コード例 #1
0
ファイル: test_secondscale.py プロジェクト: karpov-sv/favor2
def get_frame_center(filename=None, header=None):
    if not header:
        header = pyfits.getheader(filename, -1)

    w = pywcs.WCS(header=header)

    [ra1], [dec1] = w.all_pix2sky(0, 0, 1)
    [ra0], [dec0] = w.all_pix2sky(header['NAXIS1'] / 2, header['NAXIS2'] / 2,
                                  1)

    sr = coords.sphdist(ra0, dec0, ra1, dec1)[0]

    return ra0, dec0, sr
コード例 #2
0
def pixelTasks(parameterListForPixel):
    """Workers will execute this function."""
    #unpack the input parameter list that is to say separate them into different arrays
    pixelNo, ra, dec, nObs, objID, medRa, medDec, resRa, resDec = parameterListForPixel
    #define an index so that all the calculations can be put in place later
    #ind =
    global searchRadius
    #find objects within the searchRadius and whose noOfObs is atleast 3
    angSepMask = sphdist(ra, dec, medRa, medDec) <= (searchRadius*60) #& (nObs>=3.0) -- not needed since this has been taken care of while calculating residuals and medians previously 
    global triand
    #separate these entire rows from the original testH5file
    #we donot need to check for galaxies now, since the parameters being referred to have already been checked

    #searchFile = triand[angSepMask]
    objInRadius = objID[angSepMask]
    
    k = triand[triand.get_where_list('obj_id == o') for o in objInRadius]
コード例 #3
0
def check_planets(ra, dec, time, favor2=None):
    favor2 = favor2 or Favor2()
    for o in [ephem.Moon(), ephem.Venus(), ephem.Mars(), ephem.Jupiter()]:
        favor2.obs.date = time
        o.compute(favor2.obs)

        sr = {
            'Moon': 15.0,
            'Venus': 0.5,
            'Jupiter': 0.5,
            'Mars': 0.1
        }.get(o.name)

        if coords.sphdist(np.rad2deg(o.ra), np.rad2deg(o.dec), ra,
                          dec)[0] < sr:
            return True

    return False
コード例 #4
0
def get_frame_center(filename=None, header=None, wcs=None, width=None, height=None):
    if not wcs:
        if header:
            wcs = WCS(header=header)
        elif filename:
            header = fits.getheader(filename, -1)
            wcs = WCS(header=header)

    if (not width or not height) and header:
        width = header['NAXIS1']
        height = header['NAXIS2']

    [ra1],[dec1] = wcs.all_pix2world([0], [0], 1)
    [ra0],[dec0] = wcs.all_pix2world([width/2], [height/2], 1)

    sr = coords.sphdist(ra0, dec0, ra1, dec1)[0]

    return ra0, dec0, sr
コード例 #5
0
ファイル: match.py プロジェクト: erykoff/erutil
def close_match_radec(ra1,dec1,ra2,dec2,ep,allow,silent=False,box=False) :
    """
    Find the nearest neighbors between two arrays of ra/dec

    parameters
    ----------
    ra1,dec1: scalar or array
         coordinates of a set of points (degrees).  Must be same length.
    ra2,dec2: scalar or array
         coordinates of a second set of points (degrees).  Must be same length.
    ep: scalar
         maximum match distance between pairs (degrees)
    allow: scalar
         maximum number of matches in second array to each element in first array.
    silent: boolean
         make quiet
    box: boolean
         use square of size ep (default circle):

    Original by Dave Johnston, University of Michigan, 1997
    
    Translated from IDL by Eli Rykoff, SLAC
    """
    ra1=np.atleast_1d(ra1)
    dec1=np.atleast_1d(dec1)
    ra2=np.atleast_1d(ra2)
    dec2=np.atleast_1d(dec2)
    
    epdec = ep

    n1=ra1.size
    n2=ra2.size

    matcharr=np.zeros([n1,allow],dtype=np.int32)
    matcharr.fill(-1)
    ind=np.arange(n2,dtype=np.int32)
    sor=ra2.argsort()
    ra2sort=ra2[sor]
    dec2sort=dec2[sor]
    ind=ind[sor]
    runi=0
    endra2=ra2sort[n2-1]

    for i in range(n1) :
        epra=ep/np.cos(dec1[i]*0.01745329)
        ra1minus = ra1[i]-epra
        ra1plus = ra1[i]+epra
        in1=_binary_search(ra2sort,ra1minus)

        if (in1 == -1) :
            if (ra1minus < endra2): in1=0
        if (in1 != -1):
            in2=in1
            jj=in2+1
            while (jj < n2):
                if (ra2sort[in2+1] < ra1plus):
                    in2+=1
                    jj+=1
                else:
                    jj=n2
            if (n2 == 1):
                in2 = 0

            if (in1 <= in2) :
                dec2check=dec2sort[in1:in2+1]
                ra2check=ra2sort[in1:in2+1]

                decoffby=np.abs(dec2check-dec1[i])
                raoffby=np.abs(ra2check-ra1[i])
                good=np.where((decoffby < epdec) & \
                              (raoffby < epra))[0]+in1
                ngood=good.size
                if (ngood != 0):
                    if (not box):
                        offby = coords.sphdist(ra1[i],dec1[i],\
                                                      ra2sort[good],dec2sort[good],\
                                                      units=['deg','deg'])
                        good_offby=np.where(offby <= ep)[0]
                        ngood = good_offby.size
                    else :
                        good_offby = np.arange(ngood)
                        offby = raoffby

                    if (ngood != 0) :
                        good = good[good_offby]
                        offby=offby[good_offby]
                        if (ngood > allow) :
                            good=good[offby.argsort()]
                            ngood = allow
                            good=good[0:allow]

