コード例 #1
0
ファイル: dcresistivity.py プロジェクト: svn2github/Escript
    def setUpPDE(self):
        """
        Return the underlying PDE.

        :rtype: `LinearPDE`
        """
        if self.__pde is None:
            dom=self.__domain
            x = dom.getX()
            DIM=dom.getDim()
            q=whereZero(x[DIM-1]-inf(x[DIM-1]))
            for i in range(DIM-1):
                xi=x[i]
                q+=whereZero(xi-inf(xi))+whereZero(xi-sup(xi))

            pde=LinearPDE(dom, numEquations=1)
            pde.getSolverOptions().setTolerance(self.__tol)
            pde.setSymmetryOn()
            A=pde.createCoefficient('A')
            X=pde.createCoefficient('X')
            pde.setValue(A=A, X=X, q=q)

        else:
            pde=self.__pde
            pde.resetRightHandSideCoefficients()
        return pde
コード例 #2
0
 def __init__(self, domain, pml_condition=None, frequency=None, vp=None, fix_boundary=True):
     """
     Initialise the class with domain, boundary conditions and frequency.
     Setup PDE 
     :param domain: the domain : setup with Dirac points
     :type domain: `Domain`
     :param pml_condition: 
     :type pml_condition:  
     :param frequency: 
     :type frequency: 
     :param vp: velocity field 
     :type vp: `Data`
     :param fix_boundary: if true fix all the boundaries except the top
     :type fix_boundary: `bool`
     
     """
     Dim=domain.getDim()
     self.pde=LinearPDE(domain, numEquations=1, numSolutions=1, isComplex=True)
     self.pde.getSolverOptions().setSolverMethod(SolverOptions.DIRECT)
     self.pml=pml_condition
     if not self.pml:
         self.pde.setValue(A=kronecker(domain))
         self.J=1.
     if fix_boundary:
         x=domain.getX()
         q=whereZero(x[Dim-1]-inf(x[Dim-1]))
         for i in range(Dim-1):
             q+=whereZero(x[i]-inf(x[i]))+whereZero(x[i]-sup(x[i]))
         self.pde.setValue(q=q)
     self.setFrequency(frequency)        
     self.setVp(vp)
コード例 #3
0
    def test_PDE2D(self):
        dx_tests = 0.1
        sigma0 = 1.
        electrodes = [(0.5 - 2 * dx_tests, 1.), (0.5 - dx_tests, 1.),
                      (0.5 + dx_tests, 1.), (0.5 + 2 * dx_tests, 1.)]
        domain = finRectangle(20,
                              20,
                              d1=mpisize,
                              diracPoints=electrodes,
                              diracTags=["sl0", "sl1", "sr0", "sr1"])
        loc = Locator(domain, electrodes[2:])

        # this creates some reference Data:
        x = domain.getX()
        q = whereZero(x[0] - inf(x[0])) + whereZero(
            x[0] - sup(x[0])) + whereZero(x[1] - inf(x[1]))
        ppde = LinearPDE(domain, numEquations=1)
        s = Scalar(0., DiracDeltaFunctions(domain))
        s.setTaggedValue("sl0", 1.)
        s.setTaggedValue("sl1", -1.)
        ppde.setValue(A=kronecker(2) * sigma0, q=q, y_dirac=s)
        pp = ppde.getSolution()
        uu = loc(pp)

        # arguments for DcRes
        current = 10.
        sourceInfo = ["sl0", "sl1"]
        sampleTags = [("sr0", "sr1")]

        sigmaPrimary = 7.
        phiPrimary = pp * current * sigma0 / sigmaPrimary

        uuscale = 1 - current * sigma0 / sigmaPrimary
        delphi_in = [(uu[1] - uu[0]) * uuscale]

        acw = DcRes(domain, loc, delphi_in, sampleTags, phiPrimary,
                    sigmaPrimary)

        self.assertLess(Lsup(phiPrimary - acw.getPrimaryPotential()),
                        1.e-10 * Lsup(acw.getPrimaryPotential()))

        SIGMA = 10.  # matches current
        args0 = acw.getArguments(SIGMA)
        p = args0[0]
        u = args0[1]

        # true secondary potential
        pps = pp - phiPrimary
        self.assertLess(Lsup(p - pps), 1.e-6 * Lsup(pps))

        # test return values at electrodes:
        self.assertLess(abs(u[0] - uu[0] * uuscale),
                        1.e-6 * abs(uu[0] * uuscale))
        self.assertLess(abs(u[1] - uu[1] * uuscale),
                        1.e-6 * abs(uu[1] * uuscale))

        # this sould be zero
        dd = acw.getDefect(SIGMA, *args0)
        self.assertTrue(dd >= 0.)
        self.assertTrue(dd <= 1e-7)
コード例 #4
0
 def __init__(self, domain):
     super(SlippingFault, self).__init__(self)
     self.domain = domain
     self.__pde_u = LinearPDE(domain,
                              numEquations=self.domain.getDim(),
                              numSolutions=self.domain.getDim())
     self.__pde_u.setSymmetryOn()
コード例 #5
0
 def doInitialization(self):
     """
        initialize model
        """
     if not self.displacement:
         self.displacement = Vector(0., ContinuousFunction(self.domain))
     if not self.velocity:
         self.velocity = Vector(0., ContinuousFunction(self.domain))
     if not self.stress:
         self.stress = Tensor(0., ContinuousFunction(self.domain))
     if not self.internal_force: self.internal_force = Data()
     if not self.external_force: self.external_force = Data()
     if not self.prescribed_velocity: self.prescribed_velocity = Data()
     if not self.location_prescribed_velocity:
         self.location_prescribed_velocity = Data()
     # save the old values:
     self.__stress_safe = self.stress
     self.__temperature_safe = self.temperature
     self.__displacement_safe = self.displacement
     self.__velocity_safe = self.velocity
     self.__velocity_old = None
     self.__old_dt = None
     self.__very_old_dt = None
     # get node cooridnates and apply initial displacement
     self.__x = self.domain.getX()
     self.domain.setX(self.__x + self.displacement)
     # open PDE:
     self.__pde = LinearPDE(self.domain)
     self.__pde.setSolverMethod(self.__pde.DIRECT)
     self.__solver_options = self.__pde.getSolverOptions()
     self.__solver_options.setSolverMethod(self.__solver_options.DIRECT)
     self.__solver_options.setVerbosity(self.debug)
コード例 #6
0
    def wavePropagation(domain, h, tend, lam, mu, rho, xc, src_radius, U0):
        # lists to collect displacement at point source
        ts, u_pc0, u_pc1, u_pc2 = [], [], [], []
        x = domain.getX()
        # ... open new PDE ...
        mypde = LinearPDE(domain)
        mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
        kron = kronecker(mypde.getDim())

        dunit = numpy.array([1., 0., 0.])  # defines direction of point source

        mypde.setValue(D=kron * rho,
                       q=whereNegative(length(x - xc) - src_radius) * dunit)
        # ... set initial values ....
        n = 0
        # for first two time steps
        u = Vector(0., Solution(domain))
        u_last = Vector(0., Solution(domain))
        t = 0

        # define the location of the point source
        L = Locator(domain, xc)
        # find potential at point source
        u_pc = L.getValue(u)
        print("u at point charge = %s" % u_pc)
        ts.append(t)
        u_pc0.append(u_pc[0]), u_pc1.append(u_pc[1]), u_pc2.append(u_pc[2])

        while t < tend:
            t += h
            # ... get current stress ....
            g = grad(u)
            stress = lam * trace(g) * kron + mu * (g + transpose(g))
            # ... get new acceleration ....
            amplitude = U0 * (4 * (t - t0)**3 / alpha**3 - 6 *
                              (t - t0) / alpha) * sqrt(2.) / alpha**2 * exp(
                                  1. / 2. - (t - t0)**2 / alpha**2)
            mypde.setValue(X=-stress, r=dunit * amplitude)
            a = mypde.getSolution()
            # ... get new displacement ...
            u_new = 2 * u - u_last + h**2 * a
            # ... shift displacements ....
            u_last = u
            u = u_new
            n += 1
            print("time step %d, t = %s" % (n, t))
            u_pc = L.getValue(u)
            print("u at point charge = %s" % u_pc)
            ts.append(t)
            u_pc0.append(u_pc[0]), u_pc1.append(u_pc[1]), u_pc2.append(u_pc[2])

            # ... save current acceleration in units of gravity and displacements
            if n == 1 or n % 10 == 0:
                saveVTK("./data/usoln.%i.vtu" % (n / 10),
                        acceleration=length(a) / 9.81,
                        displacement=length(u),
                        tensor=stress,
                        Ux=u[0])
        return ts, u_pc0, u_pc1, u_pc2
コード例 #7
0
    def getPotential(self):
        """
        returns a list containing 3 lists one for each the primary, secondary
        and total potential.
        """


        primCon=self.primaryConductivity
        coords=self.domain.getX()
        pde=LinearPDE(self.domain, numEquations=1)
        tol=1e-8
        pde.getSolverOptions().setTolerance(tol)
        pde.setSymmetryOn()

        DIM=self.domain.getDim()
        x=self.domain.getX()
        q=whereZero(x[DIM-1]-inf(x[DIM-1]))
        for i in xrange(DIM-1):
            xi=x[i]
            q+=whereZero(xi-inf(xi))+whereZero(xi-sup(xi))
        A = self.secondaryConductivity * kronecker(self.domain)
        pde.setValue(A=A,q=q)

        delPhiSecondary = []
        delPhiPrimary = []
        delPhiTotal = []
        if(len(self.electrodes[0])==3):

            for i in range(self.numElectrodes-1):
                analyticRs=Data(0,(3,),ContinuousFunction(self.domain))
                analyticRs[0]=(coords[0]-self.electrodes[i][0])
                analyticRs[1]=(coords[1]-self.electrodes[i][1])
                analyticRs[2]=(coords[2])
                rsMag=(analyticRs[0]**2+analyticRs[1]**2+analyticRs[2]**2)**0.5
                analyticPrimaryPot=(self.current*(1./primCon))/(2*pi*(rsMag+(whereZero(rsMag)*0.0000001))) #the magic number 0.0000001 is to avoid devide by 0
                analyticRsPolePower=(analyticRs[0]**2+analyticRs[1]**2+analyticRs[2]**2)**1.5
                analyticRsPolePower = analyticRsPolePower+(whereZero(analyticRsPolePower)*0.0000001)
                gradUPrimary = Data(0,(3,),ContinuousFunction(self.domain))
                gradUPrimary[0] =(self.current/(2*pi*primCon)) * (analyticRs[0]/analyticRsPolePower)
                gradUPrimary[1] =(self.current/(2*pi*primCon)) * (analyticRs[1]/analyticRsPolePower)
                gradUPrimary[2] =(self.current/(2*pi*primCon)) * (analyticRs[2]/analyticRsPolePower)
                gradUPrimary=-gradUPrimary
                X=(primCon-self.secondaryConductivity) * gradUPrimary
                pde.setValue(X=X)
                u=pde.getSolution()
                loc=Locator(self.domain,self.electrodes[i+1])
                delPhiSecondary.append(loc.getValue(u))
                delPhiPrimary.append(loc.getValue(analyticPrimaryPot))
        else:
            raise NotImplementedError("2d forward model is not yet implemented")

        self.delPhiSecondary = delPhiSecondary
        self.delPhiPrimary = delPhiPrimary
        for i in range(len(delPhiPrimary)):
            delPhiTotal.append(delPhiPrimary[i] + delPhiSecondary[i])
        self.delPhiTotal=delPhiTotal
        return [delPhiPrimary, delPhiSecondary, delPhiTotal]
コード例 #8
0
 def __init__(self,domain,dim,ng=1,useMPI=False,np=1,rho=2.35e3,mIds=False,\
              FEDENodeMap=False,DE_ext=False,FEDEBoundMap=False,conf=False):
     """
   initialization of the problem, i.e. model constructor
   :param domain: type Domain, domain of the problem
   :param ng: type integer, number of Gauss points
   :param useMPI: type boolean, use MPI or not
   :param np: type integer, number of processors
   :param rho: type float, density of material
   :param mIds: a list contains membrane node IDs
   :param FEDENodeMap: a dictionary with FE and DE boundary node IDs in keys and values
   :param DE_ext: name of file which saves initial state of exterior DE domain
   :param FEDEBoundMap: a dictionary with FE and DE boundary element IDs in keys and values (deprecated)
   :param conf: type float, conf pressure on membrane
   """
     self.__domain = domain
     self.__pde = LinearPDE(self.__domain,
                            numEquations=dim,
                            numSolutions=dim)
     self.__pde.getSolverOptions().setSolverMethod(
         SolverOptions.HRZ_LUMPING)
     self.__pde.setSymmetryOn()
     self.__numGaussPoints = ng
     self.__rho = rho
     self.__mIds = mIds
     self.__FEDENodeMap = FEDENodeMap
     self.__FEDEBoundMap = FEDEBoundMap
     self.__conf = conf
     self.__pool = get_pool(mpi=useMPI, threads=np)
     self.__scenes = self.__pool.map(initLoad, range(ng))
     self.__strain = escript.Tensor(0, escript.Function(self.__domain))
     self.__stress = escript.Tensor(0, escript.Function(self.__domain))
     self.__u = escript.Vector(0, escript.Solution(self.__domain))
     self.__u_last = escript.Vector(0, escript.Solution(self.__domain))
     self.__u_t = escript.Vector(0, escript.Solution(self.__domain))
     self.__dt = 0
     # ratio between timesteps in internal DE and FE domain
     self.__nsOfDE_int = 1
     # if FEDENodeMap is given, employ exterior DE domain
     if self.__FEDENodeMap:
         self.__sceneExt = self.__pool.apply(initLoadExt, (DE_ext, ))
         # ratio between timesteps in external DE and FE domain
         self.__nsOfDE_ext = 1
         # get interface nodal forces as boundary condition
         self.__FEf = self.__pool.apply(
             initNbc, (self.__sceneExt, self.__conf, mIds, FEDENodeMap))
         """
      # get interface nodal tractions as boundary condition (deprecated)
      self.__Nbc=escript.Vector(0,escript.Solution(self.__domain))
      FENbc = self.__pool.apply(initNbc,(self.__sceneExt,self.__conf,mIds,FEDENodeMap))
      for FEid in FENbc.keys():
         self.__Nbc.setValueOfDataPoint(FEid,FENbc[FEid])
      """
     # get stress tensor at material points
     s = self.__pool.map(getStress2D, self.__scenes)
     for i in xrange(ng):
         self.__stress.setValueOfDataPoint(i, s[i])
コード例 #9
0
      def __init__(self,domain,debug=False):
         super(StokesProblem, self).__init__(self,debug)
         self.domain=domain
         self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim())
         self.__pde_u.setSymmetryOn()

         self.__pde_p=LinearPDE(domain)
         self.__pde_p.setReducedOrderOn()
         self.__pde_p.setSymmetryOn()
コード例 #10
0
    def __init__(self, domain, phi_f=None, phi=None, L_g=None, 
                       perm_f_0=None, perm_f_1=None, perm_f_2=None,
                       k_w =None, k_g=None, mu_w =None, mu_g =None,
                       rho_w =None, rho_g=None, sigma=0, A_mg=0, f_rg=1.,   
                         wells=[], g=9.81*U.m/U.sec**2):
       """
       set up
       
