval if isinstance(loglike_contribs, dict) and "contributions" in loglike_contribs: loglike_contribs = loglike_contribs["contributions"] jacobian_eval = matrix_to_block_tree( int_jac, outer_tree=loglike_contribs, inner_tree=estimates, ) if jacobian_eval is None: _no_jac_reason = ( "no closed form jacobian was provided and there are constraints") else: _no_jac_reason = None # ================================================================================== # Calculate internal Hessian # ================================================================================== if hess_case == "skip": int_hess = None elif hess_case == "numerical": def func(x): p = converter.params_from_internal(x) loglike_eval = loglike(p, **loglike_kwargs)["value"] out = converter.func_to_internal(loglike_eval) return out hess_res = second_derivative( func=func, params=internal_estimates.values, lower_bounds=internal_estimates.lower_bounds, upper_bounds=internal_estimates.upper_bounds, **numdiff_options, ) int_hess = hess_res["derivative"] elif hess_case == "closed-form" and constraints: raise NotImplementedError( "Closed-form Hessians are not yet compatible with constraints.") elif hess_case == "closed-form": int_hess = block_tree_to_matrix( hessian_eval, outer_tree=params, inner_tree=params, ) else: raise ValueError() if constraints in [None, [] ] and hessian_eval is None and int_hess is not None: hessian_eval = matrix_to_block_tree( int_hess, outer_tree=params, inner_tree=params, ) if hessian_eval is None: if hess_case == "skip": _no_hess_reason = "the hessian calculation was explicitly skipped." else: _no_hess_reason = ( "no closed form hessian was provided and there are constraints" ) else: _no_hess_reason = None # ================================================================================== # create a LikelihoodResult object # ================================================================================== free_estimates = calculate_free_estimates(estimates, internal_estimates) res = LikelihoodResult( _params=estimates, _converter=converter, _optimize_result=opt_res, _jacobian=jacobian_eval, _no_jacobian_reason=_no_jac_reason, _hessian=hessian_eval, _no_hessian_reason=_no_hess_reason, _internal_jacobian=int_jac, _internal_hessian=int_hess, _design_info=design_info, _internal_estimates=internal_estimates, _free_estimates=free_estimates, _has_constraints=constraints not in [None, []], ) return res
def estimate_msm( simulate_moments, empirical_moments, moments_cov, params, optimize_options, *, lower_bounds=None, upper_bounds=None, constraints=None, logging=False, log_options=None, simulate_moments_kwargs=None, weights="diagonal", numdiff_options=None, jacobian=None, jacobian_kwargs=None, ): """Do a method of simulated moments or indirect inference estimation. This is a high level interface for our lower level functions for minimization, numerical differentiation, inference and sensitivity analysis. It does the full workflow for MSM or indirect inference estimation with just one function call. While we have good defaults, you can still configure each aspect of each steps vial the optional arguments of this functions. If you find it easier to do the minimization separately, you can do so and just provide the optimal parameters as ``params`` and set ``optimize_options=False``. Args: simulate_moments (callable): Function that takes params and potentially other keyword arguments and returns a pytree with simulated moments. If the function returns a dict containing the key ``"simulated_moments"`` we only use the value corresponding to that key. Other entries are stored in the log database if you use logging. empirical_moments (pandas.Series): A pytree with the same structure as the result of ``simulate_moments``. moments_cov (pandas.DataFrame): A block-pytree containing the covariance matrix of the empirical moments. This is typically calculated with our ``get_moments_cov`` function. params (pytree): A pytree containing the estimated or start parameters of the model. If the supplied parameters are estimated parameters, set optimize_options to False. Pytrees can be a numpy array, a pandas Series, a DataFrame with "value" column, a float and any kind of (nested) dictionary or list containing these elements. See :ref:`params` for examples. optimize_options (dict, str or False): Keyword arguments that govern the numerical optimization. Valid entries are all arguments of :func:`~estimagic.optimization.optimize.minimize` except for those that can be passed explicitly to ``estimate_msm``. If you pass False as ``optimize_options`` you signal that ``params`` are already the optimal parameters and no numerical optimization is needed. If you pass a str as optimize_options it is used as the ``algorithm`` option. lower_bounds (pytree): A pytree with the same structure as params with lower bounds for the parameters. Can be ``-np.inf`` for parameters with no lower bound. upper_bounds (pytree): As lower_bounds. Can be ``np.inf`` for parameters with no upper