def __init__(self, domain, v_p, wavelet, source_tag, dt=None, p0=None, p0_t=None, absorption_zone=300 * U.m, absorption_cut=1e-2, lumping=True): """ initialize the sonic wave solver :param domain: domain of the problem :type domain: `Domain` :param v_p: p-velocity field :type v_p: `escript.Scalar` :param wavelet: wavelet to describe the time evolution of source term :type wavelet: `Wavelet` :param source_tag: tag of the source location :type source_tag: 'str' or 'int' :param dt: time step size. If not present a suitable time step size is calculated. :param p0: initial solution. If not present zero is used. :param p0_t: initial solution change rate. If not present zero is used. :param absorption_zone: thickness of absorption zone :param absorption_cut: boundary value of absorption decay factor :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion. """ f = createAbsorptionLayerFunction( escript.Function(domain).getX(), absorption_zone, absorption_cut) v_p = v_p * f if p0 == None: p0 = escript.Scalar(0., escript.Solution(domain)) else: p0 = escript.interpolate(p0, escript.Solution(domain)) if p0_t == None: p0_t = escript.Scalar(0., escript.Solution(domain)) else: p0_t = escript.interpolate(p0_t, escript.Solution(domain)) if dt == None: dt = min(escript.inf((1. / 5.) * domain.getSize() / v_p), wavelet.getTimeScale()) super(SonicWave, self).__init__(dt, u0=p0, v0=p0_t, t0=0.) self.__wavelet = wavelet self.__mypde = lpde.LinearSinglePDE(domain) if lumping: self.__mypde.getSolverOptions().setSolverMethod( lpde.SolverOptions.HRZ_LUMPING) self.__mypde.setSymmetryOn() self.__mypde.setValue(D=1. / v_p**2) self.__source_tag = source_tag self.__r = escript.Scalar( 0., escript.DiracDeltaFunctions(self.__mypde.getDomain()))
def getPotentialNumeric(self): """ Returns 3 list each made up of a number of list containing primary, secondary and total potentials diferences. Each of the lists contain a list for each value of n. """ primCon=self.primaryConductivity coords=self.domain.getX() tol=1e-8 pde=LinearPDE(self.domain, numEquations=1) pde.getSolverOptions().setTolerance(tol) pde.setSymmetryOn() primaryPde=LinearPDE(self.domain, numEquations=1) primaryPde.getSolverOptions().setTolerance(tol) primaryPde.setSymmetryOn() DIM=self.domain.getDim() x=self.domain.getX() q=es.whereZero(x[DIM-1]-es.inf(x[DIM-1])) for i in xrange(DIM-1): xi=x[i] q+=es.whereZero(xi-es.inf(xi))+es.whereZero(xi-es.sup(xi)) A = self.secondaryConductivity * es.kronecker(self.domain) APrimary = self.primaryConductivity * es.kronecker(self.domain) pde.setValue(A=A,q=q) primaryPde.setValue(A=APrimary,q=q) delPhiSecondaryList = [] delPhiPrimaryList = [] delPhiTotalList = [] for i in range(1,self.n+1): # 1 to n maxR = self.numElectrodes - 1 - (2*i) #max amount of readings that will fit in the survey delPhiSecondary = [] delPhiPrimary = [] delPhiTotal = [] for j in range(maxR): y_dirac=es.Scalar(0,es.DiracDeltaFunctions(self.domain)) y_dirac.setTaggedValue(self.electrodeTags[j],self.current) y_dirac.setTaggedValue(self.electrodeTags[j + ((2*i) + 1)],-self.current) self.sources.append([self.electrodeTags[j], self.electrodeTags[j + ((2*i) + 1)]]) primaryPde.setValue(y_dirac=y_dirac) numericPrimaryPot = primaryPde.getSolution() X=(primCon-self.secondaryConductivity) * es.grad(numericPrimaryPot) pde.setValue(X=X) u=pde.getSolution() loc=Locator(self.domain,[self.electrodes[j+i],self.electrodes[j+i+1]]) self.samples.append([self.electrodeTags[j+i],self.electrodeTags[j+i+1]]) valPrimary=loc.getValue(numericPrimaryPot) valSecondary=loc.getValue(u) delPhiPrimary.append(valPrimary[1]-valPrimary[0]) delPhiSecondary.append(valSecondary[1]-valSecondary[0]) delPhiTotal.append(delPhiPrimary[j]+delPhiSecondary[j]) delPhiPrimaryList.append(delPhiPrimary) delPhiSecondaryList.append(delPhiSecondary) delPhiTotalList.append(delPhiTotal) self.delPhiPrimaryList=delPhiPrimaryList self.delPhiSecondaryList=delPhiSecondaryList self.delPhiTotalList = delPhiTotalList return [delPhiPrimaryList, delPhiSecondaryList, delPhiTotalList]
def getGradient(self, sigma, u, uTar, uTai, uTu): """ Returns the gradient of the defect with respect to density. :param sigma: a suggestion for complex 1/V**2 :type sigma: ``escript.Data`` of shape (2,) :param u: a u vector :type u: ``escript.Data`` of shape (2,) :param uTar: equals `integrate( w * (data[0]*u[0]+data[1]*u[1]))` :type uTar: `float` :param uTai: equals `integrate( w * (data[1]*u[0]-data[0]*u[1]))` :type uTa: `float` :param uTu: equals `integrate( w * (u,u))` :type uTu: `float` """ pde = self.setUpPDE() if self.scaleF and abs(uTu) > 0: Z = ((uTar**2 + uTai**2) / uTu**2) * escript.interpolate( u, self.__data.getFunctionSpace()) Z[0] += (-uTar / uTu) * self.__data[0] + (-uTai / uTu) * self.__data[1] Z[1] += (-uTar / uTu) * self.__data[1] + uTai / uTu * self.__data[0] else: Z = u - self.__data if Z.getFunctionSpace() == escript.DiracDeltaFunctions( self.getDomain()): pde.setValue(y_dirac=self.__weight * Z) else: pde.setValue(y=self.__weight * Z) D = pde.getCoefficient('D') D[0, 0] = -self.__omega**2 * sigma[0] D[0, 1] = -self.__omega**2 * sigma[1] D[1, 0] = self.__omega**2 * sigma[1] D[1, 1] = -self.__omega**2 * sigma[0] pde.setValue(D=D) ZTo2 = pde.getSolution() * self.__omega**2 return escript.inner( ZTo2, u) * [1, 0] + (ZTo2[1] * u[0] - ZTo2[0] * u[1]) * [0, 1]
def __init__(self, domain, v_p, wavelet, source_tag, source_vector=[1., 0.], eps=0., delta=0., azimuth=0., dt=None, p0=None, v0=None, absorption_zone=300 * U.m, absorption_cut=1e-2, lumping=True): """ initialize the HTI wave solver :param domain: domain of the problem :type domain: `Doamin` :param v_p: vertical p-velocity field :type v_p: `escript.Scalar` :param v_s: vertical s-velocity field :type v_s: `escript.Scalar` :param wavelet: wavelet to describe the time evolution of source term :type wavelet: `Wavelet` :param source_tag: tag of the source location :type source_tag: 'str' or 'int' :param source_vector: source orientation vector :param eps: first Thompsen parameter :param azimuth: azimuth (rotation around verticle axis) :param gamma: third Thompsen parameter :param rho: density :param dt: time step size. If not present a suitable time step size is calculated. :param p0: initial solution (Q(t=0), P(t=0)). If not present zero is used. :param v0: initial solution change rate. If not present zero is used. :param absorption_zone: thickness of absorption zone :param absorption_cut: boundary value of absorption decay factor :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion. """ DIM = domain.getDim() f = createAbsorptionLayerFunction(v_p.getFunctionSpace().getX(), absorption_zone, absorption_cut) self.v2_p = v_p**2 self.v2_t = self.v2_p * escript.sqrt(1 + 2 * delta) self.v2_n = self.v2_p * (1 + 2 * eps) if p0 == None: p0 = escript.Data(0., (2, ), escript.Solution(domain)) else: p0 = escript.interpolate(p0, escript.Solution(domain)) if v0 == None: v0 = escript.Data(0., (2, ), escript.Solution(domain)) else: v0 = escript.interpolate(v0, escript.Solution(domain)) if dt == None: dt = min( min(escript.inf(domain.getSize() / escript.sqrt(self.v2_p)), escript.inf(domain.getSize() / escript.sqrt(self.v2_t)), escript.inf(domain.getSize() / escript.sqrt(self.v2_n))), wavelet.getTimeScale()) * 0.2 super(SonicHTIWave, self).