       :param domain: domain
       :type domain: `esys.escript.Domain`
       :param phi_f: porosity of the fractured rock as function of the gas pressure
       :type phi_f: `MaterialPropertyWithDifferential`
       :param phi: total porosity if None phi=1.
       :type phi: scalar or None
       :param L_g: gas adsorption as function of gas pressure
       :type L_g: `MaterialPropertyWithDifferential`
       :param S_fg: gas saturation in the fractured rock as function of the capillary pressure p_fc=S_fg- p_f
       :type S_fg: `MaterialPropertyWithDifferential`
       :param perm_f_0: permeability in the x_0 direction in the fractured media
       :type perm_f_0: scalar 
       :param perm_f_1: permeability in the x_1 direction in the fractured media
       :type perm_f_1: scalar
       :param perm_f_2: permeability in the x_2 direction in the fractured media
       :type perm_f_2: scalar
       :param k_w: relative permeability of water as function of water saturation
       :type k_w: `MaterialProperty`
       :param k_g: relative permeability of gas as function of gas saturation
       :type k_g: `MaterialProperty`
       :param mu_w: viscosity of water as function of water pressure
       :type mu_w: `MaterialProperty`
       :param mu_g: viscosity of gas as function of gas pressure
       :type mu_g: `MaterialProperty`
       :param rho_w: density of water as function of water pressure
       :type rho_w: `MaterialPropertyWithDifferential`
       :param rho_g: density of gas as function of gas pressure
       :type rho_g: `MaterialPropertyWithDifferential`
       :param wells : list of wells
       :type wells: list of `Well`
       :param sigma: shape factor for gas matrix diffusion 
       :param A_mg: diffusion constant for gas adsorption
       :param f_rg: gas re-adsorption factor
       """
 
       DualPorosity.__init__(self, domain,
                            phi_f=phi_f, phi_m=None, phi=phi,
                            S_fg=None, S_mg=None, 
                            perm_f_0=perm_f_0, perm_f_1=perm_f_1, perm_f_2=perm_f_2,
                            perm_m_0=None , perm_m_1=None, perm_m_2=None, 
                            k_w =k_w, k_g=k_g, mu_w =mu_w, mu_g =mu_g,
                            rho_w =rho_w, rho_g=rho_g, 
                            wells=wells, g=g)
       self.L_g=L_g
       self.sigma = sigma 
       self.A_mg = A_mg
       self.f_rg  = f_rg
       self.__pde=LinearPDE(self.domain, numEquations=3, numSolutions =3)
コード例 #11
0
 def __update(self, tag, tag_value, value):
     if self.__pde == None:
         self.__pde = LinearPDE(self.domain, numSolutions=1)
     mask = Scalar(0., Function(self.domain))
     mask.setTaggedValue(tag, 1.)
     self.__pde.setValue(Y=mask)
     mask = wherePositive(abs(self.__pde.getRightHandSide()))
     value *= (1. - mask)
     value += tag_value * mask
     return value
コード例 #12
0
    def __init__(self, domain, debug=False):
        super(StokesProblem, self).__init__(self, debug)
        self.domain = domain
        self.__pde_u = LinearPDE(domain,
                                 numEquations=self.domain.getDim(),
                                 numSolutions=self.domain.getDim())
        self.__pde_u.setSymmetryOn()

        self.__pde_p = LinearPDE(domain)
        self.__pde_p.setReducedOrderOn()
        self.__pde_p.setSymmetryOn()
コード例 #13
0
ファイル: stokes_problems.py プロジェクト: svn2github/Escript
      def __init__(self,domain):
         super(SimpleStokesProblem, self).__init__(self)

         self.__pde_u=LinearPDE(domain)
         self.__pde_u.setSymmetryOn()
         self.__pde_u.setValue(A=identityTensor4(dom))

         self.__pde_p=LinearPDE(domain)
         self.__pde_p.setReducedOrderOn()
         self.__pde_p.setSymmetryOn()
         self.__pde_p.setValue(D=1.)
コード例 #14
0
    def __init__(self,
                 domain,
                 pore0=0.,
                 perm=1.e-5,
                 kf=2.2e9,
                 dt=0.001,
                 ng=1,
                 useMPI=False,
                 np=1,
                 rtol=1.e-2):
        """
      initialization of the problem, i.e. model constructor
      :param domain: type Domain, domain of the problem
      :param pore0: type float, initial pore pressure
      :param perm: type float, d^2/(150 mu_f) in KC equation
      :param kf: type float, bulk modulus of the fluid
      :param dt: type float, time step for calculation
      :param ng: type integer, number of Gauss points
      :param useMPI: type boolean, use MPI or not
      :param np: type integer, number of processors
      :param rtol: type float, relevative tolerance for global convergence
      """
        self.__domain = domain
        self.__upde = LinearPDE(domain,
                                numEquations=domain.getDim(),
                                numSolutions=domain.getDim())
        self.__ppde = LinearPDE(domain, numEquations=1, numSolutions=1)
        # use reduced interpolation for pore pressure
        self.__ppde.setReducedOrderOn()

        self.__upde.getSolverOptions().setSolverMethod(SolverOptions.DIRECT)
        self.__ppde.getSolverOptions().setSolverMethod(SolverOptions.DIRECT)
        self.__upde.setSymmetryOn()
        self.__ppde.setSymmetryOn()

        self.__dt = dt
        self.__bulkFluid = kf
        self.__numGaussPoints = ng
        self.__rtol = rtol
        self.__stress = escript.Tensor(0, escript.Function(domain))
        self.__S = escript.Tensor4(0, escript.Function(domain))
        self.__pool = get_pool(mpi=useMPI, threads=np)
        self.__scenes = self.__pool.map(initLoad, range(ng))
        st = self.__pool.map(getStressAndTangent2D, self.__scenes)
        for i in xrange(ng):
            self.__stress.setValueOfDataPoint(i, st[i][0])
            self.__S.setValueOfDataPoint(i, st[i][1])
        self.__strain = escript.Tensor(0, escript.Function(domain))
        self.__pore = escript.Scalar(pore0, escript.ReducedSolution(domain))
        self.__pgauss = util.interpolate(pore0, escript.Function(domain))
        self.__permeability = perm
        self.__meanStressRate = escript.Scalar(0, escript.Function(domain))
        self.__r = escript.Vector(
            0, escript.Solution(domain))  #Dirichlet BC for u
コード例 #15
0
    def __init__(self, domain):
        super(SimpleStokesProblem, self).__init__(self)

        self.__pde_u = LinearPDE(domain)
        self.__pde_u.setSymmetryOn()
        self.__pde_u.setValue(A=identityTensor4(dom))

        self.__pde_p = LinearPDE(domain)
        self.__pde_p.setReducedOrderOn()
        self.__pde_p.setSymmetryOn()
        self.__pde_p.setValue(D=1.)
コード例 #16
0
ファイル: msFEM3D.py プロジェクト: HuanranWU/Yade
    def __init__(self,
                 domain,
                 ng=1,
                 useMPI=False,
                 np=1,
                 random=False,
                 rtol=1.e-2,
                 verbose=False):
        """
      initialization of the problem, i.e. model constructor
      :param domain: type Domain, domain of the problem
      :param ng: type integer, number of Gauss points
      :param useMPI: type boolean, use MPI or not
      :param np: type integer, number of processors
      :param random: type boolean, if or not use random density field
      :param rtol: type float, relevant tolerance for global convergence
      :param verbose: type boolean, if or not print messages during calculation
      """
        self.__domain = domain
        self.__pde = LinearPDE(domain,
                               numEquations=self.__domain.getDim(),
                               numSolutions=self.__domain.getDim())
        try:
            self.__pde.getSolverOptions().setSolverMethod(SolverOptions.DIRECT)
        except:
            #import time
            print(
                "======================================================================="
            )
            print(
                "For better performance compile python-escript with direct solver method"
            )
            print(
                "======================================================================="
            )
            input("Press Enter to continue...")
            #time.sleep(5)
        self.__pde.setSymmetryOn()
        #self.__pde.getSolverOptions().setTolerance(rtol**2)
        #self.__pde.getSolverOptions().setPackage(SolverOptions.UMFPACK)
        self.__numGaussPoints = ng
        self.__rtol = rtol
        self.__verbose = verbose
        self.__pool = get_pool(mpi=useMPI, threads=np)
        self.__scenes = self.__pool.map(initLoad, list(range(ng)))
        self.__strain = escript.Tensor(0, escript.Function(self.__domain))
        self.__stress = escript.Tensor(0, escript.Function(self.__domain))
        self.__S = escript.Tensor4(0, escript.Function(self.__domain))

        st = self.__pool.map(getStressAndTangent, self.__scenes)
        for i in range(ng):
            self.__stress.setValueOfDataPoint(i, st[i][0])
            self.__S.setValueOfDataPoint(i, st[i][1])
コード例 #17
0
ファイル: msFEM2D.py プロジェクト: marceloteixeira30/yade
    def __init__(self,
                 domain,
                 ng=1,
                 useMPI=False,
                 np=1,
                 random=False,
                 rtol=1.e-2,
                 usePert=False,
                 pert=-2.e-6,
                 verbose=False):
        """
      initialization of the problem, i.e. model constructor
      :param domain: type Domain, domain of the problem
      :param ng: type integer, number of Gauss points
      :param useMPI: type boolean, use MPI or not
      :param np: type integer, number of processors
      :param random: type boolean, if or not use random density field
      :param rtol: type float, relevative tolerance for global convergence
      :param usePert: type boolean, if or not use perturbation method
      :param pert: type float, perturbated strain applied to DEM to obtain tangent operator
      :param verbose: type boolean, if or not print messages during calculation
      """
        self.__domain = domain
        self.__pde = LinearPDE(domain,
                               numEquations=self.__domain.getDim(),
                               numSolutions=self.__domain.getDim())
        self.__pde.getSolverOptions().setSolverMethod(SolverOptions.DIRECT)
        self.__pde.setSymmetryOn()
        #self.__pde.getSolverOptions().setTolerance(rtol**2)
        #self.__pde.getSolverOptions().setPackage(SolverOptions.UMFPACK)
        self.__numGaussPoints = ng
        self.__rtol = rtol
        self.__usepert = usePert
        self.__pert = pert
        self.__verbose = verbose
        self.__pool = get_pool(mpi=useMPI, threads=np)
        self.__scenes = self.__pool.map(initLoad, range(ng))
        self.__strain = escript.Tensor(0, escript.Function(self.__domain))
        self.__stress = escript.Tensor(0, escript.Function(self.__domain))
        self.__S = escript.Tensor4(0, escript.Function(self.__domain))

        if self.__usepert:
            s = self.__pool.map(getStressTensor, self.__scenes)
            t = self.__pool.map(getTangentOperator,
                                zip(self.__scenes, repeat(pert)))
            for i in xrange(ng):
                self.__stress.setValueOfDataPoint(i, s[i])
                self.__S.setValueOfDataPoint(i, t[i])
        else:
            st = self.__pool.map(getStressAndTangent2D, self.__scenes)
            for i in xrange(ng):
                self.__stress.setValueOfDataPoint(i, st[i][0])
                self.__S.setValueOfDataPoint(i, st[i][1])
コード例 #18
0
ファイル: run_forward.py プロジェクト: svn2github/Escript
    def test_PDE2D(self):
        dx_tests=0.1
        sigma0=1.
        electrodes=[(0.5-2*dx_tests,1.), (0.5-dx_tests,1.), (0.5+dx_tests,1.), (0.5+2*dx_tests,1.)]
        domain=finRectangle(20,20, d1=mpisize,  diracPoints=electrodes, diracTags=["sl0", "sl1", "sr0", "sr1"] )
        loc=Locator(domain,electrodes[2:])

        # this creates some reference Data:
        x=domain.getX()
        q=whereZero(x[0]-inf(x[0]))+whereZero(x[0]-sup(x[0]))+whereZero(x[1]-inf(x[1]))
        ppde=LinearPDE(domain, numEquations=1)
        s=Scalar(0.,DiracDeltaFunctions(domain))
        s.setTaggedValue("sl0" ,1.)
        s.setTaggedValue("sl1",-1.)
        ppde.setValue(A=kronecker(2)*sigma0, q=q, y_dirac=s)
        pp=ppde.getSolution()
        uu=loc(pp)