bound. simulate_moments_kwargs (dict): Additional keyword arguments for ``simulate_moments``. weights (str): One of "diagonal" (default), "identity" or "optimal". Note that "optimal" refers to the asymptotically optimal weighting matrix and is often not a good choice due to large finite sample bias. constraints (list, dict): List with constraint dictionaries or single dict. See :ref:`constraints`. logging (pathlib.Path, str or False): Path to sqlite3 file (which typically has the file extension ``.db``. If the file does not exist, it will be created. The dashboard can only be used when logging is used. log_options (dict): Additional keyword arguments to configure the logging. - "fast_logging" (bool): A boolean that determines if "unsafe" settings are used to speed up write processes to the database. This should only be used for very short running criterion functions where the main purpose of the log is a real-time dashboard and it would not be catastrophic to get a corrupted database in case of a sudden system shutdown. If one evaluation of the criterion function (and gradient if applicable) takes more than 100 ms, the logging overhead is negligible. - "if_table_exists" (str): One of "extend", "replace", "raise". What to do if the tables we want to write to already exist. Default "extend". - "if_database_exists" (str): One of "extend", "replace", "raise". What to do if the database we want to write to already exists. Default "extend". numdiff_options (dict): Keyword arguments for the calculation of numerical derivatives for the calculation of standard errors. See :ref:`first_derivative` for details. Note that by default we increase the step_size by a factor of 2 compared to the rule of thumb for optimal step sizes. This is because many msm criterion functions are slightly noisy. jacobian (callable): A function that take ``params`` and potentially other keyword arguments and returns the jacobian of simulate_moments with respect to the params. jacobian_kwargs (dict): Additional keyword arguments for the jacobian function. Returns: dict: The estimated parameters, standard errors and sensitivity measures and covariance matrix of the parameters. """ # ================================================================================== # Check and process inputs # ================================================================================== if weights not in ["diagonal", "optimal"]: raise NotImplementedError( "Custom weighting matrices are not yet implemented.") is_optimized = optimize_options is False if not is_optimized: if isinstance(optimize_options, str): optimize_options = {"algorithm": optimize_options} check_optimization_options( optimize_options, usage="estimate_msm", algorithm_mandatory=True, ) jac_case = get_derivative_case(jacobian) check_numdiff_options(numdiff_options, "estimate_msm") numdiff_options = {} if numdiff_options in ( None, False) else numdiff_options.copy() if "scaling_factor" not in numdiff_options: numdiff_options["scaling_factor"] = 2 weights, internal_weights = get_weighting_matrix( moments_cov=moments_cov, method=weights, empirical_moments=empirical_moments, return_type="pytree_and_array", ) internal_moments_cov = block_tree_to_matrix( moments_cov, outer_tree=empirical_moments, inner_tree=empirical_moments, ) constraints = [] if constraints is None else constraints jacobian_kwargs = {} if jacobian_kwargs is None else jacobian_kwargs simulate_moments_kwargs = ({} if simulate_moments_kwargs is None else simulate_moments_kwargs) # ================================================================================== # Calculate estimates via minimization (if necessary) # ================================================================================== if is_optimized: estimates = params opt_res = None else: funcs = get_msm_optimization_functions( simulate_moments=simulate_moments, empirical_moments=empirical_moments, weights=weights, simulate_moments_kwargs=simulate_moments_kwargs, # Always pass None because we do not support closed form jacobians during # optimization yet. Otherwise we would get a NotImplementedError jacobian=None, jacobian_kwargs=jacobian_kwargs, ) opt_res = minimize( lower_bounds=lower_bounds, upper_bounds=upper_bounds, constraints=constraints, logging=logging, log_options=log_options, params=params, **funcs, # contains the criterion func and possibly more **optimize_options, ) estimates = opt_res.params # ================================================================================== # do first function evaluations # ================================================================================== try: sim_mom_eval = simulate_moments(estimates, **simulate_moments_kwargs) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating simulate_moments at estimated params." raise InvalidFunctionError(msg) from e if callable(jacobian): try: jacobian_eval = jacobian(estimates, **jacobian_kwargs) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating derivative at estimated params." raise