コード例 #1
0
    def test_mini_world_geography_based_mock_data(self):
        """Testing on a simple mock data file, with mock covariate values"""

        # GENERATING OBSERVATIONS
        # Simulated locations: they will exactly sits on the grid points of the covariate datafile
        locations = numpy.array([[0.0, 0.0], [0.0, 0.5], [0.05, 0.0]])

        # Simulated measurements: simple linear relation of type: y = 2*x
        measurement = numpy.array([2., 2., 2.])

        # Simulated errors
        uncorrelatederror = 0.1 * numpy.ones(measurement.shape)

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(locations, measurement,
                                                      uncorrelatederror)

        # Simulate evaluation of this time index
        simulated_time_indices = [0]

        # GENERATING THE MODEL
        # Local component
        geography_covariate_element = GeographyBasedElement(
            self.covariate_file.name, 'lat', 'lon', 'covariate', 1.0)
        geography_covariate_element.load()
        geography_based_component = SpatialComponent(
            ComponentStorage_InMemory(
                geography_covariate_element,
                CovariateHyperparameters(-0.5 * numpy.log(10.))),
            SpatialComponentSolutionStorage_InMemory())

        # GENERATING THE ANALYSIS
        # Analysis system using the specified components, for the Tmean observable
        analysis_system = AnalysisSystem([geography_based_component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # Update with data
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Check state vector directly
        statevector = analysis_system.components[
            0].solutionstorage.partial_state_read(0).ravel()

        # These are the nodes where observations were put (see SimulatedObservationSource above)
        # - check they correspond to within 3 times the stated noise level
        self.assertAlmostEqual(2., statevector[0], delta=0.3)

        # Also check entire state vector within outer bounds set by obs
        self.assertTrue(all(statevector < 2.0))

        # And check output corresponds too
        # (evaluate result on output structure same as input)
        simulated_output_structure = SimulatedObservationStructure(
            0, locations, None, None)
        result = analysis_system.evaluate_expected_value(
            'MAP', simulated_output_structure, flag='POINTWISE')
        numpy.testing.assert_almost_equal(
            statevector[0] * numpy.ones(len(measurement)), result)
コード例 #2
0
    def test_mini_world_local(self):

        # Local component
        local_component = SpatialComponent(
            ComponentStorage_InMemory(
                LocalElement(n_triangulation_divisions=1),
                LocalHyperparameters(log_sigma=0.0, log_rho=numpy.log(1.0))),
            SpatialComponentSolutionStorage_InMemory(),
            compute_uncertainties=True,
            method='APPROXIMATED')

        # Analysis system using the specified components, for the Tmean observable
        analysis_system = AnalysisSystem([local_component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader()

        # Simulate evaluation of this time index
        simulated_time_indices = [0]

        # Update with data
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Check state vector directly
        statevector = analysis_system.components[
            0].solutionstorage.partial_state_read(0).ravel()
        # These are the nodes where observations were put (see SimulatedObservationSource above)
        # - check they correspond to within 3 times the stated noise level
        self.assertAlmostEqual(20.0, statevector[12], delta=0.3)
        self.assertAlmostEqual(-15.0, statevector[17], delta=0.3)
        self.assertAlmostEqual(5.0, statevector[41], delta=0.3)

        # Also check entire state vector within outer bounds set by obs
        self.assertTrue(all(statevector < 20.0))
        self.assertTrue(all(statevector > -15.0))

        # And check output corresponds too
        # (evaluate result on output structure same as input)
        simulated_output_structure = SimulatedObservationStructure(0)
        result = analysis_system.evaluate_expected_value(
            'MAP', simulated_output_structure, flag='POINTWISE')
        numpy.testing.assert_almost_equal(statevector[[12, 17, 41]], result)

        # test output gridding, pointwise limit
        outputstructure = OutputRectilinearGridStructure(
            2,
            epoch_plus_days(2),
            latitudes=numpy.linspace(-89.875, 89.875, num=10),
            longitudes=numpy.linspace(-179.875, 179.875, num=20))
        pointwise_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        pointwise_limit_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1, 1], 3)
        numpy.testing.assert_array_almost_equal(pointwise_result,
                                                pointwise_limit_result)
コード例 #3
0
    def atest_process_observations_compute_uncertainties(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 5.0  0.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [ 0.0  5.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  3.25 -16.5  ] x = [ -37.5 ]
        # [-16.5   80.65 ]     [ 154.0 ]
        #
        # => x = [ -0.60697861 ]
        #        [  1.78530506 ]
        #

        c = DelayedSpatialComponent(
            ComponentStorage_InMemory(
                TestDelayedSpatialComponentSolution.TestElement(),
                CovariateHyperparameters(-0.5 * numpy.log(2.0))),
            DelayedSpatialComponentSolutionStorage_Files(),
            compute_uncertainties=True)
        s = c.component_solution()
        self.assertIsInstance(s, DelayedSpatialComponentSolution)
        self.assertTrue(s.compute_uncertainties)
        test_offset = numpy.array([2.0, 3.0])
        s.process_observations(
            TestDelayedSpatialComponentSolution.TestObservations(t=21),
            test_offset[0:1])
        s.update_time_step()
        s.process_observations(
            TestDelayedSpatialComponentSolution.TestObservations(t=532),
            test_offset[1:2])
        s.update_time_step()
        s.update()