        # arguments for DcRes
        current = 10.
        sourceInfo = [ "sl0",  "sl1" ]
        sampleTags = [ ("sr0", "sr1") ]

        sigmaPrimary=7.
        phiPrimary=pp*current*sigma0/sigmaPrimary

        uuscale=1-current*sigma0/sigmaPrimary
        delphi_in = [ (uu[1]-uu[0]) * uuscale]

        acw=DcRes(domain, loc, delphi_in, sampleTags,  phiPrimary, sigmaPrimary)

        self.assertLess(Lsup(phiPrimary-acw.getPrimaryPotential()), 1.e-10 * Lsup(acw.getPrimaryPotential()))

        SIGMA=10. # matches current
        args0=acw.getArguments(SIGMA)
        p=args0[0]
        u=args0[1]

        # true secondary potential
        pps=pp-phiPrimary
        self.assertLess(Lsup(p-pps), 1.e-6*Lsup(pps))

        # test return values at electrodes:
        self.assertLess(abs(u[0]-uu[0]*uuscale), 1.e-6 * abs(uu[0]*uuscale))
        self.assertLess(abs(u[1]-uu[1]*uuscale), 1.e-6 * abs(uu[1]*uuscale))

        # this sould be zero
        dd=acw.getDefect(SIGMA, *args0)
        self.assertTrue( dd >= 0.)
        self.assertTrue( dd <= 1e-7 )
コード例 #19
0
 def getMaxEigenvalue(self):
    """
    return the max eigenvalue of the model
    type: float
    """
    dom = self.getDomain()
    dim = dom.getDim()
    pdeKu_P = LinearPDE(dom,numEquations=dim,numSolutions=dim)
    T = self.getCurrentTangent()
    pdeKu_P.setValue(A=T)
    pdeKu_P.getOperator().saveMM('tempMTX.mtx')
    mtx = mmread('tempMTX.mtx')
    maxEigVal = max(eigs(mtx,k=1,return_eigenvectors=False,which='LR'))
    return maxEigVal.real
コード例 #20
0
ファイル: msFEMup.py プロジェクト: yade/trunk
 def __init__(self,domain,pore0=0.,perm=1.e-5,kf=2.2e9,dt=0.001,ng=1,useMPI=False,np=1,rtol=1.e-2):
    """
    initialization of the problem, i.e. model constructor
    :param domain: type Domain, domain of the problem
    :param pore0: type float, initial pore pressure
    :param perm: type float, d^2/(150 mu_f) in KC equation
    :param kf: type float, bulk modulus of the fluid
    :param dt: type float, time step for calculation
    :param ng: type integer, number of Gauss points
    :param useMPI: type boolean, use MPI or not
    :param np: type integer, number of processors
    :param rtol: type float, relevative tolerance for global convergence
    """
    self.__domain=domain
    self.__upde=LinearPDE(domain,numEquations=domain.getDim(),numSolutions=domain.getDim())
    self.__ppde=LinearPDE(domain,numEquations=1,numSolutions=1)
    # use reduced interpolation for pore pressure
    self.__ppde.setReducedOrderOn()
    try:
          self.__upde.getSolverOptions().setSolverMethod(SolverOptions.DIRECT)
          self.__ppde.getSolverOptions().setSolverMethod(SolverOptions.DIRECT)
    except:
          #import time
          print("=======================================================================")
          print("For better performance compile python-escript with direct solver method")
          print("=======================================================================")
          input("Press Enter to continue...")
          #time.sleep(5)
    self.__upde.setSymmetryOn()
    self.__ppde.setSymmetryOn()
    
    self.__dt=dt
    self.__bulkFluid=kf
    self.__numGaussPoints=ng
    self.__rtol=rtol
    self.__stress=escript.Tensor(0,escript.Function(domain))
    self.__S=escript.Tensor4(0,escript.Function(domain))
    self.__pool=get_pool(mpi=useMPI,threads=np)
    self.__scenes=self.__pool.map(initLoad,list(range(ng)))
    st = self.__pool.map(getStressAndTangent2D,self.__scenes)
    for i in range(ng):
       self.__stress.setValueOfDataPoint(i,st[i][0])
       self.__S.setValueOfDataPoint(i,st[i][1])
    self.__strain=escript.Tensor(0,escript.Function(domain))
    self.__pore=escript.Scalar(pore0,escript.ReducedSolution(domain))
    self.__pgauss=util.interpolate(pore0,escript.Function(domain))
    self.__permeability=perm
    self.__meanStressRate=escript.Scalar(0,escript.Function(domain))
    self.__r=escript.Vector(0,escript.Solution(domain)) #Dirichlet BC for u
コード例 #21
0
ファイル: mechanics.py プロジェクト: svn2github/Escript
 def doInitialization(self):
      """
      initialize model
      """
      if not self.displacement: self.displacement=Vector(0.,ContinuousFunction(self.domain))
      if not self.velocity: self.velocity=Vector(0.,ContinuousFunction(self.domain))
      if not self.stress: self.stress=Tensor(0.,ContinuousFunction(self.domain))
      if not self.internal_force: self.internal_force = Data()
      if not self.external_force: self.external_force = Data()
      if not self.prescribed_velocity: self.prescribed_velocity = Data()
      if not self.location_prescribed_velocity: self.location_prescribed_velocity =Data()
      # save the old values:
      self.__stress_safe=self.stress
      self.__temperature_safe=self.temperature
      self.__displacement_safe=self.displacement
      self.__velocity_safe=self.velocity
      self.__velocity_old=None
      self.__old_dt=None
      self.__very_old_dt=None
      # get node cooridnates and apply initial displacement
      self.__x=self.domain.getX()
      self.domain.setX(self.__x+self.displacement)
      # open PDE:
      self.__pde=LinearPDE(self.domain)
      self.__pde.setSolverMethod(self.__pde.DIRECT)
      self.__solver_options=self.__pde.getSolverOptions()
      self.__solver_options.setSolverMethod(self.__solver_options.DIRECT)
      self.__solver_options.setVerbosity(self.debug)
コード例 #22
0
    def getPDE(self, system):
        dim = self.domain.getDim()
        if system:
            pde=LinearPDE(self.domain, numEquations=dim)
        else:
            pde=LinearPDE(self.domain, numEquations=1)

        self._setCoefficients(pde, system)
        so = pde.getSolverOptions()
        so.setPackage(self.package)
        so.setSolverMethod(self.method)
        so.setPreconditioner(self.preconditioner)
        so.setTolerance(self.SOLVER_TOL)
        so.setVerbosity(self.SOLVER_VERBOSE)
        self._setSolverOptions(so)
        return pde, self._getSolution(system), self._getGrad(system)
コード例 #23
0
ファイル: msFEM3D.py プロジェクト: DEMANY/trunk
 def __init__(self,domain,ng=1,useMPI=False,np=1,random=False,rtol=1.e-2,verbose=False):
    """
    initialization of the problem, i.e. model constructor
    :param domain: type Domain, domain of the problem
    :param ng: type integer, number of Gauss points
    :param useMPI: type boolean, use MPI or not
    :param np: type integer, number of processors
    :param random: type boolean, if or not use random density field
    :param rtol: type float, relevant tolerance for global convergence
    :param verbose: type boolean, if or not print messages during calculation
    """
    self.__domain=domain
    self.__pde=LinearPDE(domain,numEquations=self.__domain.getDim(),numSolutions=self.__domain.getDim())
    self.__pde.getSolverOptions().setSolverMethod(SolverOptions.DIRECT)
    self.__pde.setSymmetryOn()
    #self.__pde.getSolverOptions().setTolerance(rtol**2)
    #self.__pde.getSolverOptions().setPackage(SolverOptions.UMFPACK)
    self.__numGaussPoints=ng
    self.__rtol=rtol
    self.__verbose=verbose
    self.__pool=get_pool(mpi=useMPI,threads=np)
    self.__scenes=self.__pool.map(initLoad,range(ng))
    self.__strain=escript.Tensor(0,escript.Function(self.__domain))
    self.__stress=escript.Tensor(0,escript.Function(self.__domain))
    self.__S=escript.Tensor4(0,escript.Function(self.__domain))
    
    st = self.__pool.map(getStressAndTangent,self.__scenes)
    for i in xrange(ng):
       self.__stress.setValueOfDataPoint(i,st[i][0])
       self.__S.setValueOfDataPoint(i,st[i][1])
コード例 #24
0
    def getPDE(self, system):
        dim = self.domain.getDim()
        if system:
            pde = LinearPDE(self.domain, numEquations=dim)
        else:
            pde = LinearPDE(self.domain, numEquations=1)

        self._setCoefficients(pde, system)
        so = pde.getSolverOptions()
        so.setPackage(self.package)
        so.setSolverMethod(self.method)
        so.setPreconditioner(self.preconditioner)
        so.setTolerance(self.SOLVER_TOL)
        so.setVerbosity(self.SOLVER_VERBOSE)
        self._setSolverOptions(so)
        return pde, self._getSolution(system), self._getGrad(system)
コード例 #25
0
ファイル: coalgas.py プロジェクト: svn2github/Escript
    def __init__(self, domain, phi_f=None, phi=None, L_g=None, 
                       perm_f_0=None, perm_f_1=None, perm_f_2=None,
                       k_w =None, k_g=None, mu_w =None, mu_g =None,
                       rho_w =None, rho_g=None, sigma=0, A_mg=0, f_rg=1.,   
                         wells=[], g=9.81*U.m/U.sec**2):
       """
       set up
       
       :param domain: domain
       :type domain: `esys.escript.Domain`
       :param phi_f: porosity of the fractured rock as function of the gas pressure
       :type phi_f: `MaterialPropertyWithDifferential`
       :param phi: total porosity if None phi=1.
       :type phi: scalar or None
       :param L_g: gas adsorption as function of gas pressure
       :type L_g: `MaterialPropertyWithDifferential`
       :param S_fg: gas saturation in the fractured rock as function of the capillary pressure p_fc=S_fg- p_f
       :type S_fg: `MaterialPropertyWithDifferential`
       :param perm_f_0: permeability in the x_0 direction in the fractured media
       :type perm_f_0: scalar 
       :param perm_f_1: permeability in the x_1 direction in the fractured media
       :type perm_f_1: scalar
       :param perm_f_2: permeability in the x_2 direction in the fractured media
       :type perm_f_2: scalar
       :param k_w: relative permeability of water as function of water saturation
       :type k_w: `MaterialProperty`
       :param k_g: relative permeability of gas as function of gas saturation
       :type k_g: `MaterialProperty`
       :param mu_w: viscosity of water as function of water pressure
       :type mu_w: `MaterialProperty`
       :param mu_g: viscosity of gas as function of gas pressure
       :type mu_g: `MaterialProperty`
       :param rho_w: density of water as function of water pressure
       :type rho_w: `MaterialPropertyWithDifferential`
       :param rho_g: density of gas as function of gas pressure
       :type rho_g: `MaterialPropertyWithDifferential`
       :param wells : list of wells
       :type wells: list of `Well`
       :param sigma: shape factor for gas matrix diffusion 
       :param A_mg: diffusion constant for gas adsorption
       :param f_rg: gas re-adsorption factor
       """
 