                        matcharr[i,0:ngood]=good
                        runi=runi+ngood
    
        
    if (not silent): print "total put in bytarr:",runi
    matches=np.where(matcharr != -1)
    if (matches[0].size == 0):
        if (not silent):print "no matches found"
        m1=np.array([-1])
        m2=np.array([-1])
        return (m1,m2)
    m1=matches[0] % n1
    m2=matcharr[matches]
    m2=ind[m2].flatten()
    if (not silent):print m1.size,' matches'
    return (m1,m2)
コード例 #6
0
ファイル: program4.py プロジェクト: prashansa/properMotions
import numpy as np
from astropy.time import Time
from time import time
from esutil.coords import sphdist
import healpy as hp




noOfYears = 5
pixelWidth = 3 #arcminutes
searchRadius = 10 #arcminutes

NSIDE = 2**10 # with this NSIDE, I oversample the correction map by a factor of 5
tempArray = np.arange(hp.nside2npix(NSIDE))
theta, phi = hp.pix2ang(NSIDE, tempArray)
pixelRa = 180*phi/np.pi
pixelDec = 90 - theta*180/np.pi


#take galaxies within searchRadius
index = sphdist(testFile['ra'], testFile['dec'] <= searchRadius)

useThisForUpdate = testFile[index]

#count the number of observations
#noOfObs = 0 #before the loop
#noOfObs +=1 # if it goes to the else part
コード例 #7
0
ファイル: upload.py プロジェクト: karpov-sv/fram
def process_file(filename, night=None, site=None, fram=None, verbose=False):
    if fram is None:
        fram = Fram()

    if site is None:
        # Simple heuristics to derive the site name
        for _ in ['auger', 'cta-n', 'cta-s0', 'cta-s1']:
            if _ in filename:
                site = _
                break

    header = fits.getheader(filename)

    if night is None:
        time = parse_iso_time(header['DATE-OBS'])
        if header.get('LONGITUD') is not None:
            night = get_night(time, lon=header['LONGITUD'])
        else:
            night = get_night(time, site=site)

    if verbose:
        print(night, site, header['IMAGETYP'])

    # Skip old master calibrations
    if header['IMAGETYP'] in ['mdark', 'mflat']:
        return None

    # Skip frames acquired by rts2-scriptexec
    if header.get('TARGET') is None or header.get('CCD_NAME') is None:
        return None

    image = fits.getdata(filename)

    # Original (uncropped) dimensions
    width, height = header['NAXIS1'], header['NAXIS2']

    image, header = crop_overscans(image, header, subtract=False)

    cropped_width, cropped_height = image.shape[1], image.shape[0]

    # Clean up the header a bit
    header.remove('HISTORY', remove_all=True, ignore_missing=True)
    header.remove('COMMENT', remove_all=True, ignore_missing=True)
    header.remove('', remove_all=True, ignore_missing=True)
    for _ in header.keys():
        if _ and _[0] == '_':
            header.remove(_, remove_all=True, ignore_missing=True)

    type = header.get('IMAGETYP', 'unknown')

    if type == 'object' and header.get('CTYPE1'):
        wcs = WCS(header)
        ra, dec = wcs.all_pix2world([0, image.shape[1], 0.5 * image.shape[1]],
                                    [0, image.shape[0], 0.5 * image.shape[0]],
                                    0)
        radius = 0.5 * coords.sphdist(ra[0], dec[0], ra[1], dec[1])[0]
        ra0, dec0 = ra[2], dec[2]

        # Frame footprint
        ra, dec = wcs.all_pix2world([0, 0, image.shape[1], image.shape[1]],
                                    [0, image.shape[0], image.shape[0], 0], 0)
        footprint = "(" + ",".join(
            ["(%g,%g)" % (_, __) for _, __ in zip(ra, dec)]) + ")"

        # Frame footprint at +10 pixels from the edge
        ra, dec = wcs.all_pix2world(
            [10, 10, image.shape[1] - 10, image.shape[1] - 10],
            [10, image.shape[0] - 10, image.shape[0] - 10, 10], 0)
        footprint10 = "(" + ",".join(
            ["(%g,%g)" % (_, __) for _, __ in zip(ra, dec)]) + ")"

    else:
        # Should we really discard WCS for non-object frames?
        ra0, dec0, radius = 0, 0, 0
        footprint, footprint10 = None, None

    target = header.get('TARGET')

    ccd = header.get('CCD_NAME')
    serial = header.get('product_id')
    filter = header.get('FILTER', 'unknown')
    time = parse_iso_time(header['DATE-OBS'])

    exposure = header.get('EXPOSURE')
    binning = header.get('BINNING')

    mean = np.mean(image)
    median = np.median(image)

    keywords = dict(header)

    fram.query(
        'INSERT INTO images (filename,night,time,target,type,filter,ccd,serial,site,ra,dec,radius,exposure,width,height,cropped_width,cropped_height,footprint,footprint10,binning,mean,median,keywords) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s) ON CONFLICT (filename) DO NOTHING',
        (filename, night, time, target, type, filter, ccd, serial, site, ra0,
         dec0, radius, exposure, width, height, cropped_width, cropped_height,
         footprint, footprint10, binning, mean, median, keywords))

    return {
        'filename': filename,
        'night': night,
        'time': time,
        'target': target,
        'type': type,
        'filter': filter,
        'ccd': ccd,
        'serial': serial,
        'site': site,
        'ra0': ra0,
        'dec0': dec0,
        'radius': radius,
        'exposure': exposure,
        'width': width,
        'height': height,
        'binning': binning,
        'mean': mean,
        'median': median
    }
コード例 #8
0
      # finding best of everything (for min chi2)
      p = period[np.argmin(chi2)]
      tID = template[np.argmin(chi2)]
      ch2 = chi2[np.argmin(chi2)]
      chi2dof = ch2/(N-4)
      phi_b = phi[np.argmin(chi2)]
      r0_b = r0[np.argmin(chi2)]
      F_b = F[np.argmin(chi2)]

      if path in data_rrlyr:
 