        # In this case we are considering the last iteration of model solving, hence marginal variances should have been stored
        expected_marginal_std = numpy.sqrt(
            numpy.diag(
                numpy.linalg.inv(numpy.array([[13.25, -16.5], [-16.5,
                                                               80.65]]))))
        numpy.testing.assert_array_almost_equal(
            s.solutionstorage.state_marginal_std, expected_marginal_std)

        # Now we compute the projection of marginal variances onto the given observations
        for time in [532]:
            # Observation at time t=t* should be design matrix for that time multiplied by expected state
            expected_projection = TestDelayedSpatialComponentSolution.TestDesign(
                t=time).design_function(expected_marginal_std)
            numpy.testing.assert_almost_equal(
                s.solution_observation_expected_uncertainties(
                    TestDelayedSpatialComponentSolution.TestObservations(
                        t=time)), expected_projection)
コード例 #4
0
    def test_process_observations_compute_sample(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 5.0  0.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [ 0.0  5.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  13.25 -16.5  ] x = [ -37.5 ]
        # [-16.5   80.65 ]     [ 154.0 ]
        #
        # => x = [ -0.60697861 ]
        #        [  1.78530506 ]
        #

        number_of_samples = 200
        c = SpaceTimeComponent(ComponentStorage_InMemory(
            TestSpaceTimeComponentSolution.TestElement(),
            CovariateHyperparameters(-0.5 * numpy.log(2.0))),
                               SpaceTimeComponentSolutionStorage_InMemory(),
                               compute_sample=True,
                               sample_size=number_of_samples)
        s = c.component_solution()
        self.assertIsInstance(s, SpaceTimeComponentSolution)
        self.assertTrue(s.compute_sample)
        test_offset = numpy.array([2.0, 3.0])
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=21),
            test_offset[0:1])
        s.update_time_step()
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=532),
            test_offset[1:2])
        s.update_time_step()
        numpy.random.seed(0)
        s.update()
        # In this case we are considering the last iteration of model solving, hence sample should have been stored
        computed_sample = s.solutionstorage.state_sample
        self.assertEqual((2, number_of_samples), computed_sample.shape)

        numpy.random.seed(0)
        variate = scipy.random.normal(0.0, 1.0, (2, number_of_samples))
        expected_posterior_precision = numpy.array([[13.25, -16.5],
                                                    [-16.5, 80.65]])
        # check result
        numpy.testing.assert_almost_equal(
            numpy.dot(variate.T, variate),
            numpy.dot(computed_sample.T,
                      numpy.dot(expected_posterior_precision,
                                computed_sample)))
コード例 #5
0
def mini_world_spatial():

    # Local component
    local_component = SpatialComponent(ComponentStorage_InMemory(LocalElement(n_triangulation_divisions=4),
                                        LocalHyperparameters(log_sigma=numpy.log(5.0), log_rho=numpy.log( 15. * numpy.pi / 180. )  )),
                                        SpatialComponentSolutionStorage_InMemory(), compute_uncertainties=False, method='APPROXIMATED', compute_sample = True, sample_size=100)

    # Analysis system using the specified components, for the Tmean observable
    analysis_system = AnalysisSystem([ local_component ], ObservationSource.TMEAN, log=StringIO())
    
    # Simulated inputs
    simulated_input_loader = SimulatedInputLoader()

    # Simulate evaluation of this time index
    simulated_time_indices = [ 0 ]

    # Update with data
    analysis_system.update([ simulated_input_loader ], simulated_time_indices)

    # Check state vector directly
    statevector = analysis_system.components[0].solutionstorage.partial_state_read(0)

    return analysis_system, statevector
コード例 #6
0
    def test_mini_world_latitude_harmonics(self):
        """Testing on a simple mock data file using latitude harmonics"""

        # GENERATING OBSERVATIONS
        # Simulated locations: they will exactly sits on the grid points of the covariate datafile
        locations = numpy.array([[0.0, 0.0], [0.25, 0.5], [0.5, 0.0]])
        # Simulated model is y = a*cos(2x) + c*cos(4*x) + b*sin(2x) + d*sin(4*x) with x = latitude, so we expect a=c=1, c=d=0
        measurement = LatitudeFunction(numpy.cos, 2.0).compute(
            locations[:, 0]).ravel() + LatitudeFunction(
                numpy.cos, 4.0).compute(locations[:, 0]).ravel()

        # Simulated errors
        uncorrelatederror = 0.1 * numpy.ones(measurement.shape)

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(locations, measurement,
                                                      uncorrelatederror)

        # Simulate evaluation of this time index
        simulated_time_indices = [0]

        latitude_harmonics_component = SpatialComponent(
            ComponentStorage_InMemory(
                LatitudeHarmonicsElement(),
                CombinationHyperparameters([
                    CovariateHyperparameters(-0.5 * numpy.log(p))
                    for p in [10.0, 10.0, 10.0, 10.0]
                ])), SpatialComponentSolutionStorage_InMemory())

        # Analysis system using the specified components, for the Tmean observable
        analysis_system = AnalysisSystem([latitude_harmonics_component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # GENERATING THE ANALYSIS

