parser = argparse.ArgumentParser(description='MobilePose Realtime Webcam.') parser.add_argument( '--model', type=str, default='resnet18', choices=['mobilenetv2', 'resnet18', 'shufflenetv2', 'squeezenet']) parser.add_argument('--inp_dim', type=int, default=224, help='input size') parser.add_argument('--camera', type=int, default=0) args = parser.parse_args() # load the model #model_path = os.path.join("./models", args.model+"_%d_adam_best.t7"%args.inp_dim) model_path = "./models/mobilenetv2_224_adam_best.t7" net = CoordRegressionNetwork(n_locations=6, backbone=args.model).to("cpu") e = ResEstimator(model_path, net, args.inp_dim) # # initial the camera # cam = cv2.VideoCapture(args.camera) # ret_val, image = cam.read() # image = crop_camera(image) # while True: # # read image from the camera and preprocess # ret_val , image = cam.read() # image = crop_camera(image) # # forward the image # humans = e.inference(image) # image = ResEstimator.draw_humans(image, humans, imgcopy=False) # cv2.imshow('MobilePose Demo', image)
mid_width = width / 2.0 width_20 = width * ratio crop_img = image[0:int(height), int(mid_width - width_20):int(mid_width + width_20)] return crop_img if __name__ == '__main__': # load the model model_path = './models/mobilenetv2_224_adam_best.t7' net = CoordRegressionNetwork(n_locations=16, backbone='mobilenetv2').to('cpu') estimator = ResEstimator(model_path, net, 224) # initialize the camera cam = cv2.VideoCapture(0) ret_val, image = cam.read() image = crop_camera(image) while True: # get frame ret_val, image = cam.read() image = crop_camera(image) # infer through network humans = estimator.inference(image) # image = ResEstimator.draw_humans(
import matplotlib.pyplot as plt if __name__ == '__main__': parser = argparse.ArgumentParser(description='MobilePose Realtime Webcam.') parser.add_argument('--model', type=str, default='resnet', help='mobilenet|resnet') parser.add_argument('--camera', type=int, default=0) args = parser.parse_args() # load the model w, h = model_wh(get_graph_path(args.model)) e = ResEstimator(get_graph_path(args.model), target_size=(w, h)) # initial the camera cam = cv2.VideoCapture(args.camera) ret_val, image = cam.read() image = crop_camera(image) while True: # read image from the camera and preprocess ret_val, image = cam.read() image = crop_camera(image) # forward the image humans = e.inference(image, args.model) image = ResEstimator.draw_humans(image, humans, imgcopy=False) cv2.imshow('MobilePose Demo', image)