        # if star is RRLyrae
        RRLInd = 1
        P_template = true_params['P'][tID]
        ang_sep = sphdist(ra, dec, table3['ra'], table3['dec'])*3600
        ind = np.where(ang_sep < 1)[0]
        rExt = table3['rExt'][ind][0]
        d = table3['d'][ind][0]
        uF = table3['uF'][ind][0]
        gF = table3['gF'][ind][0]
        rF = table3['rF'][ind][0] 
        iF = table3['iF'][ind][0] 
        zF = table3['zF'][ind][0]
        ugmin = table3['ugmin'][ind][0]
        ugminErr = table3['ugminErr'][ind][0]
        grmin = table3['grmin'][ind][0]
        grminErr = table3['grminErr'][ind][0]    

        if ind != None:
          p_true = table2['P'][ind][0]
コード例 #9
0
def pixelTasksCombinedData(parameterList):
    #pixelNo is one number
    #pixelRa and dec are the ra/dec values of the pixel in consideration
    #galID are the object IDs of galaxies -- unique -- from the database
    #ra/decFinalGal are final ra/dec values of galaxies obtained from the database
    #galIDs -- galaxy IDs corresponding to all detections of galaxies
    #ra/decGal -- original ra and dec values of galaxies
    #starMjds --  mjd values corresponding to all the detections of stars
    pixelNo, pixelRa, pixelDec, galIDfinal, raFinalGal, decFinalGal, galIDs, raGal, decGal, galMjd , starIDs, starMjds, raStar, decStar, pixAllStar, mjdSorted, mjdBreakAt = parameterList


    angSepMask = (sphdist(pixelRa, pixelDec, raFinalGal, decFinalGal)) <= (searchRadius/60.0)
    #select unique galaxy ids within searchRadius
    uniqueGalIDinRadius = galIDfinal[angSepMask]
    raFinalGalInRadius  = raFinalGal[angSepMask]
    #print "raFinalGalInRadius.size",raFinalGalInRadius.size
    decFinalGalInRadius = decFinalGal[angSepMask]

    a = []
    b = []
    c = []
    d = []
    e = []

    
    for i in range(galIDs.size):
        if galIDs[i] in uniqueGalIDinRadius:
            a.append(galIDs[i])
            b.append(i)
            c.append(raGal[i])
            d.append(decGal[i])
            e.append(galMjd[i])

    galIDinRadius = np.array(a)
    raGalInRadius = np.array(c)
    decGalInRadius = np.array(d)
    galMjdInRadius = np.array(e)
    #match all detections of galaxies with those in radius
    #indexInRadius  = np.in1d(galIDs,uniqueGalIDinRadius)
    #obtain original ra and dec values for galaxies within radius
    #raGalInRadius  = raGal[indexInRadius]
    #decGalInRadius = decGal[indexInRadius]
    #galIDinRadius  = galIDs[indexInRadius]
    #print "galIDinRadius[1171070:1171083]",galIDinRadius[1171070:1171083]
    #galMjdInRadius = galMjd[indexInRadius] 
         
    currentGalID  = galIDinRadius[0]
    currentRaGal  = [raGalInRadius[0]]
    currentDecGal = [decGalInRadius[0]]
    
    galCounter = 0 
    position = 0 
    noOfDetectionsOfGal = galIDinRadius.size
    print "noOfDetectionsOfGal",noOfDetectionsOfGal
    
    offsetRaArray  = np.zeros(noOfDetectionsOfGal)
    offsetDecArray = np.zeros(noOfDetectionsOfGal)
    
    #run over all the objects within the searchRadius --- i dont know why we did a -1 previously ! think/ask ! :( -- there is no need and then we donot need to think about the last object separately! 
    t =  time()
    for k in np.arange(noOfDetectionsOfGal-1)+1:
        #print "on galaxy no", k 
        ID  = galIDinRadius[k]
        ra  = raGalInRadius[k]
        dec = decGalInRadius[k]
	#print "ID", ID
        if (ID == currentGalID):
                currentRaGal.append(ra)
                currentDecGal.append(dec)
                #print "same object now"
        else:
                #make them numpy arrays
                currentRaGal  = np.array(currentRaGal)
                currentDecGal = np.array(currentDecGal)
                #calculate offsets
	        #print "k", k
	        #print "galCounter", galCounter
                offsetRa  = currentRaGal - raFinalGalInRadius[galCounter]
                offsetDec = currentDecGal - decFinalGalInRadius[galCounter]
                #print "offsetRa", offsetRa
                #print "offsetDec", offsetDec
                #store offsets
                offsetRaArray[position:k]  = offsetRa
                offsetDecArray[position:k] = offsetDec
                #update counters and variables
	        galCounter+= 1
	        position   = k
	        currentGalID  = ID
	        currentRaGal  = [raGalInRadius[k]]
	        currentDecGal = [decGalInRadius[k]]
    #print "time taken to calculate offsets of galaxies from their final ra/dec", time()-t
    #print "galCounter after loop", galCounter	
	
    # select stars inside the pixel
    resIndexInPixel =  pixAllStar == pixelNo
    #uniqueStarIDinPixel = starID[resIndexInPixel]
    #match all detections of stars with those in the pixel
    #indexInPixel = np.in1d(starIDs, uniqueStarIDinPixel)
    #obtain original ra and dec values for stars within pixel
    raStarInPixel  = raStar[resIndexInPixel]
    decStarInPixel = decStar[resIndexInPixel]
    starIDInPixel  = starIDs[resIndexInPixel]
    mjdStarInPixel = starMjds[resIndexInPixel]

    medianRaOffsetEpochWise = np.zeros(len(mjdBreakAt)+1)
    medianDecOffsetEpochWise = np.zeros(len(mjdBreakAt)+1)
    avgMjd = np.zeros(len(mjdBreakAt)+1)