        # Update with data
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Check state vector directly
        statevector = analysis_system.components[
            0].solutionstorage.partial_state_read(0).ravel()

        # These are the nodes where observations were put (see SimulatedObservationSource above)
        # - check they correspond to within 3 times the stated noise level
        self.assertAlmostEqual(1., statevector[0], delta=0.3)
        self.assertAlmostEqual(1., statevector[2], delta=0.3)
        self.assertAlmostEqual(0., statevector[1], delta=0.3)
        self.assertAlmostEqual(0., statevector[3], delta=0.3)
        # Also check entire state vector within outer bounds set by obs
        self.assertTrue(all(statevector < 1.0))

        # And check output corresponds too
        # (evaluate result on output structure same as input)
        simulated_output_structure = SimulatedObservationStructure(
            0, locations, None, None)
        result = analysis_system.evaluate_expected_value(
            'MAP', simulated_output_structure, flag='POINTWISE')
        expected = statevector[0]*LatitudeFunction(numpy.cos, 2.0).compute(locations[:,0]).ravel() + statevector[1]*LatitudeFunction(numpy.sin, 2.0).compute(locations[:,0]).ravel()\
                         + statevector[2] *LatitudeFunction(numpy.cos, 4.0).compute(locations[:,0]).ravel()+ statevector[3]*LatitudeFunction(numpy.sin, 4.0).compute(locations[:,0]).ravel()
        numpy.testing.assert_almost_equal(expected, result)
コード例 #7
0
    def test_mini_world_large_and_local(self):

        # Use a number of time steps
        number_of_simulated_time_steps = 30

        # Large-scale spatial variability
        simulated_large_variation = 10.0

        # Local variability
        simulated_local_variation = 1.0

        # Iterations to use
        number_of_solution_iterations = 5

        # Build system

        # Large-scale factor
        element_large = SpaceTimeKroneckerElement(
            n_triangulation_divisions=1,
            alpha=2,
            starttime=0,
            endtime=number_of_simulated_time_steps + 1,
            n_nodes=number_of_simulated_time_steps + 2,
            overlap_factor=2.5,
            H=1)
        initial_hyperparameters_large = SpaceTimeSPDEHyperparameters(
            space_log_sigma=0.0,
            space_log_rho=numpy.log(numpy.radians(5.0)),
            time_log_rho=numpy.log(1.0 / 365.0))

        component_large = SpaceTimeComponent(
            ComponentStorage_InMemory(element_large,
                                      initial_hyperparameters_large),
            SpaceTimeComponentSolutionStorage_InMemory())

        # And a local process
        component_local = SpatialComponent(
            ComponentStorage_InMemory(
                LocalElement(n_triangulation_divisions=3),
                LocalHyperparameters(log_sigma=0.0,
                                     log_rho=numpy.log(numpy.radians(5.0)))),
            SpatialComponentSolutionStorage_InMemory())

        analysis_system = AnalysisSystem([component_large, component_local],
                                         ObservationSource.TMEAN,
                                         log=StringIO())
        # analysis_system = AnalysisSystem([ component_large ], ObservationSource.TMEAN)
        # analysis_system = AnalysisSystem([ component_local ], ObservationSource.TMEAN)

        # use fixed locations from icosahedron
        fixed_locations = cartesian_to_polar2d(
            MeshIcosahedronSubdivision.build(3).points)

        # random measurement at each location
        numpy.random.seed(8976)
        field_basis = simulated_large_variation * numpy.random.randn(
            fixed_locations.shape[0])

        # some time function that varies over a year
        time_basis = numpy.cos(
            numpy.linspace(0.1, 1.75 * numpy.pi,
                           number_of_simulated_time_steps))

        # kronecker product of the two
        large_scale_process = numpy.kron(field_basis,
                                         numpy.expand_dims(time_basis, 1))

        # Random local changes where mean change at each time is zero
        # local_process = simulated_local_variation * numpy.random.randn(large_scale_process.shape[0], large_scale_process.shape[1])
        # local_process -= numpy.tile(local_process.mean(axis=1), (local_process.shape[1], 1)).T

        local_process = numpy.zeros(large_scale_process.shape)
        somefield = simulated_local_variation * numpy.random.randn(
            1, large_scale_process.shape[1])
        somefield -= somefield.ravel().mean()
        local_process[10, :] = somefield
        local_process[11, :] = -somefield

        # Add the two processes
        measurement = large_scale_process + local_process

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(fixed_locations,
                                                      measurement, 0.001)

        # Simulate evaluation of this time index
        simulated_time_indices = range(number_of_simulated_time_steps)

        # All systems linear so single update should be ok
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Get all results
        result = numpy.zeros(measurement.shape)
        for t in range(number_of_simulated_time_steps):
            result[t, :] = analysis_system.evaluate_expected_value(
                'MAP',
                SimulatedObservationStructure(t, fixed_locations, None, None),
                flag='POINTWISE')

        disparity_large_scale = (numpy.abs(result -
                                           large_scale_process)).ravel().max()
        # print 'large scale disparity: ', disparity_large_scale

        disparity_overall = (numpy.abs(result - measurement)).ravel().max()
        # print 'overall disparity: ', disparity_overall

        numpy.testing.assert_almost_equal(result, measurement, decimal=4)
        self.assertTrue(disparity_overall < 1E-4)
コード例 #8
0
    def test_process_observations_compute_sample(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 10.0  3.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [  3.0 10.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  24.5   -47.85 ] x = [ -102.0 ]
        # [ -47.85  202.86 ]     [  397.1 ]
        #
        # => x = [ -0.63067268 ]
        #        [  1.80874649 ]
        #

