def test_goldbach(n): if n % 2 == 0 or eulerlib.is_prime(n): return True for i in itertools.count(1): k = n - 2 * i * i if k <= 0: return False elif eulerlib.is_prime(k): return True
def find_harshad_primes(n, digitsum, isstrong): # Shift left by 1 digit, and try all 10 possibilities for the rightmost digit m = n * 10 s = digitsum for iteration in range(10): if m >= limit: break if isstrong and eulerlib.is_prime(m): ans[0] += m if m % s == 0: find_harshad_primes(m, s, eulerlib.is_prime(m // s)) m += 1 s += 1
def is_truncatable_prime(n): # Test if left-truncatable i = 10 while i <= n: if not eulerlib.is_prime(n % i): return False i *= 10 # Test if right-truncatable while n > 0: if not eulerlib.is_prime(n): return False n //= 10 return True
def problem058(): """ Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length 7 is formed. 37 36 35 34 33 32 31 38 17 16 15 14 13 30 39 18 5 4 3 12 29 40 19 6 1 2 11 28 41 20 7 8 9 10 27 42 21 22 23 24 25 26 43 44 45 46 47 48 49 It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of 8/13 ≈ 62%. If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both diagonals first falls below 10%? """ target = fractions.Fraction(1, 10) numprimes = 0 for n in itertools.count(1, 2): for i in range(4): if eulerlib.is_prime(n * n - i * (n - 1)): numprimes += 1 if n > 1 and fractions.Fraction(numprimes, n * 2 - 1) < target: return n
def problem243(): TARGET = fractions.Fraction(15499, 94744) totient = 1 denominator = 1 p = 2 while True: totient *= p - 1 denominator *= p # Note: At this point in the code, denominator is the product of one copy of each # prime number up to and including p, totient is equal to totient(denominator), # and totient/denominator = R'(2 * 3 * ... * p) (the pseudo-resilience). # Advance to the next prime while True: p += 1 if eulerlib.is_prime(p): break # If the lower bound is below the target, there might be a suitable solution d such that # d's factorization only contains prime factors strictly below the current (advanced) value of p if fractions.Fraction(totient, denominator) < TARGET: # Try to find the lowest factor i such that R(i*d) < TARGET, if any. # Note that over this range of i, we have R'(d) = R'(i*d) < R(i*d). for i in range(1, p): numer = i * totient denom = i * denominator if fractions.Fraction(numer, denom - 1) < TARGET: return denom
def num_prime_sum_ways(n): for i in range(primes[-1] + 1, n + 1): if eulerlib.is_prime(i): primes.append(i) ways = [1] + [0] * n for p in primes: for i in range(n + 1 - p): ways[i + p] += ways[i] return ways[n]
def is_prime(input_n): """ cached version of eulerlib.is_prime :param input_n: :return: """ if input_n < 0: return False if input_n < len(IS_PRIME_CACHE): return IS_PRIME_CACHE[input_n] return eulerlib.is_prime(input_n)
def problem041(): """ We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime. What is the largest n-digit pandigital prime that exists? """ # Note: The only 1-digit pandigital number is 1, which is not prime. Thus we require n >= 2. for n in reversed(range(2, 10)): arr = list(reversed(range(1, n + 1))) while True: if arr[-1] not in NONPRIME_LAST_DIGITS: n = int("".join(str(x) for x in arr)) if eulerlib.is_prime(n): return n if not prev_permutation(arr): break raise AssertionError()
def is_prime(n): if n < len(isprime): return isprime[n] else: return eulerlib.is_prime(n)
def problem130(): cond = (lambda i: (i % 5 != 0) and (not eulerlib.is_prime(i)) and ( (i - 1) % find_least_divisible_repunit(i) == 0)) ans = sum(itertools.islice(filter(cond, itertools.count(7, 2)), 25)) return ans
def problem132(): # Among the integers starting from 2, take the sum of # the first 40 integers satisfying the filter condition cond = lambda i: eulerlib.is_prime(i) and repunit_mod(10**9, i) == 0 ans = sum(itertools.islice(filter(cond, itertools.count(2)), 40)) return ans
def test_is_prime(input_x, expected_output): output = eulerlib.is_prime(input_x) print(output) assert output == expected_output