       DualPorosity.__init__(self, domain,
                            phi_f=phi_f, phi_m=None, phi=phi,
                            S_fg=None, S_mg=None, 
                            perm_f_0=perm_f_0, perm_f_1=perm_f_1, perm_f_2=perm_f_2,
                            perm_m_0=None , perm_m_1=None, perm_m_2=None, 
                            k_w =k_w, k_g=k_g, mu_w =mu_w, mu_g =mu_g,
                            rho_w =rho_w, rho_g=rho_g, 
                            wells=wells, g=g)
       self.L_g=L_g
       self.sigma = sigma 
       self.A_mg = A_mg
       self.f_rg  = f_rg
       self.__pde=LinearPDE(self.domain, numEquations=3, numSolutions =3)
コード例 #26
0
ファイル: input.py プロジェクト: svn2github/Escript
 def __update(self,tag,tag_value,value):
     if self.__pde==None:
        self.__pde=LinearPDE(self.domain,numSolutions=1)
     mask=Scalar(0.,Function(self.domain))
     mask.setTaggedValue(tag,1.)
     self.__pde.setValue(Y=mask)
     mask=wherePositive(abs(self.__pde.getRightHandSide()))
     value*=(1.-mask)
     value+=tag_value*mask
     return value
コード例 #27
0
 def __init__(self,domain,ng=1,np=1,random=False,rtol=1.e-2,usePert=False,pert=-2.e-6,verbose=False):
    """
    initialization of the problem, i.e. model constructor
    :param domain: type Domain, domain of the problem
    :param ng: type integer, number of Gauss points
    :param np: type integer, number of processors
    :param random: type boolean, if or not use random density field
    :param rtol: type float, relevative tolerance for global convergence
    :param usePert: type boolean, if or not use perturbation method
    :param pert: type float, perturbated strain applied to DEM to obtain tangent operator
    :param verbose: type boolean, if or not print messages during calculation
    """
    self.__domain=domain
    self.__pde=LinearPDE(domain,numEquations=self.__domain.getDim(),numSolutions=self.__domain.getDim())
    self.__pde.getSolverOptions().setSolverMethod(SolverOptions.DIRECT)
    #self.__pde.getSolverOptions().setTolerance(rtol**2)
    #self.__pde.getSolverOptions().setPackage(SolverOptions.UMFPACK)
    self.__numGaussPoints=ng
    self.__rtol=rtol
    self.__usepert=usePert
    self.__pert=pert
    self.__verbose=verbose
    self.__pool=Pool(processes=np)
    self.__scenes=self.__pool.map(initLoad,range(ng))#where is initLoad???from simDEM.py,to load RVEs; map(function, iterable)
    self.__strain=escript.Tensor(0,escript.Function(self.__domain))
    '''Tensor(value=0., what=FunctionSpace(), expanded=False) returns a Data object of shape (d,d) in the FunctionSpace what, where d is the spatial dimension of the Domain of what. Values are initialized with value, a double precision quantity(here is 0). If expanded is True the Data object is represented in expanded form.
    '''
    self.__stress=escript.Tensor(0,escript.Function(self.__domain))
    #Function(domain): returns the general FunctionSpace on the Domain domain. Data objects in this type of general FunctionSpace are defined over the whole geometric region defined by domain.
    self.__S=escript.Tensor4(0,escript.Function(self.__domain))
    #Tensor4 is similar to Tensor, which returns a Data object of shape (d,d,d,d)
    #simDEM part
    if self.__usepert:    #here usepert=false, so this is not invoked.
       s = self.__pool.map(getStressTensor,self.__scenes)  #getstresstensor is defined in simDEM, but here it is not invoked.
       t = self.__pool.map(getTangentOperator,zip(self.__scenes,repeat(pert)))#to get initial D and sigma
       for i in xrange(ng):
          self.__stress.setValueOfDataPoint(i,s[i])
          self.__S.setValueOfDataPoint(i,t[i])
    else:
       st = self.__pool.map(getStressAndTangent2D,self.__scenes)
       for i in xrange(ng):
          self.__stress.setValueOfDataPoint(i,st[i][0])
          self.__S.setValueOfDataPoint(i,st[i][1])
コード例 #28
0
 def __init__(self,domain,dim,ng=1,useMPI=False,np=1,rho=2.35e3,mIds=False,\
              FEDENodeMap=False,DE_ext=False,FEDEBoundMap=False,conf=False):
    """
    initialization of the problem, i.e. model constructor
    :param domain: type Domain, domain of the problem
    :param ng: type integer, number of Gauss points
    :param useMPI: type boolean, use MPI or not
    :param np: type integer, number of processors
    :param rho: type float, density of material
    :param mIds: a list contains membrane node IDs
    :param FEDENodeMap: a dictionary with FE and DE boundary node IDs in keys and values
    :param DE_ext: name of file which saves initial state of exterior DE domain
    :param FEDEBoundMap: a dictionary with FE and DE boundary element IDs in keys and values (deprecated)
    :param conf: type float, conf pressure on membrane
    """
    self.__domain=domain
    self.__pde=LinearPDE(self.__domain,numEquations=dim,numSolutions=dim)
    self.__pde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
    self.__pde.setSymmetryOn()
    self.__numGaussPoints=ng
    self.__rho=rho
    self.__mIds=mIds
    self.__FEDENodeMap=FEDENodeMap
    self.__FEDEBoundMap=FEDEBoundMap
    self.__conf=conf
    self.__pool=get_pool(mpi=useMPI,threads=np)
    self.__scenes=self.__pool.map(initLoad,range(ng))
    self.__strain=escript.Tensor(0,escript.Function(self.__domain))
    self.__stress=escript.Tensor(0,escript.Function(self.__domain))
    self.__u=escript.Vector(0,escript.Solution(self.__domain))
    self.__u_last=escript.Vector(0,escript.Solution(self.__domain))
    self.__u_t=escript.Vector(0,escript.Solution(self.__domain))
    self.__dt=0
    # ratio between timesteps in internal DE and FE domain
    self.__nsOfDE_int=1
    # if FEDENodeMap is given, employ exterior DE domain
    if self.__FEDENodeMap:
       self.__sceneExt=self.__pool.apply(initLoadExt,(DE_ext,))
       # ratio between timesteps in external DE and FE domain 
       self.__nsOfDE_ext=1
       # get interface nodal forces as boundary condition
       self.__FEf = self.__pool.apply(initNbc,(self.__sceneExt,self.__conf,mIds,FEDENodeMap))
       """
       # get interface nodal tractions as boundary condition (deprecated)
       self.__Nbc=escript.Vector(0,escript.Solution(self.__domain))
       FENbc = self.__pool.apply(initNbc,(self.__sceneExt,self.__conf,mIds,FEDENodeMap))
       for FEid in FENbc.keys():
          self.__Nbc.setValueOfDataPoint(FEid,FENbc[FEid])
       """
    # get stress tensor at material points
    s = self.__pool.map(getStress2D,self.__scenes)
    for i in xrange(ng):
       self.__stress.setValueOfDataPoint(i,s[i])
コード例 #29
0
ファイル: msFEM2D.py プロジェクト: yade/trunk
 def __init__(self,domain,ng=1,useMPI=False,np=1,random=False,rtol=1.e-2,usePert=False,pert=-2.e-6,verbose=False):
    """
    initialization of the problem, i.e. model constructor
    :param domain: type Domain, domain of the problem
    :param ng: type integer, number of Gauss points
    :param useMPI: type boolean, use MPI or not
    :param np: type integer, number of processors
    :param random: type boolean, if or not use random density field
    :param rtol: type float, relevative tolerance for global convergence
    :param usePert: type boolean, if or not use perturbation method
    :param pert: type float, perturbated strain applied to DEM to obtain tangent operator
    :param verbose: type boolean, if or not print messages during calculation
    """
    self.__domain=domain
    self.__pde=LinearPDE(domain,numEquations=self.__domain.getDim(),numSolutions=self.__domain.getDim())
    try:
          self.__pde.getSolverOptions().setSolverMethod(SolverOptions.DIRECT)
    except:
          #import time
          print("=======================================================================")
          print("For better performance compile python-escript with direct solver method")
          print("=======================================================================")
          input("Press Enter to continue...")
          #time.sleep(5)
    self.__pde.setSymmetryOn()
    #self.__pde.getSolverOptions().setTolerance(rtol**2)
    #self.__pde.getSolverOptions().setPackage(SolverOptions.UMFPACK)
    self.__numGaussPoints=ng
    self.__rtol=rtol
    self.__usepert=usePert
    self.__pert=pert
    self.__verbose=verbose
    self.__pool=get_pool(mpi=useMPI,threads=np)
    self.__scenes=self.__pool.map(initLoad,list(range(ng)))
    self.__strain=escript.Tensor(0,escript.Function(self.__domain))
    self.__stress=escript.Tensor(0,escript.Function(self.__domain))
    self.__S=escript.Tensor4(0,escript.Function(self.__domain))
    
    if self.__usepert:
       s = self.__pool.map(getStressTensor,self.__scenes)
       t = self.__pool.map(getTangentOperator,list(zip(self.__scenes,repeat(pert))))
       for i in range(ng):
          self.__stress.setValueOfDataPoint(i,s[i])
          self.__S.setValueOfDataPoint(i,t[i])
    else:
       st = self.__pool.map(getStressAndTangent2D,self.__scenes)
       for i in range(ng):
          self.__stress.setValueOfDataPoint(i,st[i][0])
          self.__S.setValueOfDataPoint(i,st[i][1])
コード例 #30
0
 def getMaxEigenvalue(self):
     """
   return the max eigenvalue of the model
   type: float
   """
     dom = self.getDomain()
     dim = dom.getDim()
     pdeKu_P = LinearPDE(dom, numEquations=dim, numSolutions=dim)
     T = self.getCurrentTangent()
     pdeKu_P.setValue(A=T)
     pdeKu_P.getOperator().saveMM('tempMTX.mtx')
     mtx = mmread('tempMTX.mtx')
     maxEigVal = max(eigs(mtx, k=1, return_eigenvectors=False, which='LR'))
     return maxEigVal.real
コード例 #31
0
ファイル: example10e.py プロジェクト: aishugang/esys-escript
    def gzpot(p, y, x, *args):
        #rho, rhox, rhoy, R = p
        rhox = args[0] / 2.
        rhoy = args[1] / 2.
        rho, R, z = p
        #Domain related.
        mx = args[0]
        my = args[1]
        #PDE related
        G = 6.67300 * 10E-11

        #DOMAIN CONSTRUCTION
        domain = ReadGmsh('data/example10m/example10m.msh', 2)
        domx = Solution(domain).getX()
        mask = wherePositive(R - length(domx - rholoc))
        rhoe = rho * mask
        kro = kronecker(domain)

        q = whereZero(domx[1] - my) + whereZero(domx[1]) + whereZero(
            domx[0]) + whereZero(domx[0] - mx)
        #ESCRIPT PDE CONSTRUCTION
        mypde = LinearPDE(domain)
        mypde.setValue(A=kro, Y=4. * np.pi * G * rhoe, q=q, r=0.0)
        mypde.setSymmetryOn()
        sol = mypde.getSolution()

        g_field = grad(sol)  #The graviational accelleration g.
        g_fieldz = g_field * [0, 1]  #The vertical component of the g field.
        gz = length(g_fieldz)  #The magnitude of the vertical component.

        #MODEL SIZE SAMPLING
        sol_escgz = []
        sol_escx = []
        for i in range(0, len(x)):
            sol_escgz.append([x[i], rhoy + z])

        sample = []  # array to hold values
        rec = Locator(gz.getFunctionSpace(), sol_escgz)  #location to record
        psol = rec.getValue(gz)

        err = np.sum((np.array(y) - np.array(psol))**2.)
        print("Lsup= ",
              Lsup(np.array(psol) - np.array(sol_angz)) / Lsup(np.array(psol)))
        return err
コード例 #32
0
ファイル: example10e.py プロジェクト: svn2github/Escript
    def gzpot(p, y, x, *args):
        #rho, rhox, rhoy, R = p
        rhox=args[0]/2.; rhoy=args[1]/2.
        rho, R, z =p
        #Domain related.
        mx = args[0]; my = args[1];
        #PDE related
        G=6.67300*10E-11

        #DOMAIN CONSTRUCTION
        domain=ReadGmsh('data/example10m/example10m.msh',2)
        domx=Solution(domain).getX()
        mask=wherePositive(R-length(domx-rholoc))
        rhoe=rho*mask
        kro=kronecker(domain)

        q=whereZero(domx[1]-my)+whereZero(domx[1])+whereZero(domx[0])+whereZero(domx[0]-mx)
        #ESCRIPT PDE CONSTRUCTION
        mypde=LinearPDE(domain)
        mypde.setValue(A=kro,Y=4.*np.pi*G*rhoe,q=q,r=0.0)
        mypde.setSymmetryOn()
        sol=mypde.getSolution()

        g_field=grad(sol) #The graviational accelleration g.
        g_fieldz=g_field*[0,1] #The vertical component of the g field.
        gz=length(g_fieldz) #The magnitude of the vertical component.

        #MODEL SIZE SAMPLING
        sol_escgz=[]
        sol_escx=[]
        for i in range(0,len(x)):
            sol_escgz.append([x[i],rhoy+z])

        sample=[] # array to hold values
        rec=Locator(gz.getFunctionSpace(),sol_escgz) #location to record
        psol=rec.getValue(gz)

        err = np.sum((np.array(y) - np.array(psol))**2.)
        print("Lsup= ",Lsup(np.array(psol)-np.array(sol_angz))/Lsup(np.array(psol)))
        return err
コード例 #33
0
ファイル: slip_stress_old.py プロジェクト: svn2github/Escript
class SlippingFault(SaddlePointProblem):
      """
      simple example of saddle point problem
      """
      def __init__(self,domain):
         super(SlippingFault, self).__init__(self)
         self.domain=domain
         self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim())
         self.__pde_u.setSymmetryOn()

      def initialize(self,density=1.,lmbd=1., mu=1., traction=Data(),fixed_u_mask=Data(), slip=0.):
         d=self.domain.getDim()
         self.slip=slip
         A =self.__pde_u.createCoefficientOfGeneralPDE("A")
         for i in range(self.domain.getDim()):
           for j in range(self.domain.getDim()):
             A[i,j,j,i] += mu
             A[i,j,i,j] += mu
             A[i,i,j,j] += lmbd
         self.__pde_u.setValue(A=A,q=fixed_u_mask,Y=-kronecker(Function(self.domain))[d-1]*g*density,y=traction)

      def inner(self,p0,p1):
         return integrate(inner(p0,p1),FunctionOnContactZero(self.domain))

      def solve_f(self,u,p,tol=1.e-8):
         self.__pde_u.setTolerance(tol)
         self.__pde_u.setValue(y_contact=-p)
         # print "p:",inf(p),sup(p)
         # print "u:",inf(u),sup(u)
         self.__pde_u.setValue(y_contact=-p)
         return  self.__pde_u.getSolution()

      def solve_g(self,u,tol=1.e-8):
         dp=Vector(0.,FunctionOnContactZero(self.domain))
         h=FunctionOnContactZero(self.domain).getSize()
         # print jump(u)-self.slip
         dp[0]=(self.slip[0]-jump(u[0]))*lam_mu/h
         dp[1]=(self.slip[1]-jump(u[1]))*lam_mu/h
         dp[2]=(self.slip[2]-jump(u[2]))*lam_mu/h
         return  dp
コード例 #34
0
ファイル: example11a.py プロジェクト: svn2github/Escript
    res=1000.0
    con=1/res
    cur=10.