    if (len(mjdBreakAt)>= 3.0):
        previousVar2 = np.min(mjdSorted)
        for var1, var2 in enumerate(mjdBreakAt, start=0):
            mjdIndex = (galMjdInRadius < var2) & (previousVar2 <galMjdInRadius)
            mjdIndexInPixel = (mjdStarInPixel<var2) & (previousVar2 < mjdStarInPixel)
            if any(mjdIndex):
                offsetRaValues  = offsetRaArray[mjdIndex] 
                offsetDecValues = offsetDecArray[mjdIndex]
                medianRaOffsetEpochWise[var1]  = np.median(offsetRaValues)
                medianDecOffsetEpochWise[var1] = np.median(offsetDecValues)
                #update the ra/dec - replace old values
                raStarInPixel[mjdIndexInPixel] -= medianRaOffsetEpochWise[var1]
                decStarInPixel[mjdIndexInPixel]-= medianDecOffsetEpochWise[var1]
                avgMjd[var1] = (mjdStarInPixel[mjdIndexInPixel].max() - mjdStarInPixel[mjdIndexInPixel].min() )/2
            else:
                offsetRaValues  = offsetRaArray[mjdIndex] 
                offsetDecValues = offsetDecArray[mjdIndex]
                medianRaOffsetEpochWise[var1+1]  = np.median(offsetRaValues)
                medianDecOffsetEpochWise[var1+1] = np.median(offsetDecValues)
                #update the ra/dec - replace old values
                raStarInPixel[mjdIndexInPixel] -= medianRaOffsetEpochWise[var1]
                decStarInPixel[mjdIndexInPixel]-= medianDecOffsetEpochWise[var1]
                avgMjd[var1+1] = (mjdStarInPixel[mjdIndexInPixel].max() - mjdStarInPixel[mjdIndexInPixel].min() )/2
        previousVar2 = var2

    finalObjIDstar    = starIDInPixel
    finalRaArrayStar  = raStarInPixel
    finalDecArrayStar = decStarInPixel
    
    return finalObjIDstar, finalRaArrayStar, finalDecArrayStar
コード例 #10
0
def process_file(filename, night=None, favor2=None, verbose=False):
    if favor2 is None:
        favor2 = Favor2()

    header = fits.getheader(filename, -1)

    if night is None:
        time = parse_time(header['TIME'])
        night = get_night(time)

    if verbose:
        print(night, header['TYPE'])

    # Skip old master calibrations
    if header['TYPE'] in ['bgflat', 'superflat', 'flat']:
        return None

    image = fits.getdata(filename, -1).astype(np.double)

    # Frame dimensions
    width, height = header['NAXIS1'], header['NAXIS2']

    # image,header = crop_overscans(image, header, subtract=False)
    if header['TYPE'] not in ['flat', 'masterflat', 'dark', 'masterdark']:
        image -= header.get('BASELINE', 100.0)

    # Clean up the header a bit
    header.remove('HISTORY', remove_all=True, ignore_missing=True)
    header.remove('COMMENT', remove_all=True, ignore_missing=True)
    header.remove('', remove_all=True, ignore_missing=True)
    for _ in header.keys():
        if _ and _[0] == '_':
            header.remove(_, remove_all=True, ignore_missing=True)

    type = header.get('TYPE', 'unknown')
    filter = header.get('FILTER', 'unknown')

    if filter == 'Custom' or 'Pol' in filter:
        print('Broken filter in', filename)
        return None

    if type not in [
            'dark', 'masterdark', 'flat', 'skyflat', 'superflat', 'masterflat'
    ]:
        wcs = WCS(header) if header.get('CTYPE1') else None
        if not wcs or not wcs.sip:
            print('No WCS information in', filename)
            return None

        ra, dec = wcs.all_pix2world([0, image.shape[1], 0.5 * image.shape[1]],
                                    [0, image.shape[0], 0.5 * image.shape[0]],
                                    0)
        ra1, dec1 = wcs.all_pix2world([image.shape[1], 0], [0, image.shape[0]],
                                      0)
        radius = 0.5 * coords.sphdist(ra[0], dec[0], ra[1], dec[1])[0]
        radius1 = 0.5 * coords.sphdist(ra1[0], dec1[0], ra1[1], dec1[1])[0]

        # Sanity checking with some hard-coded values
        if radius < 7.25 or radius > 7.45 or np.abs(1.0 -
                                                    radius / radius1) > 0.1:
            print('Broken WCS information in', filename)
            return None

        ra0, dec0 = ra[2], dec[2]

        # Frame footprint
        ra, dec = wcs.all_pix2world([0, 0, image.shape[1], image.shape[1]],
                                    [0, image.shape[0], image.shape[0], 0], 0)
        footprint = "(" + ",".join(
            ["(%g,%g)" % (_, __) for _, __ in zip(ra, dec)]) + ")"

        # Frame footprint at +10 pixels from the edge
        ra, dec = wcs.all_pix2world(
            [10, 10, image.shape[1] - 10, image.shape[1] - 10],
            [10, image.shape[0] - 10, image.shape[0] - 10, 10], 0)
        footprint10 = "(" + ",".join(
            ["(%g,%g)" % (_, __) for _, __ in zip(ra, dec)]) + ")"

    else:
        # Should we really discard WCS for non-object frames?
        ra0, dec0, radius = None, None, None
        footprint, footprint10 = None, None

    time = parse_time(header['TIME'])

    exposure = header.get('EXPOSURE')
    shutter = header.get('SHUTTER')
    channel = header.get('CHANNEL ID')
    pos0 = header.get('MIRROR_POS0')
    pos1 = header.get('MIRROR_POS1')

    mean = np.mean(image)

    keywords = dict(header)

    favor2.query(
        'INSERT INTO images (filename,night,time,channel,type,filter,exposure,shutter,pos0,pos1,ra,dec,radius,width,height,mean,footprint,footprint10,keywords) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s) ON CONFLICT (filename) DO NOTHING',
        (filename, night, time, channel, type, filter, exposure, shutter, pos0,
         pos1, ra0, dec0, radius, width, height, mean, footprint, footprint10,
         keywords))