InvalidFunctionError(msg) from e else: jacobian_eval = None # ================================================================================== # get converter for params and function outputs # ================================================================================== def helper(params): raw = simulate_moments(params, **simulate_moments_kwargs) if isinstance(raw, dict) and "simulated_moments" in raw: out = {"contributions": raw["simulated_moments"]} else: out = {"contributions": raw} return out if isinstance(sim_mom_eval, dict) and "simulated_moments" in sim_mom_eval: func_eval = {"contributions": sim_mom_eval["simulated_moments"]} else: func_eval = {"contributions": sim_mom_eval} converter, internal_estimates = get_converter( params=estimates, constraints=constraints, lower_bounds=lower_bounds, upper_bounds=upper_bounds, func_eval=func_eval, primary_key="contributions", scaling=False, scaling_options=None, derivative_eval=jacobian_eval, ) # ================================================================================== # Calculate internal jacobian # ================================================================================== if jac_case == "closed-form": x = converter.params_to_internal(estimates) int_jac = converter.derivative_to_internal(jacobian_eval, x) else: def func(x): p = converter.params_from_internal(x) sim_mom_eval = helper(p) out = converter.func_to_internal(sim_mom_eval) return out int_jac = first_derivative( func=func, params=internal_estimates.values, lower_bounds=internal_estimates.lower_bounds, upper_bounds=internal_estimates.upper_bounds, **numdiff_options, )["derivative"] # ================================================================================== # Calculate external jac (if no constraints and not closed form ) # ================================================================================== if constraints in [None, [] ] and jacobian_eval is None and int_jac is not None: jacobian_eval = matrix_to_block_tree( int_jac, outer_tree=empirical_moments, inner_tree=estimates, ) if jacobian_eval is None: _no_jac_reason = ( "no closed form jacobian was provided and there are constraints") else: _no_jac_reason = None # ================================================================================== # Create MomentsResult # ================================================================================== free_estimates = calculate_free_estimates(estimates, internal_estimates) res = MomentsResult( _params=estimates, _weights=weights, _converter=converter, _internal_weights=internal_weights, _internal_moments_cov=internal_moments_cov, _internal_jacobian=int_jac, _jacobian=jacobian_eval, _no_jacobian_reason=_no_jac_reason, _empirical_moments=empirical_moments, _internal_estimates=internal_estimates, _free_estimates=free_estimates, _has_constraints=constraints not in [None, []], ) return res
def get_msm_optimization_functions( simulate_moments, empirical_moments, weights, *, simulate_moments_kwargs=None, jacobian=None, jacobian_kwargs=None, ): """Construct criterion functions and their derivatives for msm estimation. Args: simulate_moments (callable): Function that takes params and potentially other keyworrd arguments and returns simulated moments as a pandas Series. Alternatively, the function can return a dict with any number of entries as long as one of those entries is "simulated_moments". empirical_moments (pandas.Series): A pandas series with the empirical equivalents of the simulated moments. weights (pytree): The weighting matrix as block pytree. simulate_moments_kwargs (dict): Additional keyword arguments for ``simulate_moments``. jacobian (callable or pandas.DataFrame): A function that take ``params`` and potentially other keyword arguments and returns the jacobian of simulate_moments with respect to the params. Alternatively you can pass a pandas.DataFrame with the jacobian at the optimal parameters. This is only possible if you pass ``optimize_options=False``. jacobian_kwargs (dict): Additional keyword arguments for jacobian. Returns: dict: Dictionary containing at least the entry "criterion". If enough inputs are provided it also contains the entries "derivative" and "criterion_and_derivative". All values are functions that take params as only argument. """ flat_weights = block_tree_to_matrix( weights, outer_tree=empirical_moments, inner_tree=empirical_moments, ) chol_weights = np.linalg.cholesky(flat_weights) registry = get_registry(extended=True) flat_emp_mom = tree_just_flatten(empirical_moments, registry=registry) _simulate_moments = _partial_kwargs(simulate_moments, simulate_moments_kwargs) _jacobian = _partial_kwargs(jacobian, jacobian_kwargs) criterion = functools.partial( _msm_criterion, simulate_moments=_simulate_moments, flat_empirical_moments=flat_emp_mom, chol_weights=chol_weights, registry=registry, ) out = {"criterion": criterion} if _jacobian is not None: raise NotImplementedError( "Closed form jacobians are not yet supported in estimate_msm") return out