    ################################################ESTABLISHING PARAMETERS
    #the folder to put our outputs in, leave blank "" for script path 
    save_path= os.path.join("data","example11")
    #ensure the dir exists
    mkDir(save_path)

    ####################################################DOMAIN CONSTRUCTION
    domain = Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy)
    x=Solution(domain).getX()

    kro=kronecker(domain)
    source1=[mx/4.,0]; source2=[3.*mx/4.,0]

    sourceg=length(exp(-length(x-source1)/(100.)))+length(exp(-length(x-source2)/(100.)))
    sourceg=sourceg/integrate(sourceg)

    q=whereZero(x[1]-my)+whereZero(x[0])+whereZero(x[0]-mx)
    ###############################################ESCRIPT PDE CONSTRUCTION

    mypde=LinearPDE(domain)
    mypde.setValue(A=kro*con,Y=sourceg,q=q,r=0)
    mypde.setSymmetryOn()
    sol=mypde.getSolution()

    # Save the output to file.
    saveVTK(os.path.join(save_path,"ex11a.vtu"),source=sourceg,res_pot=sol)
コード例 #35
0
class Mechanics(Model):
    """
      base class for mechanics models in updated lagrangean framework

      :note: Instance variable domain - domain (in)
      :note: Instance variable internal_force - =Data()
      :note: Instance variable external_force - =Data()
      :note: Instance variable prescribed_velocity - =Data()
      :note: Instance variable location_prescribed_velocity - =Data()
      :note: Instance variable temperature -  = None
      :note: Instance variable expansion_coefficient -  = 0.
      :note: Instance variable bulk_modulus - =1.
      :note: Instance variable shear_modulus - =1.
      :note: Instance variable rel_tol - =1.e-3
      :note: Instance variable abs_tol - =1.e-15
      :note: Instance variable max_iter - =10
      :note: Instance variable displacement - =None
      :note: Instance variable stress - =None
      """
    SAFTY_FACTOR_ITERATION = 1. / 100.

    def __init__(self, **kwargs):
        """
         set up the model
         
         :keyword debug: debug flag
         :type debug: ``bool``
         """
        super(Mechanics, self).__init__(self, **kwargs)
        self.declareParameter(domain=None, \
                              displacement=None, \
                              stress=None, \
                              velocity=None, \
                              internal_force=None, \
                              external_force=None, \
                              prescribed_velocity=None, \
                              location_prescribed_velocity=None, \
                              temperature = None, \
                              expansion_coefficient = 0., \
                              bulk_modulus=2., \
                              shear_modulus=1., \
                              rel_tol=1.e-3,abs_tol=1.e-15,max_iter=10)
        self.__iter = 0

    def doInitialization(self):
        """
           initialize model
           """
        if not self.displacement:
            self.displacement = Vector(0., ContinuousFunction(self.domain))
        if not self.velocity:
            self.velocity = Vector(0., ContinuousFunction(self.domain))
        if not self.stress:
            self.stress = Tensor(0., ContinuousFunction(self.domain))
        if not self.internal_force: self.internal_force = Data()
        if not self.external_force: self.external_force = Data()
        if not self.prescribed_velocity: self.prescribed_velocity = Data()
        if not self.location_prescribed_velocity:
            self.location_prescribed_velocity = Data()
        # save the old values:
        self.__stress_safe = self.stress
        self.__temperature_safe = self.temperature
        self.__displacement_safe = self.displacement
        self.__velocity_safe = self.velocity
        self.__velocity_old = None
        self.__old_dt = None
        self.__very_old_dt = None
        # get node cooridnates and apply initial displacement
        self.__x = self.domain.getX()
        self.domain.setX(self.__x + self.displacement)
        # open PDE:
        self.__pde = LinearPDE(self.domain)
        self.__pde.setSolverMethod(self.__pde.DIRECT)
        self.__solver_options = self.__pde.getSolverOptions()
        self.__solver_options.setSolverMethod(self.__solver_options.DIRECT)
        self.__solver_options.setVerbosity(self.debug)

        # self.__pde.setSymmetryOn()

    def doStepPreprocessing(self, dt):
        """
            step up pressure iteration

            if run within a time dependend problem extrapolation of pressure from previous time steps is used to
            get an initial guess (that needs some work!!!!!!!)
            """
        # reset iteration counters:
        self.__iter = 0
        self.__diff = self.UNDEF_DT
        # set initial guesses for the iteration:
        self.displacement = self.__displacement_safe
        self.stress = self.__stress_safe
        self.velocity = self.__velocity_safe
        # update geometry
        self.domain.setX(self.__x + self.displacement)

    def doStep(self, dt):
        """
          """
        self.__iter += 1
        k3 = kronecker(self.domain)
        # set new thermal stress increment
        if self.temperature == None:
            self.deps_th = 0.
        else:
            self.deps_th = self.expansion_coefficient * (
                self.temperature - self.__temperature_safe)
        # set PDE coefficients:
        self.__pde.setValue(A=self.S)
        self.__pde.setValue(X=-self.stress -
                            self.bulk_modulus * self.deps_th * k3)
        if self.internal_force: self.__pde.setValue(Y=self.internal_force)
        if self.external_force: self.__pde.setValue(y=self.external_force)
        self.__pde.setValue(q=self.location_prescribed_velocity, \
                            r=Data())
        if not self.prescribed_velocity.isEmpty() and self.__iter == 1:
            self.__pde.setValue(r=dt * self.prescribed_velocity)
        # solve the PDE:
        self.__solver_options.setTolerance(self.rel_tol**2)
        self.du = self.__pde.getSolution()
        # update geometry
        self.displacement = self.displacement + self.du
        self.domain.setX(self.__x + self.displacement)
        self.velocity = (self.displacement - self.__displacement_safe) / dt

        if self.debug:
            for i in range(self.domain.getDim()):
                self.trace("du %d range %e:%e" %
                           (i, inf(self.du[i]), sup(self.du[i])))
            for i in range(self.domain.getDim()):
                self.trace(
                    "displacement %d range %e:%e" %
                    (i, inf(self.displacement[i]), sup(self.displacement[i])))
            for i in range(self.domain.getDim()):
                self.trace("velocity %d range %e:%e" %
                           (i, inf(self.velocity[i]), sup(self.velocity[i])))
        self.__stress_last = self.stress

    def terminateIteration(self):
        """iteration is terminateIterationd if relative pressure change is less than rel_tol"""
        if self.__iter > self.max_iter:
            raise IterationDivergenceError(
                "Maximum number of iterations steps reached")
        if self.__iter == 0:
            self.__diff = self.UNDEF_DT
        else:
            self.__diff, diff_safe = Lsup(self.stress -
                                          self.__stress_last), self.__diff
            s_sup = Lsup(self.stress)
            self.trace("stress max and increment :%e, %e" %
                       (s_sup, self.__diff))
            if self.__iter > 2 and diff_safe < self.__diff:
                raise IterationDivergenceError(
                    "no improvement in stress iteration")
            return self.__diff <= self.rel_tol * self.SAFTY_FACTOR_ITERATION * s_sup + self.abs_tol

    def doStepPostprocessing(self, dt):
        """
           accept all the values:
           """
        self.__displacement_safe = self.displacement
        self.__temperature_safe = self.temperature
        self.__stress_safe = self.stress
        self.__velocity_safe = self.velocity

    def getSafeTimeStepSize(self, dt):
        """
           returns new step size
           """
        a = sup(length(self.velocity) / self.domain.getSize())
        if a > 0:
            return 1. / a
        else:
            return self.UNDEF_DT
コード例 #36
0
ファイル: example05a.py プロジェクト: svn2github/Escript
    # surface
    bblock = PlaneSurface(bblockloop)

    ################################################CREATE MESH FOR ESCRIPT
    # Create a Design which can make the mesh
    d=Design(dim=2, element_size=200)
    # Add the subdomains and flux boundaries.
    d.addItems(PropertySet("top",tblock),PropertySet("bottom",bblock),\
                                         PropertySet("linebottom",l12))
    # Create the geometry, mesh and Escript domain
    d.setScriptFileName(os.path.join(save_path,"example05.geo"))
    d.setMeshFileName(os.path.join(save_path,"example05.msh"))
    domain=MakeDomain(d, optimizeLabeling=True)
    print("Domain has been generated ...")
    ##############################################################SOLVE PDE
    mypde=LinearPDE(domain)
    mypde.getSolverOptions().setVerbosityOn()
    mypde.setSymmetryOn()
    kappa=Scalar(0,Function(domain))
    kappa.setTaggedValue("top",2.0*W/m/K)
    kappa.setTaggedValue("bottom",4.0*W/m/K)
    mypde.setValue(A=kappa*kronecker(domain))
    x=Solution(domain).getX()
    mypde.setValue(q=whereZero(x[1]-sup(x[1])),r=Ttop)
    qS=Scalar(0,FunctionOnBoundary(domain))
    qS.setTaggedValue("linebottom",qin)
    mypde.setValue(y=qS)
    print("PDE has been generated ...")
    ###########################################################GET SOLUTION
    T=mypde.getSolution()
    print("PDE has been solved  ...")
コード例 #37
0
    tend = 0.5 * day  # - time to end simulation
    outputs = 200  # number of time steps required.
    h = (tend - t) / outputs  #size of time step
    #user warning statement
    print("Expected Number of time outputs is: ", (tend - t) / h)
    i = 0  #loop counter
    #the folder to put our outputs in, leave blank "" for script path
    save_path = os.path.join("data", "example02")
    #ensure the dir exists
    mkDir(save_path, os.path.join(save_path, "tempT"))

    ####################################################DOMAIN CONSTRUCTION
    rod = Rectangle(l0=mx, l1=my, n0=ndx, n1=ndy)
    x = Solution(rod).getX()
    ###############################################ESCRIPT PDE CONSTRUCTION
    mypde = LinearPDE(rod)
    A = zeros((2, 2))
    A[0, 0] = kappa
    q = whereZero(x[0])
    mypde.setValue(A=A, D=rhocp / h, q=q, r=T0)
    # ... set initial temperature ....
    T = T0 * whereZero(x[0]) + Tref * (1 - whereZero(x[0]))

    # ... open a collector for the time marks and corresponding total energy
    t_list = []
    E_list = []
    # ... convert solution points for plotting
    plx = x.toListOfTuples()
    plx = np.array(plx)  #convert to tuple to numpy array
    plx = plx[:, 0]  #extract x locations
    ########################################################START ITERATION
コード例 #38
0
ファイル: helmholtz.py プロジェクト: svn2github/Escript
from esys.escript.linearPDEs import LinearPDE
try:
    from esys.finley import Rectangle
    HAVE_FINLEY = True
except ImportError:
    HAVE_FINLEY = False
from esys.weipa import saveVTK

if not HAVE_FINLEY:
    print("Finley module not available")
else:
    #... set some parameters ...
    kappa=1.
    omega=0.1
    eta=10.
    #... generate domain ...
    mydomain = Rectangle(l0=5.,l1=1.,n0=50, n1=10)
    #... open PDE and set coefficients ...
    mypde=LinearPDE(mydomain)
    mypde.setSymmetryOn()
    n=mydomain.getNormal()
    x=mydomain.getX()
    mypde.setValue(A=kappa*kronecker(mydomain),D=omega,Y=omega*x[0], \
                   d=eta,y=kappa*n[0]+eta*x[0])
    #... calculate error of the PDE solution ...
    u=mypde.getSolution()
    print("error is ",Lsup(u-x[0]))
    # output should be similar to "error is 1.e-7"
    saveVTK("x0.vtu",sol=u)
 
コード例 #39
0
#~ tester=tester.toListOfTuples()
#~ tester=np.reshape(tester,(ndx+1,ndy+1))
#~ pl.clf()
#~ pl.imshow(tester)
#~ pl.colorbar()
#~ pl.savefig("tester3.png")

abcT = abc.toListOfTuples()
abcT = np.reshape(abcT, (ndx + 1, ndy + 1))
pl.clf()
pl.imshow(abcT)
pl.colorbar()
pl.savefig("abc.png")

# ... open new PDE ...
mypde = LinearPDE(domain)
#mypde.setSolverMethod(LinearPDE.LUMPING)
mypde.setSymmetryOn()
kmat = kronecker(domain)
mypde.setValue(D=kmat * rho)

# define small radius around point xc
# Lsup(x) returns the maximum value of the argument x
src_radius = 50  #2*Lsup(domain.getSize())
print("src_radius = ", src_radius)

#dunit=numpy.array([0.,1.]) # defines direction of point source
dunit = (x - xc)
absrc = length(dunit)
dunit = dunit / maximum(absrc, 1e-10)
コード例 #40
0
    pl.clf()
    pl.plot(source)
    #pl.plot(time,decay1);pl.plot(time,decay2);
    #pl.plot(time,tdecay)
    pl.savefig(os.path.join(savepath, 'source.png'))

    # will introduce a spherical source at middle left of bottom face
    xc = [mx / 2, 0]

    ####################################################DOMAIN CONSTRUCTION
    domain = Rectangle(l0=mx, l1=my, n0=ndx, n1=ndy,
                       order=2)  # create the domain
    x = domain.getX()  # get the locations of the nodes in the domani

    ##########################################################ESTABLISH PDE
    mypde = LinearPDE(domain)  # create pde
    mypde.setSymmetryOn()  # turn symmetry on
    # turn lumping on for more efficient solving
    mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
    kmat = kronecker(
        domain)  # create the kronecker delta function of the domain
    mypde.setValue(D=kmat * rho)  #set the general form value D

    ##########################################################ESTABLISH ABC
    # Define where the boundary decay will be applied.
    bn = 50.
    bleft = xstep * bn
    bright = mx - (xstep * bn)
    bbot = my - (ystep * bn)
    # btop=ystep*bn # don't apply to force boundary!!!
コード例 #41
0
    # Join line segments to create domain boundary.
    c = CurveLoop(l01, l12, l23, l30)
    # surface
    rec = PlaneSurface(c)

    #############################################EXPORTING MESH FOR ESCRIPT
    # Create a Design which can make the mesh
    d = Design(dim=2, element_size=200 * m)
    # Add the subdomains and flux boundaries.
    d.addItems(rec, PropertySet("linebottom", l12))
    d.addItems(l01, l23, l30)  # just in case we need them
    #############################################MAKE THE DOMAIN
    domain = MakeDomain(d, optimizeLabeling=True)
    print("Domain has been generated ...")
    ##############################################################SOLVE PDE
    mypde = LinearPDE(domain)
    mypde.getSolverOptions().setVerbosityOn()
    mypde.setSymmetryOn()
    mypde.setValue(A=kappa * kronecker(domain))
    x = Solution(domain).getX()
    mypde.setValue(q=whereZero(x[1] - sup(x[1])), r=Ttop)
    qS = Scalar(0, FunctionOnBoundary(domain))
    qS.setTaggedValue("linebottom", qin)
    mypde.setValue(y=-qS)
    print("PDE has been generated ...")
    ###########################################################GET SOLUTION
    T = mypde.getSolution()
    print("PDE has been solved  ...")
    ###########################################################
    xi, yi, zi = toRegGrid(T, nx=50, ny=50)
    pl.matplotlib.pyplot.autumn()
コード例 #42
0
#~ tester=np.reshape(tester,(ndx+1,ndy+1))
#~ pl.clf()
#~ pl.imshow(tester)
#~ pl.colorbar()
#~ pl.savefig("tester2.png")
#~
#~ tester=fbottom*wherePositive(bottom)
#~ tester=tester.toListOfTuples()
#~ tester=np.reshape(tester,(ndx+1,ndy+1))
#~ pl.clf()
#~ pl.imshow(tester)
#~ pl.colorbar()
#~ pl.savefig("tester3.png")