    return {
        'filename': filename,
        'night': night,
        'time': time,
        'channel': channel,
        'type': type,
        'filter': filter,
        'shutter': shutter,
        'ra0': ra0,
        'dec0': dec0,
        'radius': radius,
        'exposure': exposure,
        'width': width,
        'height': height,
        'mean': mean,
        'keywords': keywords
    }
コード例 #11
0
def pixelTasks(parameterListForPixel):
    """Workers will execute this function."""
    #unpack the input parameter list (i.e., separate them into different arrays)
    #objID -- contains the good galaxy IDs -- unique no of times
    #objIDs -- contains all the galaxy IDs corresponding to all the detections of galaxies
    #medRa and medDec -- contain good median values 
    #resRa and resDec -- contain the residual values for each detection of galaxy-- not good
    #ra/decAll -- ra/dec values for all the galaxies -- not good
    #pixAll -- pixel indices for all the galaxies -- not good
    pixelNo, pixRa, pixDec, objID, medRa, medDec, objIDs, MJDs, resRa, resDec, raAll, decAll, pixAll,mjdBreakAt, mjdSorted  = parameterListForPixel

    #print 'pixelNo', pixelNo
    #print 'pixAll',pixAll
    #global searchRadius
    #global mjdBreakAt
    #global mjdSorted
    #find objects within the searchRadius
    angSepMask = sphdist(pixRa, pixDec, medRa, medDec) <= (searchRadius/60.0)
    objInRadius = objID[angSepMask]
    #print 'objInRadius',objInRadius
    #print "len(objIDs)",len(objIDs)
    #print "len(objInRadius)",len(objInRadius) 
    #this function matches the given arrays, returns a boolean array of the size of first array.
    #this index points to rows that contain residuals (and MJDs) of galaxy detections within search radius
    '''resIndexInRadius = np.in1d(objIDs, objInRadius)'''
    #print "len(resIndexInRadius)", len(resIndexInRadius)
    #print 'objIDs[resIndexInRadius]',objIDs[resIndexInRadius]
    #print 'len(objIDs[resIndexInRadius])',len(objIDs[resIndexInRadius])
    #select unique obj ids in radius
    #uniqueObjInRadius = np.unique(objIDs[resIndexInRadius])
    #print "len(resRa)", len(resRa)
    #print  "len(resDec)", len(resDec)
    #select the residual values corresponding to the objects in radius
    '''resRaValuesInRadius = resRa[resIndexInRadius]
    resDecValuesInRadius = resDec[resIndexInRadius]'''
    #print 'resRaValuesInRadius', resRaValuesInRadius
    #print 'resDecValuesInRadius', resDecValuesInRadius
    #print 'len(resRaValuesInRadius)', len(resRaValuesInRadius)
    #print 'len(resDecValuesInRadius)', len(resDecValuesInRadius)
    #print 'np.count_nonzero(resRaValuesInRadius)', np.count_nonzero(resRaValuesInRadius)
    #print 'np.count_nonzero(resDecValuesInRadius)', np.count_nonzero(resDecValuesInRadius)
    #select mjds in the radius
    '''mjdInRadius = MJDs[resIndexInRadius]'''
    #print 'mjdInRadius',mjdInRadius
    # r = time()
    # a = []
    # b = []
    # c = []
    # for p in range(objIDs.size):
    #         if objIDs[p] in objInRadius:
    #     	    a.append(resRa[p])
    #     	    b.append(resDec[p])
    #     	    c.append(MJDs[p])
    # resRaValuesInRadius = np.array(a)
    # resDecValuesInRadius= np.array(b)
    # mjdInRadius = np.array(c)
    '''instead of the above loop or in1d -- we use PANDAS'''
    try:
        flag1 = 1 
	r1 = time()
	temp = pd.Index(objIDs)
	inde = temp.get_indexer_for(objInRadius)
	inde = inde[inde > -1]
	inde = np.array(inde, dtype='u8')
            #objIDs[inde]
	resRaValuesInRadius = resRa[inde]
	resDecValuesInRadius = resDec[inde]
	mjdInRadius = MJDs[inde]
	    
