コード例 #1
0
def radical(n):
    """Calculates the radical, the product of the unique prime factors of the given integer"""
    return reduce(op.mul, get_prime_factors(n).keys(), 1)
コード例 #2
0
        05886116467109405077541002256983155200055935729725
        71636269561882670428252483600823257530420752963450
"""


from euler import op, reduce


n = "73167176531330624919225119674426574742355349194934"+ \
    "96983520312774506326239578318016984801869478851843"+ \
    "85861560789112949495459501737958331952853208805511"+ \
    "12540698747158523863050715693290963295227443043557"+ \
    "66896648950445244523161731856403098711121722383113"+ \
    "62229893423380308135336276614282806444486645238749"+ \
    "30358907296290491560440772390713810515859307960866"+ \
    "70172427121883998797908792274921901699720888093776"+ \
    "65727333001053367881220235421809751254540594752243"+ \
    "52584907711670556013604839586446706324415722155397"+ \
    "53697817977846174064955149290862569321978468622482"+ \
    "83972241375657056057490261407972968652414535100474"+ \
    "82166370484403199890008895243450658541227588666881"+ \
    "16427171479924442928230863465674813919123162824586"+ \
    "17866458359124566529476545682848912883142607690042"+ \
    "24219022671055626321111109370544217506941658960408"+ \
    "07198403850962455444362981230987879927244284909188"+ \
    "84580156166097919133875499200524063689912560717606"+ \
    "05886116467109405077541002256983155200055935729725"+ \
    "71636269561882670428252483600823257530420752963450"

print(max(reduce(op.mul, map(int, n[i : i + 5]), 1) for i in range(len(n) - 5)))
コード例 #3
0
#!/usr/bin/env python

"""
Problem 005:

2520 is the smallest number that can be divided by each of the numbers from 1 to
10 without any remainder.

What is the smallest number that is evenly divisible by all of the numbers from
1 to 20?
"""


from euler import get_prime_factors, op, reduce


N = 20

factors = {}

for n in range(1, N + 1):
    for k, v in get_prime_factors(n).items():
        if k in factors:
            if v > factors[k]:
                factors[k] = v
        else:
            factors[k] = v

print(reduce(op.mul, [k**v for k, v in factors.items()], 1))
コード例 #4
0
def radical(n):
    """Calculates the radical, the product of the unique prime factors of the given integer"""
    return reduce(op.mul, get_prime_factors(n).keys(), 1)
コード例 #5
0
#!/usr/bin/env python
"""
Problem 005:

2520 is the smallest number that can be divided by each of the numbers from 1 to
10 without any remainder.

What is the smallest number that is evenly divisible by all of the numbers from
1 to 20?
"""

from euler import get_prime_factors, op, reduce

N = 20

factors = {}

for n in range(1, N + 1):
    for k, v in get_prime_factors(n).items():
        if k in factors:
            if v > factors[k]:
                factors[k] = v
        else:
            factors[k] = v

print(reduce(op.mul, [k**v for k, v in factors.items()], 1))
コード例 #6
0
        84580156166097919133875499200524063689912560717606
        05886116467109405077541002256983155200055935729725
        71636269561882670428252483600823257530420752963450
"""

from euler import op, reduce


n = "73167176531330624919225119674426574742355349194934"+ \
    "96983520312774506326239578318016984801869478851843"+ \
    "85861560789112949495459501737958331952853208805511"+ \
    "12540698747158523863050715693290963295227443043557"+ \
    "66896648950445244523161731856403098711121722383113"+ \
    "62229893423380308135336276614282806444486645238749"+ \
    "30358907296290491560440772390713810515859307960866"+ \
    "70172427121883998797908792274921901699720888093776"+ \
    "65727333001053367881220235421809751254540594752243"+ \
    "52584907711670556013604839586446706324415722155397"+ \
    "53697817977846174064955149290862569321978468622482"+ \
    "83972241375657056057490261407972968652414535100474"+ \
    "82166370484403199890008895243450658541227588666881"+ \
    "16427171479924442928230863465674813919123162824586"+ \
    "17866458359124566529476545682848912883142607690042"+ \
    "24219022671055626321111109370544217506941658960408"+ \
    "07198403850962455444362981230987879927244284909188"+ \
    "84580156166097919133875499200524063689912560717606"+ \
    "05886116467109405077541002256983155200055935729725"+ \
    "71636269561882670428252483600823257530420752963450"

print(max(reduce(op.mul, map(int, n[i:i + 5]), 1) for i in range(len(n) - 5)))