        # Input data
        test_offset = numpy.array([2.0, 3.0])
        test_obs = TestSpatialComponentSolution.TestObservations()
        sample_size = 300

        # Make component and check it's of the correct class
        c = SpatialComponent(ComponentStorage_InMemory(
            TestSpatialComponentSolution.TestElement(),
            CovariateHyperparameters(-0.5 * numpy.log(2.0))),
                             SpatialComponentSolutionStorage_InMemory(),
                             compute_sample=True,
                             sample_size=sample_size)
        s = c.component_solution()
        self.assertIsInstance(s, SpatialComponentSolution)
        self.assertFalse(s.compute_uncertainties)
        self.assertTrue(s.compute_sample)

        # Do the processing
        s.process_observations(test_obs, test_offset)
        numpy.random.seed(0)
        s.update_time_step()
        computed_sample = s.solutionstorage.partial_state_sample_read(21)
        self.assertEqual((2, sample_size), computed_sample.shape)

        numpy.random.seed(0)
        variate = scipy.random.normal(0.0, 1.0, (2, sample_size))

        expected_posterior_precision = numpy.array([[24.5, -47.85],
                                                    [-47.85, 202.86]])

        self.assertEqual(len(s.solutionstorage.state_sample_at_time), 1)
        self.assertListEqual(s.solutionstorage.state_sample_at_time.keys(),
                             [21])
        # check result
        numpy.testing.assert_almost_equal(
            numpy.dot(variate.T, variate),
            numpy.dot(computed_sample.T,
                      numpy.dot(expected_posterior_precision,
                                computed_sample)))

        # In this case we did not allowed the computation of uncertainties
        self.assertEqual(s.solutionstorage.partial_state_marginal_std_read(21),
                         None)
        self.assertEqual(s.solutionstorage.state_marginal_std_at_time, {})
        numpy.testing.assert_almost_equal(
            s.solution_observation_expected_uncertainties(
                TestSpatialComponentSolution.TestObservations()), 0.)
コード例 #9
0
def main():

    print 'Advanced standard example using a few days of EUSTACE data'
    parser = argparse.ArgumentParser(description='Advanced standard example using a few days of EUSTACE data')
    parser.add_argument('outpath', help='directory where the output should be redirected')
    parser.add_argument('--json_descriptor', default = None, help='a json descriptor containing the covariates to include in the climatology model')
    parser.add_argument('--land_biases', action='store_true', help='include insitu land homogenization bias terms')
    parser.add_argument('--global_biases', action='store_true', help='include global satellite bias terms')
    parser.add_argument('--n_iterations', type=int, default=5, help='number of solving iterations')
    args = parser.parse_args()

    # Input data path
    basepath = os.path.join('/work/scratch/eustace/rawbinary3')

    # Days to process
    time_indices = range(int(days_since_epoch(datetime(2006, 2, 1))), int(days_since_epoch(datetime(2006, 2, 2))))

    # Sources to use
    sources = [ 'surfaceairmodel_land', 'surfaceairmodel_ocean', 'surfaceairmodel_ice', 'insitu_land', 'insitu_ocean' ]    

    #SETUP
    # setup for the seasonal core: climatology covariates setup read from file
    seasonal_setup = {'n_triangulation_divisions':5,
		      'n_harmonics':4,
		      'n_spatial_components':6,
		      'amplitude':2.,
		      'space_length_scale':5., # length scale in units of degrees
		     }
    grandmean_amplitude = 15.0
    
    # setup for the large scale component
    spacetime_setup = {'n_triangulation_divisions':2,
		       'alpha':2,
		       'starttime':0,
		       'endtime':10.,
		       'n_nodes':2,
		       'overlap_factor':2.5,
		       'H':1,
		       'amplitude':1.,
		       'space_lenght_scale':15.0, # length scale in units of degrees
		       'time_length_scale':15.0   # length scal in units of days
		      }
    bias_amplitude = .9

    # setup for the local component
    local_setup = {'n_triangulation_divisions':6,
                   'amplitude':2.,
                   'space_length_scale':2. # length scale in units of degrees
                  }
    globalbias_amplitude = 15.0

