def finish(self): tm_start = time.ctime() all_species = self.targets | self.outgroups cogs, cog_analysis = brh_cogs2(db, all_species, missing_factor=self.missing_factor, seed_sp=self.seed) self.raw_cogs = cogs self.cog_analysis = cog_analysis self.cogs = [] for co in cogs: # self.cogs.append(map(encode_seqname, co)) encoded_names = db.translate_names(co) if len(encoded_names) != len(co): print(set(co) - set(encoded_names.keys())) raise DataError("Some sequence ids could not be translated") self.cogs.append(list(encoded_names.values())) # Sort Cogs according to the md5 hash of its content. Random # sorting but kept among runs list(map(lambda x: x.sort(), self.cogs)) self.cogs.sort(lambda x, y: cmp(md5(','.join(x)), md5(','.join(y)))) log.log(28, "%s COGs detected" % len(self.cogs)) tm_end = time.ctime() #open(pjoin(self.taskdir, "__time__"), "w").write( # '\n'.join([tm_start, tm_end])) CogSelectorTask.store_data(self, self.cogs, self.cog_analysis)
def finish(self): tm_start = time.ctime() all_species = self.targets | self.outgroups cogs, cog_analysis = brh_cogs2(db, all_species, missing_factor=self.missing_factor, seed_sp=self.seed) self.raw_cogs = cogs self.cog_analysis = cog_analysis self.cogs = [] for co in cogs: # self.cogs.append(map(encode_seqname, co)) encoded_names = db.translate_names(co) if len(encoded_names) != len(co): print(set(co) - set(encoded_names.keys())) raise DataError("Some sequence ids could not be translated") self.cogs.append(list(encoded_names.values())) # Sort Cogs according to the md5 hash of its content. Random # sorting but kept among runs list(map(lambda x: x.sort(), self.cogs)) self.cogs.sort(lambda x,y: cmp(md5(','.join(x)), md5(','.join(y)))) log.log(28, "%s COGs detected" %len(self.cogs)) tm_end = time.ctime() #open(pjoin(self.taskdir, "__time__"), "w").write( # '\n'.join([tm_start, tm_end])) CogSelectorTask.store_data(self, self.cogs, self.cog_analysis)
def finish(self): def sort_cogs_by_size(c1, c2): ''' sort cogs by descending size. If two cogs are the same size, sort them keeping first the one with the less represented species. Otherwise sort by sequence name sp_seqid.''' r = -1 * cmp(len(c1), len(c2)) if r == 0: # finds the cog including the less represented species c1_repr = _min([sp2cogs[_sp] for _sp, _seq in c1]) c2_repr = _min([sp2cogs[_sp] for _sp, _seq in c2]) r = cmp(c1_repr, c2_repr) if r == 0: return cmp(sorted(c1), sorted(c2)) else: return r else: return r def sort_cogs_by_sp_repr(c1, c2): c1_repr = _min([sp2cogs[_sp] for _sp, _seq in c1]) c2_repr = _min([sp2cogs[_sp] for _sp, _seq in c2]) r = cmp(c1_repr, c2_repr) if r == 0: r = -1 * cmp(len(c1), len(c2)) if r == 0: return cmp(sorted(c1), sorted(c2)) else: return r else: return r all_species = self.targets | self.outgroups # strict threshold #min_species = len(all_species) - int(round(self.missing_factor * len(all_species))) # Relax threshold for cog selection to ensure sames genes are always included min_species = len(all_species) - int(round(self.missing_factor * len(GLOBALS["target_species"]))) min_species = max(min_species, (1-self.max_missing_factor) * len(all_species)) smallest_cog, largest_cog = len(all_species), 0 all_singletons = [] sp2cogs = defaultdict(int) for cognumber, cog in enumerate(open(GLOBALS["cogs_file"])): sp2seqs = defaultdict(list) for sp, seqid in [list(map(str.strip, seq.split(GLOBALS["spname_delimiter"], 1))) for seq in cog.split("\t")]: sp2seqs[sp].append(seqid) one2one_cog = set() for sp, seqs in six.iteritems(sp2seqs): #if len(seqs) != 1: # print sp, len(seqs) if sp in all_species and len(seqs) == 1: sp2cogs[sp] += 1 one2one_cog.add((sp, seqs[0])) smallest_cog = min(smallest_cog, len(one2one_cog)) largest_cog = max(largest_cog, len(one2one_cog)) all_singletons.append(one2one_cog) #if len(one2one_cog) >= min_species: # valid_cogs.append(one2one_cog) cognumber += 1 # sets the ammount of cogs in file for sp, ncogs in sorted(list(sp2cogs.items()), key=lambda x: x[1], reverse=True): log.log(28, "% 20s found in single copy in % 6d (%0.1f%%) COGs " %(sp, ncogs, 100 * ncogs/float(cognumber))) valid_cogs = sorted([sing for sing in all_singletons if len(sing) >= min_species], sort_cogs_by_size) log.log(28, "Largest cog size: %s. Smallest cog size: %s" %( largest_cog, smallest_cog)) self.cog_analysis = "" # save original cog names hitting the hard limit if len(valid_cogs) > self.cog_hard_limit: log.warning("Applying hard limit number of COGs: %d out of %d available" %(self.cog_hard_limit, len(valid_cogs))) self.raw_cogs = valid_cogs[:self.cog_hard_limit] self.cogs = [] # Translate sequence names into the internal DB names sp_repr = defaultdict(int) sizes = [] for co in self.raw_cogs: sizes.append(len(co)) for sp, seq in co: sp_repr[sp] += 1 co_names = ["%s%s%s" %(sp, GLOBALS["spname_delimiter"], seq) for sp, seq in co] encoded_names = db.translate_names(co_names) if len(encoded_names) != len(co): print(set(co) - set(encoded_names.keys())) raise DataError("Some sequence ids could not be translated") self.cogs.append(list(encoded_names.values())) # ERROR! COGs selected are not the prioritary cogs sorted out before!!! # Sort Cogs according to the md5 hash of its content. Random # sorting but kept among runs #map(lambda x: x.sort(), self.cogs) #self.cogs.sort(lambda x,y: cmp(md5(','.join(x)), md5(','.join(y)))) log.log(28, "Analysis of current COG selection:") for sp, ncogs in sorted(list(sp_repr.items()), key=lambda x:x[1], reverse=True): log.log(28, " % 30s species present in % 6d COGs (%0.1f%%)" %(sp, ncogs, 100 * ncogs/float(len(self.cogs)))) log.log(28, " %d COGs selected with at least %d species out of %d" %(len(self.cogs), min_species, len(all_species))) log.log(28, " Average COG size %0.1f/%0.1f +- %0.1f" %(_mean(sizes), _median(sizes), _std(sizes))) # Some consistency checks missing_sp = (all_species) - set(sp_repr.keys()) if missing_sp: log.error("%d missing species or not present in single-copy in any cog:\n%s" %\ (len(missing_sp), '\n'.join(missing_sp))) open('etebuild.valid_species_names.tmp', 'w').write('\n'.join(list(sp_repr.keys())) +'\n') log.error("All %d valid species have been dumped into etebuild.valid_species_names.tmp." " You can use --spfile to restrict the analysis to those species." %len(sp_repr)) raise TaskError('missing or not single-copy species under current cog selection') CogSelectorTask.store_data(self, self.cogs, self.cog_analysis)
def finish(self): def sort_cogs_by_size(c1, c2): ''' sort cogs by descending size. If two cogs are the same size, sort them keeping first the one with the less represented species. Otherwise sort by sequence name sp_seqid.''' r = -1 * cmp(len(c1), len(c2)) if r == 0: # finds the cog including the less represented species c1_repr = _min([sp2cogs[_sp] for _sp, _seq in c1]) c2_repr = _min([sp2cogs[_sp] for _sp, _seq in c2]) r = cmp(c1_repr, c2_repr) if r == 0: return cmp(sorted(c1), sorted(c2)) else: return r else: return r def sort_cogs_by_sp_repr(c1, c2): c1_repr = _min([sp2cogs[_sp] for _sp, _seq in c1]) c2_repr = _min([sp2cogs[_sp] for _sp, _seq in c2]) r = cmp(c1_repr, c2_repr) if r == 0: r = -1 * cmp(len(c1), len(c2)) if r == 0: return cmp(sorted(c1), sorted(c2)) else: return r else: return r all_species = self.targets | self.outgroups # strict threshold #min_species = len(all_species) - int(round(self.missing_factor * len(all_species))) # Relax threshold for cog selection to ensure sames genes are always included min_species = len(all_species) - int( round(self.missing_factor * len(GLOBALS["target_species"]))) min_species = max(min_species, (1 - self.max_missing_factor) * len(all_species)) smallest_cog, largest_cog = len(all_species), 0 all_singletons = [] sp2cogs = defaultdict(int) for cognumber, cog in enumerate(open(GLOBALS["cogs_file"])): sp2seqs = defaultdict(list) for sp, seqid in [ list( map(str.strip, seq.split(GLOBALS["spname_delimiter"], 1))) for seq in cog.split("\t") ]: sp2seqs[sp].append(seqid) one2one_cog = set() for sp, seqs in six.iteritems(sp2seqs): #if len(seqs) != 1: # print sp, len(seqs) if sp in all_species and len(seqs) == 1: sp2cogs[sp] += 1 one2one_cog.add((sp, seqs[0])) smallest_cog = min(smallest_cog, len(one2one_cog)) largest_cog = max(largest_cog, len(one2one_cog)) all_singletons.append(one2one_cog) #if len(one2one_cog) >= min_species: # valid_cogs.append(one2one_cog) cognumber += 1 # sets the ammount of cogs in file for sp, ncogs in sorted(list(sp2cogs.items()), key=lambda x: x[1], reverse=True): log.log( 28, "% 20s found in single copy in % 6d (%0.1f%%) COGs " % (sp, ncogs, 100 * ncogs / float(cognumber))) valid_cogs = sorted( [sing for sing in all_singletons if len(sing) >= min_species], sort_cogs_by_size) log.log( 28, "Largest cog size: %s. Smallest cog size: %s" % (largest_cog, smallest_cog)) self.cog_analysis = "" # save original cog names hitting the hard limit if len(valid_cogs) > self.cog_hard_limit: log.warning( "Applying hard limit number of COGs: %d out of %d available" % (self.cog_hard_limit, len(valid_cogs))) self.raw_cogs = valid_cogs[:self.cog_hard_limit] self.cogs = [] # Translate sequence names into the internal DB names sp_repr = defaultdict(int) sizes = [] for co in self.raw_cogs: sizes.append(len(co)) for sp, seq in co: sp_repr[sp] += 1 co_names = [ "%s%s%s" % (sp, GLOBALS["spname_delimiter"], seq) for sp, seq in co ] encoded_names = db.translate_names(co_names) if len(encoded_names) != len(co): print(set(co) - set(encoded_names.keys())) raise DataError("Some sequence ids could not be translated") self.cogs.append(list(encoded_names.values())) # ERROR! COGs selected are not the prioritary cogs sorted out before!!! # Sort Cogs according to the md5 hash of its content. Random # sorting but kept among runs #map(lambda x: x.sort(), self.cogs) #self.cogs.sort(lambda x,y: cmp(md5(','.join(x)), md5(','.join(y)))) log.log(28, "Analysis of current COG selection:") for sp, ncogs in sorted(list(sp_repr.items()), key=lambda x: x[1], reverse=True): log.log( 28, " % 30s species present in % 6d COGs (%0.1f%%)" % (sp, ncogs, 100 * ncogs / float(len(self.cogs)))) log.log( 28, " %d COGs selected with at least %d species out of %d" % (len(self.cogs), min_species, len(all_species))) log.log( 28, " Average COG size %0.1f/%0.1f +- %0.1f" % (_mean(sizes), _median(sizes), _std(sizes))) # Some consistency checks missing_sp = (all_species) - set(sp_repr.keys()) if missing_sp: log.error("%d missing species or not present in single-copy in any cog:\n%s" %\ (len(missing_sp), '\n'.join(missing_sp))) open('etebuild.valid_species_names.tmp', 'w').write('\n'.join(list(sp_repr.keys())) + '\n') log.error( "All %d valid species have been dumped into etebuild.valid_species_names.tmp." " You can use --spfile to restrict the analysis to those species." % len(sp_repr)) raise TaskError( 'missing or not single-copy species under current cog selection' ) CogSelectorTask.store_data(self, self.cogs, self.cog_analysis)