コード例 #1
0
def run_prior_solve():

    componentstorage = TestComponentDefinition()    
    solutionstorage = SpaceTimeComponentSolutionStorage_InMemory()
    printstats=True
    compute_uncertainties = False
    method='EXACT'
    compute_sample=False
    sample_size=1
    compute_prior_sample=True
    
    component = SpaceTimeComponent(componentstorage, solutionstorage, printstats, compute_uncertainties, method, compute_sample, sample_size, compute_prior_sample)  
    component_solution = component.component_solution()
    component_solution.update()
コード例 #2
0
    def test_process_observations_compute_sample(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 5.0  0.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [ 0.0  5.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  13.25 -16.5  ] x = [ -37.5 ]
        # [-16.5   80.65 ]     [ 154.0 ]
        #
        # => x = [ -0.60697861 ]
        #        [  1.78530506 ]
        #

        number_of_samples = 200
        c = SpaceTimeComponent(ComponentStorage_InMemory(
            TestSpaceTimeComponentSolution.TestElement(),
            CovariateHyperparameters(-0.5 * numpy.log(2.0))),
                               SpaceTimeComponentSolutionStorage_InMemory(),
                               compute_sample=True,
                               sample_size=number_of_samples)
        s = c.component_solution()
        self.assertIsInstance(s, SpaceTimeComponentSolution)
        self.assertTrue(s.compute_sample)
        test_offset = numpy.array([2.0, 3.0])
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=21),
            test_offset[0:1])
        s.update_time_step()
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=532),
            test_offset[1:2])
        s.update_time_step()
        numpy.random.seed(0)
        s.update()
        # In this case we are considering the last iteration of model solving, hence sample should have been stored
        computed_sample = s.solutionstorage.state_sample
        self.assertEqual((2, number_of_samples), computed_sample.shape)

        numpy.random.seed(0)
        variate = scipy.random.normal(0.0, 1.0, (2, number_of_samples))
        expected_posterior_precision = numpy.array([[13.25, -16.5],
                                                    [-16.5, 80.65]])
        # check result
        numpy.testing.assert_almost_equal(
            numpy.dot(variate.T, variate),
            numpy.dot(computed_sample.T,
                      numpy.dot(expected_posterior_precision,
                                computed_sample)))
コード例 #3
0
    def test_process_observations_no_uncertainties(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 5.0  0.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [ 0.0  5.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  13.25 -16.5  ] x = [ -37.5 ]
        # [-16.5   80.65 ]     [ 154.0 ]
        #
        # => x = [ -0.60697861 ]
        #        [  1.78530506 ]
        #

        c = SpaceTimeComponent(ComponentStorage_InMemory(
            TestSpaceTimeComponentSolution.TestElement(),
            CovariateHyperparameters(-0.5 * numpy.log(2.0))),
                               SpaceTimeComponentSolutionStorage_InMemory(),
                               sample_size=666)
        s = c.component_solution()
        self.assertIsInstance(s, SpaceTimeComponentSolution)
        self.assertFalse(s.compute_uncertainties)
        test_offset = numpy.array([2.0, 3.0])
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=21),
            test_offset[0:1])
        s.update_time_step()
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=532),
            test_offset[1:2])
        s.update_time_step()
        s.update()

        numpy.testing.assert_almost_equal(
            s.solutionstorage.state, numpy.array([-0.60697861, 1.78530506]))

        # No marginal variances should have been computed at all, same for the sample
        self.assertEqual(None, s.solutionstorage.state_marginal_std)
        self.assertEqual(None, s.solutionstorage.state_sample)

        for time, expected_array in zip([21, 532], [
                numpy.array([-1.5 * -0.60697861 + 2.2 * 1.78530506]),
                numpy.array([3.3 * 1.78530506])
        ]):
            # Observation at time t=t* should be design matrix for that time multiplied by expected state
            numpy.testing.assert_almost_equal(
                s.solution_observation_expected_value(
                    TestSpaceTimeComponentSolution.TestObservations(t=time)),
                expected_array)

            # In this case we are considering a generical model solving iteration for the model, no marginal variances stored, hence we expect 0. as observation uncertainties
            numpy.testing.assert_array_equal(
                s.solution_observation_expected_uncertainties(
                    TestSpaceTimeComponentSolution.TestObservations(t=time)),
                0.)
            # check samples are zero
            numpy.testing.assert_array_equal(
                0.,
                s.solution_observation_projected_sample(
                    TestSpaceTimeComponentSolution.TestObservations(t=time)))
            # check default number of samples
            self.assertEqual(
                s.solution_observation_projected_sample(
                    TestSpaceTimeComponentSolution.TestObservations(
                        t=time)).shape[1], 666)
コード例 #4
0
    def test_process_observations_compute_uncertainties(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 5.0  0.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [ 0.0  5.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  13.25 -16.5  ] x = [ -37.5 ]
        # [-16.5   80.65 ]     [ 154.0 ]
        #
        # => x = [ -0.60697861 ]
        #        [  1.78530506 ]
        #

        c = SpaceTimeComponent(ComponentStorage_InMemory(
            TestSpaceTimeComponentSolution.TestElement(),
            CovariateHyperparameters(-0.5 * numpy.log(2.0))),
                               SpaceTimeComponentSolutionStorage_InMemory(),
                               compute_uncertainties=True)
        s = c.component_solution()
        self.assertIsInstance(s, SpaceTimeComponentSolution)
        self.assertTrue(s.compute_uncertainties)
        test_offset = numpy.array([2.0, 3.0])
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=21),
            test_offset[0:1])
        s.update_time_step()
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=532),
            test_offset[1:2])
        s.update_time_step()
        s.update()

        # No sample should have been computed at all
        self.assertEqual(None, s.solutionstorage.state_sample)

        # In this case we are considering the last iteration of model solving, hence marginal variances should have been stored
        expected_marginal_std = numpy.sqrt(
            numpy.diag(
                numpy.linalg.inv(numpy.array([[13.25, -16.5], [-16.5,
                                                               80.65]]))))
        numpy.testing.assert_array_almost_equal(
            s.solutionstorage.state_marginal_std, expected_marginal_std)

        # Now we compute the projection of marginal variances onto the given observations
        for time in [532]:
            # Observation at time t=t* should be design matrix for that time multiplied by expected state
            expected_projection = TestSpaceTimeComponentSolution.TestDesign(
                t=time).design_function(expected_marginal_std)
            numpy.testing.assert_almost_equal(
                s.solution_observation_expected_uncertainties(
                    TestSpaceTimeComponentSolution.TestObservations(t=time)),
                expected_projection)
            # check samples are zero
            numpy.testing.assert_array_equal(
                0.,
                s.solution_observation_projected_sample(
                    TestSpaceTimeComponentSolution.TestObservations(t=time)))
            # check default number of samples
            self.assertEqual(
                s.solution_observation_projected_sample(
                    TestSpaceTimeComponentSolution.TestObservations(
                        t=time)).shape[1], 1)