# ... open new PDE ...
mypde = LinearPDE(domain)
print(mypde.isUsingLumping())
print(mypde.getSolverOptions())
#mypde.getSolverOptions().setSolverMethod(SolverOptions.LUMPING)
mypde.setSymmetryOn()
kmat = kronecker(domain)
mypde.setValue(D=kmat * rho)

# define small radius around point xc
# Lsup(x) returns the maximum value of the argument x
src_radius = 50  #2*Lsup(domain.getSize())
print("src_radius = ", src_radius)

dunit = numpy.array([0., 1.])  # defines direction of point source
#~ dunit=(x-xc)
#~ absrc=length(dunit)
コード例 #43
0
def wavePropagation(dom, rho, mu, lmbd, eta):
    x = Function(dom).getX()
    # ... open new PDE ...
    mypde = LinearPDE(dom)
    mypde.setSolverMethod(LinearPDE.LUMPING)
    k = kronecker(Function(dom))
    mypde.setValue(D=k * rho)

    dt = (1. / 5.) * inf(dom.getSize() / sqrt((2 * mu + lmbd) / rho))
    if output: print("time step size = ", dt)
    # ... set initial values ....
    n = 0
    t = 0
    t_write = 0.
    n_write = 0
    # initial value of displacement at point source is constant (U0=0.01)
    # for first two time steps
    u = Vector(0., Solution(dom))
    v = Vector(0., Solution(dom))
    a = Vector(0., Solution(dom))
    a2 = Vector(0., Solution(dom))
    v = Vector(0., Solution(dom))

    if not os.path.isdir(WORKDIR): os.mkdir(WORKDIR)

    starttime = time.clock()
    while t < t_end and n < n_end:
        if output:
            print(n + 1,
                  "-th time step t ",
                  t + dt,
                  " max u and F: ",
                  Lsup(u),
                  end=' ')
        # prediction:
        u_pr = u + dt * v + (dt**2 / 2) * a + (dt**3 / 6) * a2
        v_pr = v + dt * a + (dt**2 / 2) * a2
        a_pr = a + dt * a2
        # ... get current stress ....
        eps = symmetric(grad(u_pr))
        stress = lmbd * trace(eps) * k + 2 * mu * eps
        # ... force due to event:
        if abs(t - tc) < 5 * tc_length:
            F = exp(-((t - tc) / tc_length)**2) * exp(-(length(x - xc) /
                                                        src_radius)**2) * event
            if output: print(Lsup(F))
        else:
            if output: print(0.)
        # ... get new acceleration ....
        mypde.setValue(X=-stress, Y=F - eta * v_pr)
        a = mypde.getSolution()
        # ... get new displacement ...
        da = a - a_pr
        u = u_pr + (dt**2 / 12.) * da
        v = v_pr + (5 * dt / 12.) * da
        a2 += da / dt
        # ... save current acceleration in units of gravity and displacements
        if output:
            if t >= t_write:
                saveVTK(os.path.join(WORKDIR, "disp.%i.vtu" % n_write),
                        displacement=u,
                        amplitude=length(u))
                t_write += dt_write
                n_write += 1
        t += dt
        n += 1

    endtime = time.clock()
    totaltime = endtime - starttime
    global netotal
    print(">>number of elements: %s, total time: %s, per time step: %s <<" %
          (netotal, totaltime, totaltime / n))
コード例 #44
0
class StokesProblem(SaddlePointProblem):
      """
      simple example of saddle point problem
      """
      def __init__(self,domain,debug=False):
         super(StokesProblem, self).__init__(self,debug)
         self.domain=domain
         self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim())
         self.__pde_u.setSymmetryOn()

         self.__pde_p=LinearPDE(domain)
         self.__pde_p.setReducedOrderOn()
         self.__pde_p.setSymmetryOn()

      def initialize(self,f=Data(),fixed_u_mask=Data(),eta=1):
         self.eta=eta
         A =self.__pde_u.createCoefficientOfGeneralPDE("A")
         for i in range(self.domain.getDim()):
           for j in range(self.domain.getDim()):
             A[i,j,j,i] += self.eta
             A[i,j,i,j] += self.eta
         self.__pde_p.setValue(D=1/self.eta)
         self.__pde_u.setValue(A=A,q=fixed_u_mask,Y=f)

      def inner(self,p0,p1):
         return integrate(p0*p1,Function(self.__pde_p.getDomain()))

      def solve_f(self,u,p,tol=1.e-8):
         self.__pde_u.setTolerance(tol)
         g=grad(u)
         self.__pde_u.setValue(X=self.eta*symmetric(g)+p*kronecker(self.__pde_u.getDomain()))
         return  self.__pde_u.getSolution()

      def solve_g(self,u,tol=1.e-8):
         self.__pde_p.setTolerance(tol)
         self.__pde_p.setValue(X=-u) 
         dp=self.__pde_p.getSolution()
         return  dp
コード例 #45
0
ファイル: slip_stress_old.py プロジェクト: svn2github/Escript
 def __init__(self,domain):
    super(SlippingFault, self).__init__(self)
    self.domain=domain
    self.__pde_u=LinearPDE(domain,numEquations=self.domain.getDim(),numSolutions=self.domain.getDim())
    self.__pde_u.setSymmetryOn()
コード例 #46
0
class MultiScale(object):
    """
   problem description:
   -(A_{ijkl} u_{k,l})_{,j} = -X_{ij,j} + Y_i
   Neumann boundary: n_j A_{ijkl} u_{k,l} = n_j X_{ij} + y_i
   Dirichlet boundary: u_i = r_i where q_i > 0
   :var u: unknown vector, displacement
   :var A: elastic tensor / tangent operator
   :var X: old/current stress tensor
   :var Y: vector, body force
   :var y: vector, Neumann bc traction
   :var q: vector, Dirichlet bc mask
   :var r: vector, Dirichlet bc value
   """
    def __init__(self,
                 domain,
                 ng=1,
                 useMPI=False,
                 np=1,
                 random=False,
                 rtol=1.e-2,
                 verbose=False):
        """
      initialization of the problem, i.e. model constructor
      :param domain: type Domain, domain of the problem
      :param ng: type integer, number of Gauss points
      :param useMPI: type boolean, use MPI or not
      :param np: type integer, number of processors
      :param random: type boolean, if or not use random density field
      :param rtol: type float, relevant tolerance for global convergence
      :param verbose: type boolean, if or not print messages during calculation
      """
        self.__domain = domain
        self.__pde = LinearPDE(domain,
                               numEquations=self.__domain.getDim(),
                               numSolutions=self.__domain.getDim())
        self.__pde.getSolverOptions().setSolverMethod(SolverOptions.DIRECT)
        self.__pde.setSymmetryOn()
        #self.__pde.getSolverOptions().setTolerance(rtol**2)
        #self.__pde.getSolverOptions().setPackage(SolverOptions.UMFPACK)
        self.__numGaussPoints = ng
        self.__rtol = rtol
        self.__verbose = verbose
        self.__pool = get_pool(mpi=useMPI, threads=np)
        self.__scenes = self.__pool.map(initLoad, range(ng))
        self.__strain = escript.Tensor(0, escript.Function(self.__domain))
        self.__stress = escript.Tensor(0, escript.Function(self.__domain))
        self.__S = escript.Tensor4(0, escript.Function(self.__domain))

        st = self.__pool.map(getStressAndTangent, self.__scenes)
        for i in xrange(ng):
            self.__stress.setValueOfDataPoint(i, st[i][0])
            self.__S.setValueOfDataPoint(i, st[i][1])

    def initialize(self,
                   b=escript.Data(),
                   f=escript.Data(),
                   specified_u_mask=escript.Data(),
                   specified_u_val=escript.Data()):
        """
      initialize the model for each time step, e.g. assign parameters
      :param b: type vector, body force on FunctionSpace, e.g. gravity
      :param f: type vector, boundary traction on FunctionSpace (FunctionOnBoundary)
      :param specified_u_mask: type vector, mask of location for Dirichlet boundary
      :param specified_u_val: type vector, specified displacement for Dirichlet boundary
      """
        self.__pde.setValue(Y=b, y=f, q=specified_u_mask, r=specified_u_val)

    def getDomain(self):
        """
      return model domain
      """
        return self.__domain

    def getRelTolerance(self):
        """
      return relative tolerance for convergence
      type float
      """
        return self.__rtol

    def getCurrentPacking(self, pos=(), time=0, prefix=''):
        if len(pos) == 0:
            # output all Gauss points packings
            self.__pool.map(outputPack,
                            zip(self.__scenes, repeat(time), repeat(prefix)))
        else:
            # output selected Gauss points packings
            scene = [self.__scenes[i] for i in pos]
            self.__pool.map(outputPack, zip(scene, repeat(time),
                                            repeat(prefix)))

    def getLocalVoidRatio(self):
        void = escript.Scalar(0, escript.Function(self.__domain))
        e = self.__pool.map(getVoidRatio, self.__scenes)
        for i in xrange(self.__numGaussPoints):
            void.setValueOfDataPoint(i, e[i])
        return void

    def getLocalAvgRotation(self):
        rot = escript.Vector(0, escript.Function(self.__domain))
        r = self.__pool.map(avgRotation, self.__scenes)
        for i in xrange(self.__numGaussPoints):
            rot.setValueOfDataPoint(i, r[i])
        return rot

    def getLocalFabric(self):
        fabric = escript.Tensor(0, escript.Function(self.__domain))
        f = self.__pool.map(getFabric, self.__scenes)
        for i in xrange(self.__numGaussPoints):
            fabric.setValueOfDataPoint(i, f[i])
        return fabric

    def getCurrentTangent(self):
        """
      return current tangent operator
      type Tensor4 on FunctionSpace
      """
        return self.__S

    def getCurrentStress(self):
        """
      return current stress
      type: Tensor on FunctionSpace
      """
        return self.__stress

    def getCurrentStrain(self):
        """
      return current strain
      type: Tensor on FunctionSpace
      """
        return self.__strain

    def exitSimulation(self):
        """finish the whole simulation, exit"""
        self.__pool.close()

    def solve(self, iter_max=100):
        """
      solve the equation using Newton-Ralphson scheme
      """
        iterate = 0
        rtol = self.getRelTolerance()
        stress = self.getCurrentStress()
        s = self.getCurrentTangent()
        x_safe = self.__domain.getX()
        self.__pde.setValue(A=s, X=-stress)
        #residual0=util.L2(self.__pde.getRightHandSide()) # using force error
        u = self.__pde.getSolution()  # trial solution, displacement
        D = util.grad(u)  # trial strain tensor
        # !!!!!! obtain stress and tangent operator from DEM part
        update_stress, update_s, update_scenes = self.applyStrain_getStressTangentDEM(
            st=D)
        err = 1.0  # initial error before iteration
        converged = (err < rtol)
        while (not converged) and (iterate < iter_max):
            if self.__verbose:
                print "Not converged after %d iteration(s)! Relative error: %e" % (
                    iterate, err)
            iterate += 1
            self.__domain.setX(x_safe + u)
            self.__pde.setValue(A=update_s, X=-update_stress, r=escript.Data())
            #residual=util.L2(self.__pde.getRightHandSide())
            du = self.__pde.getSolution()
            u += du
            l, d = util.L2(u), util.L2(du)
            err = d / l  # displacement error, alternatively using force error 'residual'
            converged = (err < rtol)
            if err > rtol * 0.001:  # only update DEM parts when error is large enough
                self.__domain.setX(x_safe)
                D = util.grad(u)
                update_stress, update_s, update_scenes = self.applyStrain_getStressTangentDEM(
                    st=D)

            #if err>err_safe: # to ensure consistent convergence, however this may not be achieved due to fluctuation!
            #   raise RuntimeError,"No improvement of convergence with iterations! Relative error: %e"%err
        """
      update 'domain geometry', 'stress', 'tangent operator',
      'accumulated strain' and 'simulation scenes'.
      """
        self.__domain.setX(x_safe + u)
        self.__stress = update_stress
        self.__S = update_s
        self.__strain += D
        self.__scenes = update_scenes
        if self.__verbose:
            print "Convergence reached after %d iteration(s)! Relative error: %e" % (
                iterate, err)
        return u