    except IndexError:
        return pixelNo, flag1, inde.size
	    
    #for storing median values for each epoch
    medianResidualRaEpochWise  = np.zeros(len(mjdBreakAt)+1)
    medianResidualDecEpochWise = np.zeros(len(mjdBreakAt)+1)
    #phiForObj  = (medRa*np.pi)/180 # should be done outside
    #thetaForObj = (90 - medDec)* (np.pi/180) # outside
    #pixelIndexForObj = h.ang2pix(nside, thetaForObj, phiForObj) # calc outside, pass here
    indexInPixel = pixAll == pixelNo
    objIDinPixel = objID[indexInPixel]
    #medRaInPixel = medRa[indexInPixel]
    #medDecInPixel = medDec[indexInPixel]
    #note : objIDinPixel and ra/decInPixel are not the same size, so we need to create another array
    '''resIndexInPixel = np.in1d(objIDs, objIDinPixel)'''
    #print 'len(objIDs)', len(objIDs)
    #print 'len(objIDinPixel)',len(objIDinPixel)
    #raInPixel = triand.col('ra')[maskForGal][resIndexInPixel] # access RA and Dec from outside - processing table each time for each pixel is bad
    #decInPixel = triand.col('dec')[maskForGal][resIndexInPixel]
    ''' raInPixel = raAll[resIndexInPixel]
    decInPixel = decAll[resIndexInPixel]
    objInPixel = objIDs[resIndexInPixel]'''
    # print 'raInPixel', raInPixel
    # print 'decInPixel', decInPixel
    # print 'objInPixel', objInPixel
    # print 'len(raInPixel)', len(raInPixel)
    # print 'len(decInPixel)', len(decInPixel)
    # print 'len(objInPixel)', len(objInPixel)
    # d = []
    # e = []
    # f = []
    # g = []
    # for o in range(objIDs.size):
    #         if objIDs[o] in objIDinPixel:
    #     	    d.append(raAll[o])
    #     	    e.append(decAll[o])
    #     	    f.append(objIDs[o])
    #     	    g.append(MJDs[o])
    # raInPixel  = np.array(d)
    # decInPixel = np.array(e)
    # objInPixel = np.array(f)
    # mjdInPixel = np.array(g)
    try :
	    flag2 = 2 
	    temp2 = pd.Index(objIDs)
	    inde2 = temp2.get_indexer_for(objIDinPixel)
	    inde2 = inde2[inde2 > -1]
	    inde2 = np.array(inde2, dtype='u8')
	    raInPixel = raAll[inde2]
	    decInPixel = decAll[inde2]
	    objInPixel = objIDs[inde2]
	    mjdInPixel = MJDs[inde2]
	    #print "time taken for pandas indexer", time() - r1
    except IndexError:
	    return pixelNo, flag2, inde2.size
    #print "time taken by for loop", time() - r
    # sort data in the pixel by objInPixel
    #assert((objInPixel[1:] - objInPixel[0:-1]).all >= 0)
    '''mjdInPixel = MJDs[resIndexInPixel]'''
    #print mjdInPixel
    #phiForObj   = (triand.col('ra')*np.pi)/180
    #thetaForObj = (90 - triand.col('dec'))* (np.pi/180)
    #pixelIndexForObj = h.ang2pix(nside, thetaForObj, phiForObj)
    #raInRadius = triand.col('ra')[maskForGal][resIndexInRadius]
    #decInRadius = triand.col('dec')[maskForGal][resIndexInRadius]
    #pixelIndexInRadius = pixelIndexForObj[resIndexInRadius]
    #inPixelMask = pixelIndexInRadius == pixelNo
    #raInPixel = raInRadius[inPixelMask]
    #decInPixel = decInRadius[inPixelMask]
    #if there are atleast three epochs present
    if (len(mjdBreakAt)>=3.0):
        previousVar2 = np.min(mjdSorted)
        for var1, var2 in enumerate(mjdBreakAt, start=0):
                mjdIndex = (mjdInRadius< var2) & (previousVar2 < mjdInRadius)
                mjdIndexInPixel = (mjdInPixel<var2) & (previousVar2 < mjdInPixel)
                #print var1
                if any(mjdIndex):
                        #print "in if"
                        resRaValues  = resRaValuesInRadius[mjdIndex]
                        resDecValues = resDecValuesInRadius[mjdIndex]
                        print 'resRaValues', resRaValues
                        print 'resDecValues', resDecValues
                        #print 'len(resRaValues)',len(resRaValues)
                        #print 'len(resDecValues)',len(resDecValues)
                        #print 'np.count_nonzero(resRaValues)', np.count_nonzero(resRaValues)
                        #print 'np.count_nonzero(resDecValues)', np.count_nonzero(resDecValues)
                        #resRaValuesTrue = resRaValues[np.where(resRaValues)]
                        assert(resRaValues.size > 0.0), "resRaValues is empty"
                        assert(resDecValues.size > 0.0), "resDecValues is empty"
                        medianResidualRaEpochWise[var1]  = np.median(resRaValues)
                        medianResidualDecEpochWise[var1] = np.median(resDecValues)
                        print 'medianResidualRaEpochWise[',var1,']', medianResidualRaEpochWise[var1]
                        print 'medianResidualDecEpochWise[',var1,']', medianResidualDecEpochWise[var1] 
                        #replacing old values with new values
                        raInPixel[mjdIndexInPixel] -=  medianResidualRaEpochWise[var1]
                        decInPixel[mjdIndexInPixel] -=  medianResidualDecEpochWise[var1]
                if (var1==(len(mjdBreakAt)-1)):
                        previousVar2 = var2
                        var2 = np.max(mjdSorted)
                        mjdIndex = (mjdInRadius< var2) & (previousVar2 < mjdInRadius)
                        mjdIndexInPixel = (mjdInPixel<var2) & (previousVar2 < mjdInPixel)
                        if any(mjdIndex):
                                resRaValues  = resRaValuesInRadius[mjdIndex]
                                resDecValues = resDecValuesInRadius[mjdIndex]
				print 'resRaValues', resRaValues
                                print 'resDecValues', resDecValues
                                assert(resRaValues.size > 0.0), "resRaValues is empty"
                                assert(resDecValues.size > 0.0), "resDecValues is empty"
                                medianResidualRaEpochWise[var1+1]  = np.median(resRaValues)
                                medianResidualDecEpochWise[var1+1] = np.median(resDecValues)
                                print 'medianResidualRaEpochWise[',var1+1,']', medianResidualRaEpochWise[var1+1]
                                print 'medianResidualDecEpochWise[',var1+1,']', medianResidualDecEpochWise[var1+1] 
                                #replacing old values with new values
                                raInPixel[mjdIndexInPixel] -=  medianResidualRaEpochWise[var1+1]
                                decInPixel[mjdIndexInPixel] -=  medianResidualDecEpochWise[var1+1]
                previousVar2 = var2 

    #else:
    #         print "in else"
    #         print "resRaValuesInRadius",resRaValuesInRadius
    #         resRaValues  = resRaValuesInRadius[mjdIndex]
    #         resDecValues = resDecValuesInRadius[mjdIndex]
    #         assert(resRaValues.size > 0.0), "resRaValues is empty"
    #         assert(resDecValues.size > 0.0), "resDecValues is empty"
    #         medianResidualRaEpochWise[var1+1]  = np.median(resRaValues)
    #         medianResidualDecEpochWise[var1+1] = np.median(resDecValues)
    #         print 'medianResidualRaEpochWise[',var1+1,']', medianResidualRaEpochWise[var1+1]
    #         print 'medianResidualDecEpochWise[',var1+1,']', medianResidualDecEpochWise[var1+1] 
    #         #replacing old values with new values
    #         raInPixel[mjdIndexInPixel] -=  medianResidualRaEpochWise[var1+1]
    #         decInPixel[mjdIndexInPixel] -=  medianResidualDecEpochWise[var1+1]
    # previousVar2 = var2 