    # CLIMATOLOGY COMPONENT: combining the seasonal core along with latitude harmonics, altitude and coastal effects    
    if args.json_descriptor is not None:
      loader = LoadCovariateElement(args.json_descriptor)
      loader.check_keys()
      covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters()
      print('The following fields have been added as covariates of the climatology model')
      print(loader.data.keys())
    else:
      covariate_elements, covariate_hyperparameters = [], []

    climatology_element = CombinationElement( [SeasonalElement(n_triangulation_divisions=seasonal_setup['n_triangulation_divisions'], 
							       n_harmonics=seasonal_setup['n_harmonics'], 
							       include_local_mean=True), 
					       GrandMeanElement()]+covariate_elements)       
    climatology_hyperparameters = CombinationHyperparameters( [SeasonalHyperparameters(n_spatial_components=seasonal_setup['n_spatial_components'], 
										       common_log_sigma=numpy.log(seasonal_setup['amplitude']), 
										       common_log_rho=numpy.log(numpy.radians(seasonal_setup['space_length_scale']))), 
							       CovariateHyperparameters(numpy.log(grandmean_amplitude))] + covariate_hyperparameters )
    climatology_component = SpaceTimeComponent(ComponentStorage_InMemory(climatology_element, climatology_hyperparameters), SpaceTimeComponentSolutionStorage_InMemory(), 
                                                                         compute_uncertainties=True, method='APPROXIMATED',
                                                                         compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])

    # LARGE SCALE (kronecker product) COMPONENT: combining large scale trends with bias terms accounting for homogeneization effects    
    if args.land_biases:
	bias_element, bias_hyperparameters = [InsituLandBiasElement(BREAKPOINTS_FILE)], [CovariateHyperparameters(numpy.log(bias_amplitude))]
	print('Adding bias terms for insitu land homogenization')
    else:
	bias_element, bias_hyperparameters = [], []

    large_scale_element = CombinationElement( [SpaceTimeKroneckerElement(n_triangulation_divisions=spacetime_setup['n_triangulation_divisions'], 
                                                                         alpha=spacetime_setup['alpha'], 
                                                                         starttime=spacetime_setup['starttime'], 
                                                                         endtime=spacetime_setup['endtime'], 
                                                                         n_nodes=spacetime_setup['n_nodes'], 
                                                                         overlap_factor=spacetime_setup['overlap_factor'], 
                                                                         H=spacetime_setup['H'])] + bias_element)
    large_scale_hyperparameters = CombinationHyperparameters( [SpaceTimeSPDEHyperparameters(space_log_sigma=numpy.log(spacetime_setup['amplitude']),
                                                                                            space_log_rho=numpy.log(numpy.radians(spacetime_setup['space_lenght_scale'])), 
                                                                                            time_log_rho=numpy.log(spacetime_setup['time_length_scale']))] + bias_hyperparameters) 
    large_scale_component =  SpaceTimeComponent(ComponentStorage_InMemory(large_scale_element, large_scale_hyperparameters), SpaceTimeComponentSolutionStorage_InMemory(), 
                                                                          compute_uncertainties=True, method='APPROXIMATED',
                                                                          compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])
                                 
    # LOCAL COMPONENT: combining local scale variations with global satellite bias terms    
    if args.global_biases:
	bias_elements = [BiasElement(groupname, 1) for groupname in GLOBAL_BIASES_GROUP_LIST]
	bias_hyperparameters = [CovariateHyperparameters(numpy.log(globalbias_amplitude)) for index in range(len(GLOBAL_BIASES_GROUP_LIST))]
	print('Adding global bias terms for all the surfaces')
    else:
	bias_elements, bias_hyperparameters = [], []

    local_scale_element = CombinationElement([LocalElement(n_triangulation_divisions=local_setup['n_triangulation_divisions'])] + bias_elements)
    local_scale_hyperparameters = CombinationHyperparameters([LocalHyperparameters(log_sigma=numpy.log(local_setup['amplitude']), 
                                                                                   log_rho=numpy.log(numpy.radians(local_setup['space_length_scale'])))] + bias_hyperparameters)
    local_component = SpatialComponent(ComponentStorage_InMemory(local_scale_element, local_scale_hyperparameters), SpatialComponentSolutionStorage_InMemory(), 
                                                                 compute_uncertainties=True, method='APPROXIMATED',
                                                                 compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])

    # Analysis system using the specified components, for the Tmean observable
    print 'Analysing inputs'

    analysis_system = AnalysisSystem(
        [ climatology_component, large_scale_component, local_component ],
        ObservationSource.TMEAN)

    # Object to load raw binary inputs at time indices
    inputloaders = [ AnalysisSystemInputLoaderRawBinary_Sources(basepath, source, time_indices) for source in sources ]

    for iteration in range(args.n_iterations):
	
	message = 'Iteration {}'.format(iteration)
	print(message)
	
	# Update with data
	analysis_system.update(inputloaders, time_indices)

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Get date for output
        outputdate = inputloaders[0].datetime_at_time_index(time_index)
        print 'Evaluating output grid: ', outputdate

        #Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index, outputdate,
            latitudes=numpy.linspace(-90.+definitions.GLOBAL_FIELD_RESOLUTION/2., 90.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[1]),
            longitudes=numpy.linspace(-180.+definitions.GLOBAL_FIELD_RESOLUTION/2., 180.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[2]))

        # Evaluate expected value at these locations
        for field in ['MAP', 'post_STD']:
	  print 'Evaluating: ',field
	  result_expected_value = analysis_system.evaluate_expected_value('MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
	  result_expected_uncertainties = analysis_system.evaluate_expected_value('post_STD', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
	  
	print 'Evaluating: climatology fraction'
	climatology_fraction = analysis_system.evaluate_climatology_fraction(outputstructure, [1,1], 1000)

	print 'Evaluating: the sample'
	sample = analysis_system.evaluate_projected_sample(outputstructure)