    """
   apply strain to DEM packing,
   get stress and tangent operator (including two methods)
   """

    def applyStrain_getStressTangentDEM(self, st=escript.Data()):
        st = st.toListOfTuples()
        st = numpy.array(st).reshape(-1, 9)
        stress = escript.Tensor(0, escript.Function(self.__domain))
        S = escript.Tensor4(0, escript.Function(self.__domain))
        scenes = self.__pool.map(shear, zip(self.__scenes, st))
        st = self.__pool.map(getStressAndTangent, scenes)
        for i in xrange(self.__numGaussPoints):
            stress.setValueOfDataPoint(i, st[i][0])
            S.setValueOfDataPoint(i, st[i][1])
        return stress, S, scenes
コード例 #47
0
ファイル: msFEM2D.py プロジェクト: DEMANY/trunk
class MultiScale(object):
   """
   problem description:
   -(A_{ijkl} u_{k,l})_{,j} = -X_{ij,j} + Y_i
   Neumann boundary: n_j A_{ijkl} u_{k,l} = n_j X_{ij} + y_i
   Dirichlet boundary: u_i = r_i where q_i > 0
   :var u: unknown vector, displacement
   :var A: elastic tensor / tangent operator
   :var X: old/current stress tensor
   :var Y: vector, body force
   :var y: vector, Neumann bc traction
   :var q: vector, Dirichlet bc mask
   :var r: vector, Dirichlet bc value
   """
   def __init__(self,domain,ng=1,useMPI=False,np=1,random=False,rtol=1.e-2,usePert=False,pert=-2.e-6,verbose=False):
      """
      initialization of the problem, i.e. model constructor
      :param domain: type Domain, domain of the problem
      :param ng: type integer, number of Gauss points
      :param useMPI: type boolean, use MPI or not
      :param np: type integer, number of processors
      :param random: type boolean, if or not use random density field
      :param rtol: type float, relevative tolerance for global convergence
      :param usePert: type boolean, if or not use perturbation method
      :param pert: type float, perturbated strain applied to DEM to obtain tangent operator
      :param verbose: type boolean, if or not print messages during calculation
      """
      self.__domain=domain
      self.__pde=LinearPDE(domain,numEquations=self.__domain.getDim(),numSolutions=self.__domain.getDim())
      self.__pde.getSolverOptions().setSolverMethod(SolverOptions.DIRECT)
      self.__pde.setSymmetryOn()
      #self.__pde.getSolverOptions().setTolerance(rtol**2)
      #self.__pde.getSolverOptions().setPackage(SolverOptions.UMFPACK)
      self.__numGaussPoints=ng
      self.__rtol=rtol
      self.__usepert=usePert
      self.__pert=pert
      self.__verbose=verbose
      self.__pool=get_pool(mpi=useMPI,threads=np)
      self.__scenes=self.__pool.map(initLoad,range(ng))
      self.__strain=escript.Tensor(0,escript.Function(self.__domain))
      self.__stress=escript.Tensor(0,escript.Function(self.__domain))
      self.__S=escript.Tensor4(0,escript.Function(self.__domain))
      
      if self.__usepert:
         s = self.__pool.map(getStressTensor,self.__scenes)
         t = self.__pool.map(getTangentOperator,zip(self.__scenes,repeat(pert)))
         for i in xrange(ng):
            self.__stress.setValueOfDataPoint(i,s[i])
            self.__S.setValueOfDataPoint(i,t[i])
      else:
         st = self.__pool.map(getStressAndTangent2D,self.__scenes)
         for i in xrange(ng):
            self.__stress.setValueOfDataPoint(i,st[i][0])
            self.__S.setValueOfDataPoint(i,st[i][1])
                     
   def initialize(self, b=escript.Data(), f=escript.Data(), specified_u_mask=escript.Data(), specified_u_val=escript.Data()):
      """
      initialize the model for each time step, e.g. assign parameters
      :param b: type vector, body force on FunctionSpace, e.g. gravity
      :param f: type vector, boundary traction on FunctionSpace (FunctionOnBoundary)
      :param specified_u_mask: type vector, mask of location for Dirichlet boundary
      :param specified_u_val: type vector, specified displacement for Dirichlet boundary
      """
      self.__pde.setValue(Y=b,y=f,q=specified_u_mask,r=specified_u_val)
      
   def getDomain(self):
      """
      return model domain
      """
      return self.__domain
      
   def getRelTolerance(self):
      """
      return relative tolerance for convergence
      type float
      """
      return self.__rtol
  
   def getCurrentPacking(self,pos=(),time=0,prefix=''):
      if len(pos) == 0:
         # output all Gauss points packings
         self.__pool.map(outputPack,zip(self.__scenes,repeat(time),repeat(prefix)))
      else:
         # output selected Gauss points packings
         scene = [self.__scenes[i] for i in pos]
         self.__pool.map(outputPack,zip(scene,repeat(time),repeat(prefix)))
   
   def getLocalVoidRatio(self):
      void=escript.Scalar(0,escript.Function(self.__domain))
      e = self.__pool.map(getVoidRatio2D,self.__scenes)
      for i in xrange(self.__numGaussPoints):
         void.setValueOfDataPoint(i,e[i])
      return void
   
   def getLocalAvgRotation(self):
      rot=escript.Scalar(0,escript.Function(self.__domain))
      r = self.__pool.map(avgRotation2D,self.__scenes)
      for i in xrange(self.__numGaussPoints):
         rot.setValueOfDataPoint(i,r[i])
      return rot
   
   def getLocalFabric(self):
      fabric=escript.Tensor(0,escript.Function(self.__domain))
      f = self.__pool.map(getFabric2D,self.__scenes)
      for i in xrange(self.__numGaussPoints):
         fabric.setValueOfDataPoint(i,f[i])
      return fabric
   
   """ used for clumped particle model only
   def getLocalParOriFab(self):
      fabric=escript.Tensor(0,escript.Function(self.__domain))
      f = self.__pool.map(getParOriFabric,self.__scenes)
      for i in xrange(self.__numGaussPoints):
         fabric.setValueOfDataPoint(i,f[i])
      return fabric
   """
   
   """ used for cohesive particle model only
   def getLocalBondBreakage(self,oriIntr=[]):
      debond = escript.Scalar(0,escript.Function(self.__domain))
      num = self.__pool.map(getDebondingNumber,zip(self.__scenes,repeat(oriIntr)))
      for i in xrange(self.__numGaussPoints):
         debond.setValueOfDataPoint(i,num[i])
      return debond
   """
      
   def getCurrentTangent(self):
      """
      return current tangent operator
      type Tensor4 on FunctionSpace
      """
      return self.__S
      
   def getCurrentStress(self):
      """
      return current stress
      type: Tensor on FunctionSpace
      """
      return self.__stress
      
   def getCurrentStrain(self):
      """
      return current strain
      type: Tensor on FunctionSpace
      """
      return self.__strain
   
   def exitSimulation(self):
      """finish the whole simulation, exit"""
      self.__pool.close()
   
   def solve(self, iter_max=100):
      """
      solve the equation using Newton-Ralphson scheme
      """
      iterate=0
      rtol=self.getRelTolerance()
      stress=self.getCurrentStress()
      s=self.getCurrentTangent()
      x_safe=self.__domain.getX()
      self.__pde.setValue(A=s, X=-stress)
      #residual0=util.L2(self.__pde.getRightHandSide()) # using force error
      u=self.__pde.getSolution()  # trial solution, displacement
      D=util.grad(u)              # trial strain tensor
      # !!!!!! obtain stress and tangent operator from DEM part
      update_stress,update_s,update_scenes=self.applyStrain_getStressTangentDEM(st=D)
      err=1.0 # initial error before iteration
      converged=(err<rtol)
      while (not converged) and (iterate<iter_max):
         if self.__verbose:
            print "Not converged after %d iteration(s)! Relative error: %e"%(iterate,err)
         iterate+=1
         self.__domain.setX(x_safe+u)
         self.__pde.setValue(A=update_s,X=-update_stress,r=escript.Data())
         #residual=util.L2(self.__pde.getRightHandSide())
         du=self.__pde.getSolution()
         u+=du
         l,d=util.L2(u),util.L2(du)
         err=d/l # displacement error, alternatively using force error 'residual'
         converged=(err<rtol)
         if err>rtol*0.001: # only update DEM parts when error is large enough
            self.__domain.setX(x_safe)
            D=util.grad(u)
            update_stress,update_s,update_scenes=self.applyStrain_getStressTangentDEM(st=D)

         #if err>err_safe: # to ensure consistent convergence, however this may not be achieved due to fluctuation!
         #   raise RuntimeError,"No improvement of convergence with iterations! Relative error: %e"%err
      """
      update 'domain geometry', 'stress', 'tangent operator',
      'accumulated strain' and 'simulation scenes'.
      """
      self.__domain.setX(x_safe+u)
      self.__stress=update_stress
      self.__S=update_s
      self.__strain+=D
      self.__scenes=update_scenes
      if self.__verbose:
         print "Convergence reached after %d iteration(s)! Relative error: %e"%(iterate,err)
      return u
      
   """
   apply strain to DEM packing,
   get stress and tangent operator (including two methods)
   """
   def applyStrain_getStressTangentDEM(self,st=escript.Data()):
      st = st.toListOfTuples()
      st = numpy.array(st).reshape(-1,4)
      stress = escript.Tensor(0,escript.Function(self.__domain))
      S = escript.Tensor4(0,escript.Function(self.__domain))
      scenes = self.__pool.map(shear2D,zip(self.__scenes,st))
      if self.__usepert:
         s = self.__pool.map(getStressTensor,scenes)
         t = self.__pool.map(getTangentOperator,zip(scenes,repeat(self.__pert)))
         for i in xrange(self.__numGaussPoints):
            stress.setValueOfDataPoint(i,s[i])
            S.setValueOfDataPoint(i,t[i])
      else:
         ST = self.__pool.map(getStressAndTangent2D,scenes)
         for i in xrange(self.__numGaussPoints):
            stress.setValueOfDataPoint(i,ST[i][0])
            S.setValueOfDataPoint(i,ST[i][1])
      return stress,S,scenes
コード例 #48
0
ファイル: example10b.py プロジェクト: svn2github/Escript
    domain = Brick(l0=mx,l1=my,n0=ndx, n1=ndy,l2=mz,n2=ndz)
    x=Solution(domain).getX()
    x=x-[mx/2,my/2,mz/2]
    domain.setX(interpolate(x, ContinuousFunction(domain)))
    mask=wherePositive(100-length(x-rholoc))
    rho=rho*mask
    kro=kronecker(domain)

    mass=rho*vol(domain)
    ipot=FunctionOnBoundary(domain)
    xb=ipot.getX()

    q=whereZero(x[2]-inf(x[2]))
    ###############################################ESCRIPT PDE CONSTRUCTION

    mypde=LinearPDE(domain)
    mypde.setValue(A=kro,Y=4.*3.1415*G*rho,q=q,r=0)
    mypde.setSymmetryOn()
    sol=mypde.getSolution()
    saveVTK(os.path.join(save_path,"ex10b.vtu"),\
            grav_pot=sol,\
            g_field=-grad(sol),\
            g_fieldz=-grad(sol)*[0,0,1],\
            gz=length(-grad(sol)*[0,0,1]))

    ################################################MODEL SIZE SAMPLING
    sampler=[]
    for i in range(-250,250,1):
        sampler.append([i,0,250])

    sample=[] # array to hold values
コード例 #49
0
    # data recording times
    rtime = 0.0  # first time to record
    rtime_inc = tend / 20.0  # time increment to record
    #Check to make sure number of time steps is not too large.
    print("Time step size= ", h, "Expected number of outputs= ", tend / h)

    U0 = 0.005  # amplitude of point source
    # want a spherical source in the middle of area
    xc = [500, 500]  # with reference to mx,my this is the source location

    ####################################################DOMAIN CONSTRUCTION
    mydomain = Rectangle(l0=mx, l1=my, n0=ndx, n1=ndy)  # create the domain
    x = mydomain.getX()  # get the node locations of the domain

    ##########################################################ESTABLISH PDE
    mypde = LinearPDE(mydomain)  # create pde
    mypde.setSymmetryOn()  # turn symmetry on
    mypde.setValue(D=1.)  # set the value of D in the general form to 1.

    ############################################FIRST TIME STEPS AND SOURCE
    # define small radius around point xc
    src_radius = 30
    print("src_radius = ", src_radius)
    # set initial values for first two time steps with source terms
    u = U0 * (cos(length(x - xc) * 3.1415 / src_radius) +
              1) * whereNegative(length(x - xc) - src_radius)
    u_m1 = u
    #plot source shape
    cut_loc = []  #where the cross section of the source along x will be
    src_cut = []  #where the cross section of the source will be
    # create locations for source cross section
コード例 #50
0
ファイル: slip.py プロジェクト: svn2github/Escript
    slip_max=1.

    mydomain = Rectangle(l0=1.,l1=1.,n0=16, n1=16)  # n1 need to be multiple of 4!!!
    # .. create the fault system
    fs=FaultSystem(dim=2)
    fs.addFault(V0=[0.5,0.25], strikes=90*DEG, ls=0.5, tag=1)
    # ... create a slip distribution on the fault:
    p, m=fs.getParametrization(mydomain.getX(),tag=1)
    p0,p1= fs.getW0Range(tag=1)
    s=m*(p-p0)*(p1-p)/((p1-p0)/2)**2*slip_max*[0.,1.]
    # ... calculate stress according to slip:
    D=symmetric(grad(s))
    chi, d=fs.getSideAndDistance(D.getFunctionSpace().getX(),tag=1)
    sigma_s=(mu*D+lam*trace(D)*kronecker(mydomain))*chi
    #... open symmetric PDE ...
    mypde=LinearPDE(mydomain)
    mypde.setSymmetryOn()
    #... set coefficients ...
    C=Tensor4(0.,Function(mydomain))
    for i in range(mydomain.getDim()):
      for j in range(mydomain.getDim()):
         C[i,i,j,j]+=lam
         C[j,i,j,i]+=mu
         C[j,i,i,j]+=mu
    # ... fix displacement in normal direction 
    x=mydomain.getX()
    msk=whereZero(x[0])*[1.,0.] + whereZero(x[0]-1.)*[1.,0.] \
       +whereZero(x[1])*[0.,1.] + whereZero(x[1]-1.)*[0.,1.]
    mypde.setValue(A=C,X=-0.5*sigma_s,q=msk)
    #... solve pde ...
    mypde.getSolverOptions().setVerbosityOn()
コード例 #51
0
    x = domain.getX()  # get the locations of the nodes in the domain

    lam = Scalar(0, Function(domain))
    mu = Scalar(0, Function(domain))
    rho = Scalar(0, Function(domain))

    #Setting parameters for each layer in the model.
    for i in range(0, nlayers):
        rho.setTaggedValue("volume_%d" % i, rhoc + i * 100.)
        lamc = (vel + i * 100.)**2. * (rhoc + i * 100.) / 2.
        muc = (vel + i * 100.)**2. * (rhoc + i * 100.) / 4.
        lam.setTaggedValue("volume_%d" % i, lamc)
        mu.setTaggedValue("volume_%d" % i, muc)