    #calculate final ra/dec as the median of newRa/newDec values
    finalRaArray  = np.zeros(objIDinPixel.size)
    finalDecArray = np.zeros(objIDinPixel.size)
    medianRaError  = np.zeros(objIDinPixel.size)
    medianDecError = np.zeros(objIDinPixel.size)
    #maskForStar = table.get_where_list('gal == 0')
    #total number of *detections* of stars
    #noOfDetOfStar = np.where(maskForStar)[0].size
    #arrays to store deltas for stars
    #deltaRaArray  = np.zeros(noOfDetOfStar)
    #deltaDecArray = np.zeros(noOfDetOfStar)
    #if(pixelNo==74):
    #    print "Its pixel no 74"
    #    print "objInPixel:", objInPixel
    #    print "raInPixel:", raInPixel
    #    print "decInPixel:", decInPixel
    try:
        #take the current values separately
        obj   = objInPixel[0]
        raObj = [raInPixel[0]]
        decObj = [decInPixel[0]]
        mjdObj = [mjdInPixel[0]]
        #set variables
        counter = 0
        pos2 = 0
        t2   = time()
        for i in np.arange(objInPixel.size-1)+1:#np.arange(10)+1: #
            #print 'on the row number',i
            objID = objInPixel[i]
            ra  = raInPixel[i]
            dec = decInPixel[i]
            if(objID == obj):
                raObj.append(ra)
                decObj.append(dec)
            else:
                raObj = np.array(raObj)
                decObj= np.array(decObj)
                #print 'obj', obj
                #print 'raObj', raObj
                #print 'decObj', decObj            
                #find the final ra and dec values'
		#assert(raObj.size > 0.0), "raObj is empty"
		#assert(decObj.size > 0.0), "decObj is empty"
                finalRaArray[counter]  = np.median(raObj)
                finalDecArray[counter] = np.median(decObj)
                #calculate rms values for ra/dec
                rmsRa  = 0.741*(np.percentile(raObj, 75) - np.percentile(raObj, 25))
                rmsDec = 0.741*(np.percentile(decObj, 75) - np.percentile(decObj, 25))
                #calculate uncertainity in median coordinates
                #print 'rmsRa', rmsRa
                #print 'rmsDec', rmsDec
                #print 'rmsRa.size = ', rmsRa.size
                #print 'rmsDec.size=', rmsDec.size
                #print 'raObj.size', raObj.size
                #print 'decObj.size', decObj.size
                medianRaError[counter]  = np.sqrt((np.pi/2)/(raObj.size-1))*rmsRa
                medianDecError[counter] = np.sqrt((np.pi/2)/(decObj.size-1))*rmsDec
                # print finalRaArray[counter]
                #print i
                #print 'counter', counter
                #calculate how much the galaxy moved in each epoch
                #recall : the final ra and dec values were obtained after removing offsets epochwise and obj_id wise
                #thus implying that these values make the galaxies static as required
                #deltaRa  = raObj2 - finalRaArray[counter]
                #deltaDec = decObj2 - finalDecArray[counter]
                #deltaRaArray[pos2:i]  = deltaRa
                #deltaDecArray[pos2:i] = deltaDec
                #move to the next obj
                obj  = objID
                pos2 = i
                counter +=1
                #make them lists again
                raObj  =[raInPixel[i]]
                decObj =[decInPixel[i]]
                #raObj2=[objInPixelFile2['ra'][i]]
                #decObj2=[objInPixelFile2['dec'][i]]
        #processing the last object now
        raObj  = np.array(raObj)
        decObj = np.array(decObj)
	#assert(raObj.size > 0.0), "raObj is empty"
	#assert(decObj.size > 0.0), "decObj is empty"
        finalRaArray[counter]  = np.median(raObj)
        finalDecArray[counter] = np.median(decObj)
        #calculate rms values for ra/dec
        rmsRa  = 0.741*(np.percentile(raObj, 75) - np.percentile(raObj, 25))
        rmsDec = 0.741*(np.percentile(decObj, 75) - np.percentile(decObj, 25))
        medianRaError[counter]  = np.sqrt((np.pi/2)/(raObj.size-1))*rmsRa
        medianDecError[counter] = np.sqrt((np.pi/2)/(decObj.size-1))*rmsDec
        #t3 = time()
        #print 'time taken for calculating ra and dec values for a pixel is ', t3-t2
        return objIDinPixel, finalRaArray, finalDecArray, medianRaError, medianDecError