	# Make output filename
        pathname = 'eustace_example_output_{0:04d}{1:02d}{2:02d}.nc'.format(outputdate.year, outputdate.month, outputdate.day)
	pathname = os.path.join(args.outpath, pathname)
        print 'Saving: ', pathname

        # Save results
        filebuilder = FileBuilderGlobalField(
            pathname, 
            time_index,
            'Infilling Example',
            'UNVERSIONED',
            definitions.TAS.name,
            '',
            'Example data only',
            'eustace.analysis.advanced_standard.examples.example_eustace_few_days', 
            '')
        filebuilder.add_global_field(definitions.TAS, result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(definitions.TASUNCERTAINTY, result_expected_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(definitions.TAS_CLIMATOLOGY_FRACTION, climatology_fraction.reshape(definitions.GLOBAL_FIELD_SHAPE))

	for index in range(definitions.GLOBAL_SAMPLE_SHAPE[3]):
	  variable = copy.deepcopy(definitions.TASENSEMBLE)
	  variable.name = variable.name + '_' + str(index)
	  selected_sample = sample[:,index].ravel()+result_expected_value
	  filebuilder.add_global_field(variable, selected_sample.reshape(definitions.GLOBAL_FIELD_SHAPE))
	  
	filebuilder.save_and_close()

    print 'Complete'
コード例 #10
0
def main():

    print 'EUSTACE example using HadCRUT4 monthly data'

    # Input data path
    input_basepath = os.path.join(WORKSPACE_PATH, 'data/incoming/HadCRUT4.5.0.0')

    # Input filenames
    input_filenames = [
        'hadcrut4_median_netcdf.nc',
        'hadcrut4_uncorrelated_supplementary.nc',
        'hadcrut4_blended_uncorrelated.nc' ]

    # Months to process
    time_indices = range(2)

    # Climatology component
    climatology_component = SpaceTimeComponent(ComponentStorage_InMemory(SeasonalElement(n_triangulation_divisions=5, n_harmonics=5, include_local_mean=True),
                                                                         SeasonalHyperparameters(n_spatial_components=6, common_log_sigma=1.0, common_log_rho=0.0)),
                                               SpaceTimeComponentSolutionStorage_InMemory())

    # Number of factors for large scale (factor analysis) component and initial hyperparameters
    n_factors = 5
    factors = [ ]
    factor_hyperparameters = [ ]
    for factor_index in range(n_factors):

        factor_hyperparameters.append( SpaceTimeSPDEHyperparameters(
                space_log_sigma=0.0,
                space_log_rho=numpy.log(10.0 * numpy.pi/180 + 25.0 * numpy.pi/180 *(n_factors - factor_index) / n_factors),
                time_log_rho=numpy.log(1/12.0 + 6/12.0*(n_factors - factor_index) / n_factors)) )

        factors.append( SpaceTimeFactorElement(n_triangulation_divisions=5, alpha=2, starttime=0, endtime=36, overlap_factor=2.5, H=1) )

    # Large scale (factor analysis) component
    large_scale_component = SpaceTimeComponent(ComponentStorage_InMemory(CombinationElement(factors), CombinationHyperparameters(factor_hyperparameters)),
                                               SpaceTimeComponentSolutionStorage_InMemory())

    # Local component
    local_component = SpatialComponent(ComponentStorage_InMemory(LocalElement(n_triangulation_divisions=4), 
                                                                 LocalHyperparameters(log_sigma=0.0, log_rho=numpy.log(10.0 * numpy.pi/180))),
                                       SpatialComponentSolutionStorage_InMemory())

    print 'Analysing inputs'

    # Analysis system using the specified components, for the Tmean observable
    analysis_system = AnalysisSystem(
        [ climatology_component, large_scale_component, local_component ],
        ObservationSource.TMEAN)

    # Make filelist
    input_filelist = [ os.path.join(input_basepath, filename) for filename in input_filenames ]

    # Object to load HadCRUT4 inputs at time indices
    inputloader = AnalysisSystemInputLoaderHadCRUT4(input_filelist)

    # Update with data
    analysis_system.update([ inputloader ], time_indices)

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Make output filename
        outputdate = inputloader.datetime_at_time_index(time_index)
        pathname = 'example_output_{0:04d}{1:02d}.nc'.format(outputdate.year, outputdate.month)
        print 'Saving: ', pathname

        # Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index, outputdate,
            latitudes=numpy.linspace(-87.5, 87.5, num=36),
            longitudes=numpy.linspace(-177.5, 177.5, num=72))

        # Evaluate expected value at these locations
        result_expected_value = analysis_system.evaluate_expected_value(outputstructure)

