def radical(n): """Calculates the radical, the product of the unique prime factors of the given integer""" return reduce(op.mul, get_prime_factors(n).keys(), 1)
05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 """ from euler import op, reduce n = "73167176531330624919225119674426574742355349194934"+ \ "96983520312774506326239578318016984801869478851843"+ \ "85861560789112949495459501737958331952853208805511"+ \ "12540698747158523863050715693290963295227443043557"+ \ "66896648950445244523161731856403098711121722383113"+ \ "62229893423380308135336276614282806444486645238749"+ \ "30358907296290491560440772390713810515859307960866"+ \ "70172427121883998797908792274921901699720888093776"+ \ "65727333001053367881220235421809751254540594752243"+ \ "52584907711670556013604839586446706324415722155397"+ \ "53697817977846174064955149290862569321978468622482"+ \ "83972241375657056057490261407972968652414535100474"+ \ "82166370484403199890008895243450658541227588666881"+ \ "16427171479924442928230863465674813919123162824586"+ \ "17866458359124566529476545682848912883142607690042"+ \ "24219022671055626321111109370544217506941658960408"+ \ "07198403850962455444362981230987879927244284909188"+ \ "84580156166097919133875499200524063689912560717606"+ \ "05886116467109405077541002256983155200055935729725"+ \ "71636269561882670428252483600823257530420752963450" print(max(reduce(op.mul, map(int, n[i : i + 5]), 1) for i in range(len(n) - 5)))
#!/usr/bin/env python """ Problem 005: 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder. What is the smallest number that is evenly divisible by all of the numbers from 1 to 20? """ from euler import get_prime_factors, op, reduce N = 20 factors = {} for n in range(1, N + 1): for k, v in get_prime_factors(n).items(): if k in factors: if v > factors[k]: factors[k] = v else: factors[k] = v print(reduce(op.mul, [k**v for k, v in factors.items()], 1))
84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450 """ from euler import op, reduce n = "73167176531330624919225119674426574742355349194934"+ \ "96983520312774506326239578318016984801869478851843"+ \ "85861560789112949495459501737958331952853208805511"+ \ "12540698747158523863050715693290963295227443043557"+ \ "66896648950445244523161731856403098711121722383113"+ \ "62229893423380308135336276614282806444486645238749"+ \ "30358907296290491560440772390713810515859307960866"+ \ "70172427121883998797908792274921901699720888093776"+ \ "65727333001053367881220235421809751254540594752243"+ \ "52584907711670556013604839586446706324415722155397"+ \ "53697817977846174064955149290862569321978468622482"+ \ "83972241375657056057490261407972968652414535100474"+ \ "82166370484403199890008895243450658541227588666881"+ \ "16427171479924442928230863465674813919123162824586"+ \ "17866458359124566529476545682848912883142607690042"+ \ "24219022671055626321111109370544217506941658960408"+ \ "07198403850962455444362981230987879927244284909188"+ \ "84580156166097919133875499200524063689912560717606"+ \ "05886116467109405077541002256983155200055935729725"+ \ "71636269561882670428252483600823257530420752963450" print(max(reduce(op.mul, map(int, n[i:i + 5]), 1) for i in range(len(n) - 5)))