__init__(dt, u0=p0, v0=v0, t0=0.) self.__wavelet = wavelet self.__mypde = lpde.LinearPDESystem(domain) if lumping: self.__mypde.getSolverOptions().setSolverMethod( lpde.SolverOptions.HRZ_LUMPING) self.__mypde.setSymmetryOn() self.__mypde.setValue(D=escript.kronecker(2), X=self.__mypde.createCoefficient('X')) self.__source_tag = source_tag self.__r = escript.Vector( 0, escript.DiracDeltaFunctions(self.__mypde.getDomain())) self.__r.setTaggedValue(self.__source_tag, source_vector)
def __init__(self, domain, v_p, v_s, wavelet, source_tag, source_vector=[0., 1.], eps=0., delta=0., theta=0., rho=1., dt=None, u0=None, v0=None, absorption_zone=300 * U.m, absorption_cut=1e-2, lumping=True): """ initialize the TTI wave solver :param domain: domain of the problem :type domain: `Domain` :param v_p: vertical p-velocity field :type v_p: `escript.Scalar` :param v_s: vertical s-velocity field :type v_s: `escript.Scalar` :param wavelet: wavelet to describe the time evolution of source term :type wavelet: `Wavelet` :param source_tag: tag of the source location :type source_tag: 'str' or 'int' :param source_vector: source orientation vector :param eps: first Thompsen parameter :param delta: second Thompsen parameter :param theta: tilting (in Rad) :param rho: density :param dt: time step size. If not present a suitable time step size is calculated. :param u0: initial solution. If not present zero is used. :param v0: initial solution change rate. If not present zero is used. :param absorption_zone: thickness of absorption zone :param absorption_cut: boundary value of absorption decay factor :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion. """ cos = escript.cos sin = escript.sin DIM = domain.getDim() if not DIM == 2: raise ValueError("Only 2D is supported.") f = createAbsorptionLayerFunction( escript.Function(domain).getX(), absorption_zone, absorption_cut) v_p = v_p * f v_s = v_s * f if u0 == None: u0 = escript.Vector(0., escript.Solution(domain)) else: u0 = escript.interpolate(p0, escript.Solution(domain)) if v0 == None: v0 = escript.Vector(0., escript.Solution(domain)) else: v0 = escript.interpolate(v0, escript.Solution(domain)) if dt == None: dt = min((1. / 5.) * min(escript.inf(domain.getSize() / v_p), escript.inf(domain.getSize() / v_s)), wavelet.getTimeScale()) super(TTIWave, self).__init__(dt, u0=u0, v0=v0, t0=0.) self.__wavelet = wavelet self.__mypde = lpde.LinearPDESystem(domain) if lumping: self.__mypde.getSolverOptions().setSolverMethod( lpde.SolverOptions.HRZ_LUMPING) self.__mypde.setSymmetryOn() self.__mypde.setValue(D=rho * escript.kronecker(DIM), X=self.__mypde.createCoefficient('X')) self.__source_tag = source_tag self.__r = escript.Vector( 0, escript.DiracDeltaFunctions(self.__mypde.getDomain())) self.__r.setTaggedValue(self.