        # Save results
        filebuilder = FileBuilderHadCRUT4ExampleOutput(pathname, outputstructure)
        filebuilder.add_global_field(TAS_ANOMALY, result_expected_value.reshape(1,36,72))
        filebuilder.save_and_close()

    print 'Complete'
コード例 #11
0
 def test_component_storage_in_memory(self):
   
   storage = ComponentStorage_InMemory('A', 'B')
   self.assertEqual('A', storage.element_read())
   self.assertEqual('B', storage.hyperparameters_read())
コード例 #12
0
def demo_non_stationary():

    full_resolution_level = 5
    neighbourhood_level = 2

    full_spde = SphereMeshViewGlobal(level=full_resolution_level)

    active_triangles = full_spde.neighbours_at_level(neighbourhood_level, 0)

    n_regions = full_spde.n_triangles_at_level(neighbourhood_level)

    merge_method = 'new'
    if merge_method == 'old':
        local_spdes = []
        local_hyperparameters = []

        for region_index in range(n_regions):

            local_spdes.append(
                SphereMeshViewSuperTriangle(full_resolution_level,
                                            neighbourhood_level, region_index))

            hyperparameters = numpy.array(
                [numpy.float64(region_index),
                 numpy.float64(region_index)])
            hyperparameters = numpy.log(
                numpy.concatenate([
                    numpy.random.uniform(1.0, 3.0, 1),
                    numpy.random.uniform(5.0, 30.0, 1) * numpy.pi / 180.
                ]))
            #hyperparameters = numpy.log( numpy.concatenate( [numpy.ones(1), numpy.random.uniform(15.0,45.0, 1) *numpy.pi/180.] ) )
            #hyperparameters = numpy.array([2.0, 3.0])

            #hyperparameters = numpy.log([2.0, numpy.pi/4])

            local_hyperparameters.append(hyperparameters)

        global_hyperparameters, global_sigma_design, global_rho_design = full_spde.merge_local_parameterisations(
            local_spdes, local_hyperparameters, merge_method='exp_average')

        log_sigmas = global_sigma_design.dot(global_hyperparameters)
        log_rhos = global_rho_design.dot(global_hyperparameters)

    elif merge_method == 'new':

        sigma_accumulator = None
        rho_accumulator = None
        contribution_counter = None

        for region_index in range(n_regions):
            local_spde = SphereMeshViewSuperTriangle(full_resolution_level,
                                                     neighbourhood_level,
                                                     region_index)
            local_hyperparameters = hyperparameters = numpy.log(
                numpy.concatenate([
                    numpy.random.uniform(1.0, 5.0, 1),
                    numpy.random.uniform(10.0, 45.0, 1) * numpy.pi / 180.
                ]))

            accumulators = SphereMeshViewGlobal.accumulate_local_parameterisations(
                sigma_accumulator, rho_accumulator, contribution_counter,
                local_spde, local_hyperparameters)

            sigma_accumulator, rho_accumulator, contribution_counter = accumulators

        log_sigmas, log_rhos = SphereMeshViewGlobal.finalise_local_parameterisation_sigma_rho(
            sigma_accumulator, rho_accumulator, contribution_counter)

    #print global_hyperparameters, global_sigma_design, global_rho_design

    import matplotlib.pyplot as plt
    from eustace.analysis.mesh.geometry import cartesian_to_polar2d
    polar_coords = cartesian_to_polar2d(full_spde.triangulation.points)

    plt.figure()
    plt.scatter(polar_coords[:, 1],
                polar_coords[:, 0],
                c=255. * log_sigmas / numpy.max(numpy.abs(log_sigmas)),
                linewidth=0.0,
                s=8.0)

    plt.figure()
    plt.scatter(polar_coords[:, 1],
                polar_coords[:, 0],
                c=255. * log_rhos / numpy.max(numpy.abs(log_rhos)),
                linewidth=0.0,
                s=8.0)

    #plt.show()

    #numpy.testing.assert_almost_equal( log_sigmas, 2.0 * numpy.ones(full_spde.triangulation.points.shape[0]) )
    #numpy.testing.assert_almost_equal( log_rhos, 3.0 * numpy.ones(full_spde.triangulation.points.shape[0]) )

    from eustace.analysis.advanced_standard.components.storage_inmemory import ComponentStorage_InMemory
    from eustace.analysis.advanced_standard.components.storage_inmemory import SpatialComponentSolutionStorage_InMemory
    from eustace.analysis.advanced_standard.components.spatialdelayed import DelayedSpatialComponent
    from eustace.analysis.advanced_standard.elements.local_view import NonStationaryLocal, ExpandedLocalHyperparameters
    from eustace.analysis.advanced_standard.elements.local import LocalElement, LocalHyperparameters

    nonstationary_component = DelayedSpatialComponent(
        ComponentStorage_InMemory(
            NonStationaryLocal(full_resolution_level),
            ExpandedLocalHyperparameters(log_sigma=log_sigmas,
                                         log_rho=log_rhos)),
        SpatialComponentSolutionStorage_InMemory())

    #nonstationary_component = DelayedSpatialComponent(
    #ComponentStorage_InMemory(LocalElement(full_resolution_level), LocalHyperparameters(log_sigma = hyperparameters[0], log_rho = hyperparameters[1])),
    #SpatialComponentSolutionStorage_InMemory())

    #print log_sigmas, log_rhos

    #plt.figure()
    #plt.scatter(polar_coords[:,1], polar_coords[:,0], c = 255.* process_sample / numpy.max(numpy.abs(process_sample)), linewidth = 0.0, s = 8.0 )

    #plt.figure()
    #plt.imshow( numpy.asarray( Q.todense() ) )