    except IndexError:
        #pass
        print "index error"
        print pixelNo
        #return objIDinPixel, finalRaArray, finalDecArray, medianRaError, medianDecError
        return np.array(objIDinPixel), np.array(finalRaArray), np.array(finalDecArray), np.array(medianRaError), np.array(medianDecError)
コード例 #12
0
ファイル: multiCat.py プロジェクト: prashansa/properMotions
def pixelTasks(parameterListForPixel):
    """Workers will execute this function."""
    #unpack the input parameter list that is to say separate them into different arrays
    pixelNo, ra, dec, nObs, medRa, medDec, resRa, resDec = parameterListForPixel
    #define an index so that all the calculations can be put in place later
    #ind =
    global searchRadius
    #find objects within the searchRadius and whose noOfObs is atleast 3
    angSepMask =  (sphdist(ra, dec, medRa, medDec) <= (searchRadius*60)) & (nObs>=3.0)
    global testFile
    #separate these entire rows from the original testFile
    searchFile = testFile[angSepMask]
    #putting unique object IDs in this file
    uniqueSearchFile = np.unique(searchFile['obj_id'])
    #file containing data for objects inside pixel
    objInPixelFile = testFile[pixelIndexForObj == pixelNo]
    #file containing unique objIDs of the pixel
    uniqueObjInPixelFile = np.unique(objInPixelFile['obj_id'])
    global mjdBreakAt
    global mjdSorted
    medianResidualRaEpochWise = np.zeros(len(mjdBreakAt)+1)
    medianResidualDecEpochWise = np.zeros(len(mjdBreakAt)+1)
    #if there are atleast three epochs present
    if (len(mjdBreakAt)>=3.0):
        previousVar2 = np.min(mjdSorted)
        for var1, var2 in enumerate(mjdBreakAt, start=0):
            mjdIndex = (searchFile['mjd']< var2) & (previousVar2 < searchFile['mjd'])
            mjdIndexInPixel = (objInPixelFile['mjd']<var2) & (previousVar2 < objInPixelFile['mjd'])
            #print var1
            if any(mjdIndex):
                medianResidualRaEpochWise[var1] = np.median(resRa[mjdIndex])
                medianResidualDecEpochWise[var1] = np.median(resDec[mjdIndex])
                #replacing old values with new values
                objInPixelFile['ra'][mjdIndexInPixel] -=  medianResidualRaEpochWise[var1]
                objInPixelFile['dec'][mjdIndexInPixel] -=  medianResidualDecEpochWise[var1]
            else:
                medianResidualRaEpochWise[var1+1] = np.median(resRa[mjdIndex])
                medianResidualDecEpochWise[var1+1] = np.median(resDec[mjdIndex])
                #replacing old values with new values
                objInPixelFile['ra'][mjdIndexInPixel] -=  medianResidualRaEpochWise[var1+1]
                objInPixelFile['dec'][mjdIndexInPixel] -=  medianResidualDecEpochWise[var1+1]
            previousVar2 = var2
    #calculate final ra/dec as the median of newRa/newDec values
    finalRaArray = np.zeros(uniqueObjInPixelFile.size)
    finalDecArray = np.zeros(uniqueObjInPixelFile.size)
    #take the current values separately
    currObj = objInPixelFile['obj_id'][0]
    raObj = [objInPixelFile['ra'][0]]
    decObj = [objInPixelFile['dec'][0]]
    mjdObj = [objInPixelFile['mjd'][0]]
    #set variables
    counter = 0
    #t2 = time()
    for i in np.arange(objInPixelFile.size-1)+1:#np.arange(10)+1: #
        objID = objInPixelFile['obj_id'][i]
        ra = objInPixelFile['ra'][i]
        dec = objInPixelFile['dec'][i]
        if(objID == currObj):
            raObj.append(ra)
            decObj.append(dec)
        else:
            raObj=np.array(raObj)
            decObj=np.array(decObj)
            finalRaArray[counter] = np.median(raObj)
            finalDecArray[counter] = np.median(decObj)
            # print finalRaArray[counter]
            #print i
            #print counter
            currObj=objID
            raObj=[objInPixelFile['ra'][i]]
            decObj=[objInPixelFile['dec'][i]]
            counter +=1
    #t3 = time()
    #print 'time taken for calculating ra and dec values for a pixel is ', t3-t2
    return finalRaArray, finalDecArray 
コード例 #13
0
ファイル: program2.py プロジェクト: prashansa/properMotions
#where can you 
tBreakAt=np.where(condition)

#inputArray will be mjds and the binArray will be mjd plus minus deltaT
indexArray = np.digitize(inputArray, binArray)



#pixelisation

NSIDE = 2**10

#nside2npix give the number of pixels for a given NSIDE
m = np.arange(hp.nside2npix(NSIDE))

#pix2ang gives the angular coordinates
theta, phi = hp.pix2ang(NSIDE, m)

#pixelcenters
raCenter = 180*phi/np.pi
decCenter = 90 - theta*180/np.pi
    

#raCenter and decCenter are pixel centers
angularSeparation=sphdist(raCenter, decCenter, testFile['ra'], testFile['dec'])

temp = angularSeparation*60 < searchRadius

searchThisArrayIDs = np.unique(testFile['obj_id'][temp])

コード例 #14
0
ファイル: program1.py プロジェクト: prashansa/properMotions
# sphericalDistArray = []*len(rBar_k)
# for row in rBar_k:
#     #rBar_k[1] gives the ra values
#     sphericalDistArray.append(callingFunction(rBar_k[1], raCenter))



#......................................................................
#obtain galaxies within a searchRadius of three times the pixelWidth - the updateArray
#you would need to take distance between the galaxies on the sky, so convert ra dec values to spherical coordinates - obtain the spherical distance - check if this is less than the searchRadius
#.......................................................................

searchThisArrayTemp = []

for i in testFile:
    angSep = sphdist(raCenter, decCenter, i['ra'],i['dec'])
    #print 'angSept is ', angSep
    if ((angSep*60)<3000):
    #if((angSep*60)<10):
        #print 'i within 10 is', i
        #break
        searchThisArrayTemp.append(i)
        #print searchThisArrayTemp
        #break
    
searchThisArray =  np.unique(searchThisArrayTemp[0])       

#contains all the angular separations
angSep =  sphdist(raCenter, decCenter, testFile['ra'],testFile['dec'])

#dtype=boolean
コード例 #15
0
phiForObj = (testFile['ra'] * np.pi)/180 
thetaForObj = (90 - testFile['dec'])* (np.pi/180)
pixelIndexForObj= hp.ang2pix(nside,thetaForObj, phiForObj)


#pick a pixel from the testFile
pickPixelNo = pixelIndexForObj[len(pixelIndexForObj)/2]

#find objects within the searchRadius and whose noOfObs is atleast 3

#--------------------
#VERSION 1
#--------------------

#take those objects whose atleast one value of ra/dec is inside the searchRadius
angSepMask1 =  sphdist( pixelRa[pickPixelNo], pixelDec[pickPixelNo], testFile['ra'], testFile['dec'] ) <= (searchRadius*60)

#separate these entire rows from the original testFile
searchFile = testFile[angSepMask1]

#putting unique object IDs in this file
uniqueSearchFile = np.unique(searchFile['obj_id'])

#file containing data for objects inside pixel
objInPixelFile = testFile[pixelIndexForObj == pickPixelNo]

#file containing unique objIDs of the pixel
uniqueObjInPixelFile = np.unique(objInPixelFile['obj_id'])

#for containing no of observations for each object 
noOfObs = np.ones(len(uniqueSearchFile))