__source_tag, source_vector) c0_33 = v_p**2 * rho c0_66 = v_s**2 * rho c0_11 = (1 + 2 * eps) * c0_33 c0_13 = escript.sqrt(2 * c0_33 * (c0_33 - c0_66) * delta + (c0_33 - c0_66)**2) - c0_66 self.c11 = c0_11 * cos(theta)**4 - 2 * c0_13 * cos( theta)**4 + 2 * c0_13 * cos(theta)**2 + c0_33 * sin( theta)**4 - 4 * c0_66 * cos(theta)**4 + 4 * c0_66 * cos( theta)**2 self.c13 = -c0_11 * cos(theta)**4 + c0_11 * cos( theta)**2 + c0_13 * sin(theta)**4 + c0_13 * cos( theta)**4 - c0_33 * cos(theta)**4 + c0_33 * cos( theta)**2 + 4 * c0_66 * cos(theta)**4 - 4 * c0_66 * cos( theta)**2 self.c16 = (-2 * c0_11 * cos(theta)**2 - 4 * c0_13 * sin(theta)**2 + 2 * c0_13 + 2 * c0_33 * sin(theta)**2 - 8 * c0_66 * sin(theta)**2 + 4 * c0_66) * sin(theta) * cos(theta) / 2 self.c33 = c0_11 * sin(theta)**4 - 2 * c0_13 * cos( theta)**4 + 2 * c0_13 * cos(theta)**2 + c0_33 * cos( theta)**4 - 4 * c0_66 * cos(theta)**4 + 4 * c0_66 * cos( theta)**2 self.c36 = (2 * c0_11 * cos(theta)**2 - 2 * c0_11 + 4 * c0_13 * sin(theta)**2 - 2 * c0_13 + 2 * c0_33 * cos(theta)**2 + 8 * c0_66 * sin(theta)**2 - 4 * c0_66) * sin(theta) * cos(theta) / 2 self.c66 = -c0_11 * cos(theta)**4 + c0_11 * cos( theta)**2 + 2 * c0_13 * cos(theta)**4 - 2 * c0_13 * cos( theta)**2 - c0_33 * cos(theta)**4 + c0_33 * cos( theta)**2 + c0_66 * sin(theta)**4 + 3 * c0_66 * cos( theta)**4 - 2 * c0_66 * cos(theta)**2
def __init__(self, domain, v_p, v_s, wavelet, source_tag, source_vector=[1., 0., 0.], eps=0., gamma=0., delta=0., rho=1., dt=None, u0=None, v0=None, absorption_zone=None, absorption_cut=1e-2, lumping=True, disable_fast_assemblers=False): """ initialize the VTI wave solver :param domain: domain of the problem :type domain: `Domain` :param v_p: vertical p-velocity field :type v_p: `escript.Scalar` :param v_s: vertical s-velocity field :type v_s: `escript.Scalar` :param wavelet: wavelet to describe the time evolution of source term :type wavelet: `Wavelet` :param source_tag: tag of the source location :type source_tag: 'str' or 'int' :param source_vector: source orientation vector :param eps: first Thompsen parameter :param delta: second Thompsen parameter :param gamma: third Thompsen parameter :param rho: density :param dt: time step size. If not present a suitable time step size is calculated. :param u0: initial solution. If not present zero is used. :param v0: initial solution change rate. If not present zero is used. :param absorption_zone: thickness of absorption zone :param absorption_cut: boundary value of absorption decay factor :param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion. :param disable_fast_assemblers: if True, forces use of slower and more general PDE assemblers """ DIM = domain.getDim() self.fastAssembler = hasattr( domain, "createAssembler") and not disable_fast_assemblers f = createAbsorptionLayerFunction(v_p.getFunctionSpace().getX(), absorption_zone, absorption_cut) v_p = v_p * f v_s = v_s * f if u0 == None: u0 = escript.Vector(0., escript.Solution(domain)) else: u0 = escript.interpolate(p0, escript.Solution(domain)) if v0 == None: v0 = escript.Vector(0., escript.Solution(domain)) else: v0 = escript.interpolate(v0, escript.Solution(domain)) if dt == None: dt = min((1. / 5.) * min(escript.inf(domain.getSize() / v_p), escript.inf(domain.getSize() / v_s)), wavelet.getTimeScale()) super(HTIWave, self).__init__(dt, u0=u0, v0=v0, t0=0.) self.__wavelet = wavelet self.c33 = v_p**2 * rho self.c44 = v_s**2 * rho self.c11 = (1 + 2 * eps) * self.c33 self.c66 = (1 + 2 * gamma) * self.c44 self.c13 = escript.sqrt(2 * self.c33 * (self.c33 - self.c44) * delta + (self.c33 - self.c44)**2) - self.c44 self.c23 = self.c33 - 2 * self.c66 if self.fastAssembler: C = [("c11", self.c11), ("c23", self.c23), ("c13", self.c13), ("c33", self.c33), ("c44", self.c44), ("c66", self.c66)] if "speckley" in domain.getDescription().lower(): C = [(n, escript.interpolate(d, escript.ReducedFunction(domain))) for n, d in C] self.