    ##########################################################ESTABLISH PDE
    mypde = LinearPDE(domain)  # create pde
    mypde.setSymmetryOn()  # turn symmetry on
    # turn lumping on for more efficient solving
    #mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
    kmat = kronecker(
        domain)  # create the kronecker delta function of the domain
    mypde.setValue(D=rho * kmat)  #set the general form value D

    ############################################FIRST TIME STEPS AND SOURCE
    # define small radius around point xc
    src_rad = 20
    print("src radius= ", src_rad)
    # set initial values for first two time steps with source terms
    xb = FunctionOnBoundary(domain).getX()
    yx = (cos(length(xb - xc) * 3.1415 / src_rad) +
          1) * whereNegative(length(xb - xc) - src_rad)
コード例 #52
0
    mydomain = Rectangle(l0=1., l1=1., n0=16,
                         n1=16)  # n1 need to be multiple of 4!!!
    # .. create the fault system
    fs = FaultSystem(dim=2)
    fs.addFault(V0=[0.5, 0.25], strikes=90 * DEG, ls=0.5, tag=1)
    # ... create a slip distribution on the fault:
    p, m = fs.getParametrization(mydomain.getX(), tag=1)
    p0, p1 = fs.getW0Range(tag=1)
    s = m * (p - p0) * (p1 - p) / ((p1 - p0) / 2)**2 * slip_max * [0., 1.]
    # ... calculate stress according to slip:
    D = symmetric(grad(s))
    chi, d = fs.getSideAndDistance(D.getFunctionSpace().getX(), tag=1)
    sigma_s = (mu * D + lam * trace(D) * kronecker(mydomain)) * chi
    #... open symmetric PDE ...
    mypde = LinearPDE(mydomain)
    mypde.setSymmetryOn()
    #... set coefficients ...
    C = Tensor4(0., Function(mydomain))
    for i in range(mydomain.getDim()):
        for j in range(mydomain.getDim()):
            C[i, i, j, j] += lam
            C[j, i, j, i] += mu
            C[j, i, i, j] += mu
    # ... fix displacement in normal direction
    x = mydomain.getX()
    msk=whereZero(x[0])*[1.,0.] + whereZero(x[0]-1.)*[1.,0.] \
       +whereZero(x[1])*[0.,1.] + whereZero(x[1]-1.)*[0.,1.]
    mypde.setValue(A=C, X=-0.5 * sigma_s, q=msk)
    #... solve pde ...
    mypde.getSolverOptions().setVerbosityOn()
コード例 #53
0
ファイル: example11c.py プロジェクト: svn2github/Escript
    res.setTaggedValue("volume_2",res3)
    res.setTaggedValue("volume_3",res4)
    con=1/res
    x=Solution(domain).getX()

    kro=kronecker(domain)
    source1=[3.*mx/8.,my/2,0]; source2=[5.*mx/8.,my/2,0]

    c1=length(exp(-length(x-source1)/(10.))); c1=c1/integrate(c1)
    c2=-length(exp(-length(x-source2)/(10.))); c2=c2/integrate(c2)
    sourceg=cur*(c1-c2)

    q=whereZero(x[1]-my)+whereZero(x[1])+whereZero(x[0])+whereZero(x[0]-mx)+whereZero(x[2]-mz)
    ###############################################ESCRIPT PDE CONSTRUCTION

    mypde=LinearPDE(domain)
    mypde.setValue(A=con*kro,Y=sourceg,q=q,r=0)
    #mypde.setSymmetryOn()
    sol=mypde.getSolution()

    res.expand()

    # Save the output to file.
    saveVTK(os.path.join(save_path,"ex11c.vtu"),\
            source=sourceg,\
            res_pot=sol,\
            res=res,\
            curden=-con*grad(sol),\
            abscd=length(-con*grad(sol)),\
            efield=-grad(sol))
コード例 #54
0
ファイル: backward_euler.py プロジェクト: svn2github/Escript
 L0=1.;L1=1.
 # location, size and value of heat source
 xc=[0.3,0.4]; r=0.1; Qc=3000
 # material parameter
 k=1; rhocp=100; 
 # bottom temperature:
 T_bot=100
 # generate domain:
 mydomain=Rectangle(l0=L0,l1=L1,n0=20,n1=20)
 x=mydomain.getX()
 # set boundray temperature:
 T_D=T_bot/L1*(L1-x[1])
 # set heat source:
 Q=Qc*whereNegative(length(x-xc)-r)
 # generate domain:
 mypde=LinearPDE(mydomain)
 mypde.setSymmetryOn()
 # set PDE coefficients:
 mypde.setValue(A=dt*k*kronecker(mydomain), D=dt*rhocp, 
                 r=T_D, q=whereZero(x[1])+whereZero(x[1]-L1))
 # initial temperature
 T=T_D 
 # step counter and time marker:
 N=0; t=0
 # stop when t_end is reached:
 while t<t_end:
     print("time step %d, t=%s"%(N,t))
     # update PDE coefficient:
     mypde.setValue(Y=dt*rhocp*T+dt*Q)
     # new temperature:
     T=mypde.getSolution()
コード例 #55
0
def runTest(dom, n=1, a=0, b=0):
    print("================== TEST : n= %s a=%s b=%s ================" %
          (n, a, b))
    DIM = dom.getDim()
    normal = dom.getNormal()
    mypde = LinearPDE(dom, numEquations=n, numSolutions=n)
    x = dom.getX()
    A = mypde.createCoefficient("A")
    D = mypde.createCoefficient("D")
    Y = mypde.createCoefficient("Y")
    y = mypde.createCoefficient("y")
    q = mypde.createCoefficient("q")
    if n == 1:
        u_ref = Scalar(0., Solution(dom))
        for j in range(DIM):
            q += whereZero(x[j])
            A[j, j] = 1
        y += sin(sqrt(2.)) * normal[0]
        Y += b * x[0] * sin(sqrt(2.))
        D += b
        u_ref = x[0] * sin(sqrt(2.))
    else:
        u_ref = Data(0., (n, ), Solution(dom))
        for i in range(n):
            for j in range(DIM):
                q[i] += whereZero(x[j])
                A[i, j, i, j] = 1
                if j == i % DIM: y[i] += sin(i + sqrt(2.)) * normal[j]
            for j in range(n):
                if i == j:
                    D[i, i] = b + (n - 1) * a
                    Y[i] += b * x[i % DIM] * sin(i + sqrt(2.))
                else:
                    D[i, j] = -a
                    Y[i] += a * (x[i % DIM] * sin(i + sqrt(2.)) -
                                 x[j % DIM] * sin(j + sqrt(2.)))
            u_ref[i] = x[i % DIM] * sin(i + sqrt(2.))


#    - u_{j,ii} + b*u_i+ a*sum_{k<>j}  (u_i-u_k) = F_j

    mypde.setValue(A=A, D=D, y=y, q=q, r=u_ref, Y=Y)
    mypde.getSolverOptions().setVerbosityOn()
    mypde.getSolverOptions().setTolerance(TOL)
    mypde.setSymmetryOn()
    u = mypde.getSolution()
    error = Lsup(u - u_ref) / Lsup(u_ref)
    print("error = ", error)
    if error > 10 * TOL:
        print(
            "XXXXXXXXXX Error to large ! XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX")
コード例 #56
0
ファイル: example10a.py プロジェクト: aishugang/esys-escript
    save_path = os.path.join("data", "example10")
    #ensure the dir exists
    mkDir(save_path)

    ####################################################DOMAIN CONSTRUCTION
    domain = Rectangle(l0=mx, l1=my, n0=ndx, n1=ndy)
    x = Solution(domain).getX()
    mask = wherePositive(10 - length(x - rholoc))
    rho = rho * mask
    kro = kronecker(domain)

    q = whereZero(x[1] - my) + whereZero(x[1]) + whereZero(
        x[0]) + whereZero(x[0] - mx)
    ###############################################ESCRIPT PDE CONSTRUCTION

    mypde = LinearPDE(domain)
    mypde.setValue(A=kro, Y=4. * 3.1415 * G * rho)
    mypde.setValue(q=q, r=0)
    mypde.setSymmetryOn()
    sol = mypde.getSolution()

    g_field = grad(sol)  #The gravitational acceleration g.
    g_fieldz = g_field * [0, 1]  #The vertical component of the g field.
    gz = length(g_fieldz)  #The magnitude of the vertical component.
    # Save the output to file.
    saveVTK(os.path.join(save_path,"ex10a.vtu"),\
            grav_pot=sol,g_field=g_field,g_fieldz=g_fieldz,gz=gz)

    ##################################################REGRIDDING & PLOTTING

    xi, yi, zi = toRegGrid(sol, nx=50, ny=50)
コード例 #57
0
ファイル: example08c.py プロジェクト: svn2github/Escript
    domain = MakeDomain(d, optimizeLabeling=True)
    x = domain.getX()
    print("Domain has been generated ...")

    lam = Scalar(0, Function(domain))
    lam.setTaggedValue("top", lam1)
    lam.setTaggedValue("bottom", lam2)
    mu = Scalar(0, Function(domain))
    mu.setTaggedValue("top", mu1)
    mu.setTaggedValue("bottom", mu2)
    rho = Scalar(0, Function(domain))
    rho.setTaggedValue("top", rho1)
    rho.setTaggedValue("bottom", rho2)

    ##########################################################ESTABLISH PDE
    mypde = LinearPDE(domain)  # create pde
    mypde.setSymmetryOn()  # turn symmetry on
    # turn lumping on for more efficient solving
    # mypde.getSolverOptions().setSolverMethod(SolverOptions.LUMPING)
    kmat = kronecker(domain)  # create the kronecker delta function of the domain
    mypde.setValue(D=rho * kmat)  # set the general form value D

    ##########################################################ESTABLISH ABC
    # Define where the boundary decay will be applied.
    bn = 20.0
    bleft = xstep * bn
    bright = width - (xstep * bn)
    bbot = depth - (ystep * bn)
    # btop=ystep*bn # don't apply to force boundary!!!

    # locate these points in the domain
コード例 #58
0
ファイル: temperature.py プロジェクト: svn2github/Escript
class TemperatureAdvection(Model):
       """

       The conservation of internal heat energy is given by

       *rho c_p ( dT/dt+v[j] * grad(T)[j])-grad(\kappa grad(T)_{,i}=Q*

       *n_i \kappa T_{,i}=0*

       it is assummed that *\rho c_p* is constant in time.

       solved by Taylor Galerkin method

       """
       def __init__(self,**kwargs):
           super(TemperatureAdvection, self).__init__(**kwargs)
           self.declareParameter(domain=None, \
                                 temperature=1., \
                                 velocity=numpy.zeros([3]),
                                 density=1., \
                                 heat_capacity=1., \
                                 thermal_permabilty=1., \
                                 # reference_temperature=0., \
                                 # radiation_coefficient=0., \
                                 thermal_source=0., \
                                 fixed_temperature=0.,
                                 location_fixed_temperature=Data(),
                                 safety_factor=0.1)

       def doInitialization(self):
           self.__pde=LinearPDE(self.domain)
           self.__pde.setSymmetryOn()
           self.__pde.setReducedOrderOn()
           self.__pde.getSolverOptions().setSolverMethod(SolverOptions.LUMPING)
           self.__pde.setValue(D=self.heat_capacity*self.density)

       def getSafeTimeStepSize(self,dt):
           """
           returns new step size
           """
           h=self.domain.getSize()
           return self.safety_factor*inf(h**2/(h*abs(self.heat_capacity*self.density)*length(self.velocity)+self.thermal_permabilty))

       def G(self,T,alpha):
           """
           tangential operator for taylor galerikin
           """
           g=grad(T)
           self.__pde.setValue(X=-self.thermal_permabilty*g, \
                               Y=self.thermal_source-self.__rhocp*inner(self.velocity,g), \
                               r=(self.__fixed_T-self.temperature)*alpha,\
                               q=self.location_fixed_temperature)
           return self.__pde.getSolution()
           

       def doStepPostprocessing(self,dt):
           """
           perform taylor galerkin step
           """
           T=self.temperature
           self.__rhocp=self.heat_capacity*self.density
           self.__fixed_T=self.fixed_temperature
           self.temperature=dt*self.G(dt/2*self.G(T,1./dt)+T,1./dt)+T
           self.trace("Temperature range is %e %e"%(inf(self.temperature),sup(self.temperature)))
コード例 #59
0
ファイル: wavesolver2d003.py プロジェクト: svn2github/Escript
#~ pl.clf()
#~ pl.imshow(tester)
#~ pl.colorbar()
#~ pl.savefig("tester2.png")
#~ 
#~ tester=fbottom*wherePositive(bottom)
#~ tester=tester.toListOfTuples()
#~ tester=np.reshape(tester,(ndx+1,ndy+1))
#~ pl.clf()
#~ pl.imshow(tester)
#~ pl.colorbar()
#~ pl.savefig("tester3.png")


# ... open new PDE ...
mypde=LinearPDE(domain)
print(mypde.isUsingLumping())
print(mypde.getSolverOptions())
#mypde.getSolverOptions().setSolverMethod(SolverOptions.LUMPING)
mypde.setSymmetryOn()
kmat = kronecker(domain)
mypde.setValue(D=kmat*rho)

# define small radius around point xc
# Lsup(x) returns the maximum value of the argument x
src_radius = 50#2*Lsup(domain.getSize())
print("src_radius = ",src_radius)

dunit=numpy.array([0.,1.]) # defines direction of point source
#~ dunit=(x-xc)
#~ absrc=length(dunit)
コード例 #60
0
ファイル: temperature.py プロジェクト: svn2github/Escript
 def doInitialization(self):
     self.__pde=LinearPDE(self.domain)
     self.__pde.setSymmetryOn()
     self.__pde.setReducedOrderOn()
     self.__pde.getSolverOptions().setSolverMethod(SolverOptions.LUMPING)
     self.__pde.setValue(D=self.heat_capacity*self.density)