__mypde = lpde.WavePDE(domain, C) else: self.__mypde = lpde.LinearPDESystem(domain) self.__mypde.setValue(X=self.__mypde.createCoefficient('X')) if lumping: self.__mypde.getSolverOptions().setSolverMethod( lpde.SolverOptions.HRZ_LUMPING) self.__mypde.setSymmetryOn() self.__mypde.setValue(D=rho * escript.kronecker(DIM)) self.__source_tag = source_tag if DIM == 2: source_vector = [source_vector[0], source_vector[2]] self.__r = escript.Vector( 0, escript.DiracDeltaFunctions(self.__mypde.getDomain())) self.__r.setTaggedValue(self.__source_tag, source_vector)
def __init__(self, domain, omega, w, data, F, coordinates=None, fixAtBottom=False, tol=1e-10, saveMemory=True, scaleF=True): """ initializes a new forward model with acoustic wave form inversion. :param domain: domain of the model :type domain: `Domain` :param w: weighting factors :type w: ``Scalar`` :param data: real and imaginary part of data :type data: ``escript.Data`` of shape (2,) :param F: real and imaginary part of source given at Dirac points, on surface or at volume. :type F: ``escript.Data`` of shape (2,) :param coordinates: defines coordinate system to be used (not supported yet) :type coordinates: `ReferenceSystem` or `SpatialCoordinateTransformation` :param tol: tolerance of underlying PDE :type tol: positive ``float`` :param saveMemory: if true stiffness matrix is deleted after solution of PDE to minimize memory requests. This will require more compute time as the matrix needs to be reallocated. :type saveMemory: ``bool`` :param scaleF: if true source F is scaled to minimize defect. :type scaleF: ``bool`` :param fixAtBottom: if true pressure is fixed to zero at the bottom of the domain :type fixAtBottom: ``bool`` """ super(AcousticWaveForm, self).__init__() self.__trafo = edc.makeTransformation(domain, coordinates) if not self.getCoordinateTransformation().isCartesian(): raise ValueError( "Non-Cartesian Coordinates are not supported yet.") if not isinstance(data, escript.Data): raise ValueError("data must be an escript.Data object.") if not data.getFunctionSpace() == escript.FunctionOnBoundary(domain): raise ValueError("data must be defined on boundary") if not data.getShape() == (2, ): raise ValueError( "data must have shape (2,) (real and imaginary part).") if w is None: w = 1. if not isinstance(w, escript.Data): w = escript.Data(w, escript.FunctionOnBoundary(domain)) else: if not w.getFunctionSpace() == escript.FunctionOnBoundary(domain): raise ValueError("Weights must be defined on boundary.") if not w.getShape() == (): raise ValueError("Weights must be scalar.") self.__domain = domain self.__omega = omega self.__weight = w self.__data = data self.scaleF = scaleF if scaleF: A = escript.integrate(self.__weight * escript.length(self.__data)**2) if A > 0: self.__data *= 1. / escript.sqrt(A) self.__BX = escript.boundingBox(domain) self.edge_lengths = np.asarray(escript.boundingBoxEdgeLengths(domain)) if not isinstance(F, escript.Data): F = escript.interpolate(F, escript.DiracDeltaFunctions(domain)) if not F.getShape() == (2, ): raise ValueError( "Source must have shape (2,) (real and imaginary part).") self.__F = escript.Data() self.__f = escript.Data() self.__f_dirac = escript.Data() if F.getFunctionSpace() == escript.DiracDeltaFunctions(domain): self.__f_dirac = F elif F.getFunctionSpace() == escript.FunctionOnBoundary(domain): self.__f = F else: self.__F = F self.__tol = tol self.__fixAtBottom = fixAtBottom self.__pde = None if not saveMemory: self.__pde = self.setUpPDE()