    # setup an output grid
    out_lats = numpy.linspace(-89.5, 89.5, 180)
    out_lons = numpy.linspace(-179.5, 179.5, 360)
    out_lons, out_lats = numpy.meshgrid(out_lons, out_lats)
    out_coords = numpy.vstack([out_lats.ravel(), out_lons.ravel()]).T

    design_matrix = nonstationary_component.storage.element.spde.build_A(
        out_coords)

    # setup solver for sampling
    from eustace.analysis.advanced_standard.linalg.extendedcholmodwrapper import ExtendedCholmodWrapper
    Q = nonstationary_component.storage.element.element_prior(
        nonstationary_component.storage.hyperparameters).prior_precision()
    factor = ExtendedCholmodWrapper.cholesky(Q)

    # draw samples, project onto output grid and plot
    random_values = numpy.random.normal(0.0, 1.0, (Q.shape[0], 1))
    process_sample = factor.solve_backward_substitution(random_values)
    out_values = design_matrix.dot(process_sample)
    plt.figure()
    plt.scatter(out_coords[:, 1],
                out_coords[:, 0],
                c=255. * out_values / numpy.max(numpy.abs(out_values)),
                linewidth=0.0,
                s=8.0)

    random_values = numpy.random.normal(0.0, 1.0, (Q.shape[0], 1))
    process_sample = factor.solve_backward_substitution(random_values)
    out_values = design_matrix.dot(process_sample)
    plt.figure()
    plt.scatter(out_coords[:, 1],
                out_coords[:, 0],
                c=255. * out_values / numpy.max(numpy.abs(out_values)),
                linewidth=0.0,
                s=8.0)

    random_values = numpy.random.normal(0.0, 1.0, (Q.shape[0], 1))
    process_sample = factor.solve_backward_substitution(random_values)
    out_values = design_matrix.dot(process_sample)
    plt.figure()
    plt.scatter(out_coords[:, 1],
                out_coords[:, 0],
                c=255. * out_values / numpy.max(numpy.abs(out_values)),
                linewidth=0.0,
                s=8.0)

    plt.show()
コード例 #13
0
    def test_process_observations_no_uncertainties(self):

        # Our test system for the first time step (key 21) is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5 ] [ 5.0 ] [ -1.5 2.2 ] ) x = [ -1.5 ] [ 5.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [ 2.2  ]                      )     [  2.2 ]
        #
        # [ 13.25 -16.5  ] x = [ -37.5 ]
        # [-16.5   26.2 ]      [ 55.0  ]
        #
        # => x = [-1.00133511 ]
        #        [ 1.46862483 ]

        # Our test system for the first time step (key 21) is:
        #
        # ( [ 2.0  0.0 ]  +  [ 0.0 ] [ 5.0 ] [ 0.0 3.3 ] ) x = [  0.0 ] [ 5.0 ] [ 9.0 - 3.0 ]
        # ( [ 0.0  2.0 ]     [ 3.3  ]                    )     [  3.3 ]
        #
        # [ 2.0   0.0  ] x = [ 0.0  ]
        # [ 0.0   56.45 ]     [ 99.0 ]
        #
        # => x = [ 0.         ]
        #        [ 1.75376439 ]

        for component_storage_class in DelayedSpatialComponentSolutionStorage_Files, SpatialComponentSolutionStorage_InMemory:

            c = DelayedSpatialComponent(
                ComponentStorage_InMemory(
                    TestDelayedSpatialComponentSolution.TestElement(),
                    CovariateHyperparameters(-0.5 * numpy.log(2.0))),
                component_storage_class())
            c.solutionstorage.statefiledictionary_read = None
            c.solutionstorage.statefiledictionary_write = {
                21: 'state_test.A.pickle',
                532: 'state_test.B.pickle'
            }
            c.solutionstorage.measurementfiledictionary_write = c.solutionstorage.measurementfiledictionary_read = {
                21: 'measurement_test.A.pickle',
                532: 'measurement_test.B.pickle'
            }

            s = c.component_solution()
            self.assertIsInstance(s, DelayedSpatialComponentSolution)
            self.assertFalse(s.compute_uncertainties)
            test_offset = numpy.array([2.0, 3.0])
            c.solutionstorage.state_time_index = 21
            c.solutionstorage.measurement_time_index_write = 21
            s.process_observations(
                TestDelayedSpatialComponentSolution.TestObservations(t=21),
                test_offset[0:1])
            s.update_time_step()
            c.solutionstorage.state_time_index = 532
            c.solutionstorage.measurement_time_index_write = 532
            s.process_observations(
                TestDelayedSpatialComponentSolution.TestObservations(t=532),
                test_offset[1:2])
            s.update_time_step()
            s.update()

            c.solutionstorage.statefiledictionary_read = c.solutionstorage.statefiledictionary_write  # now enable reading from the previously written files

            numpy.testing.assert_almost_equal(
                s.solutionstorage.partial_state_read(21),
                numpy.array([-1.00133511, 1.46862483]))
            numpy.testing.assert_almost_equal(
                s.solutionstorage.partial_state_read(532),
                numpy.array([0.0, 1.75376439]))

            # No marginal variances should have been computed at all
            self.assertEqual(
                None, s.solutionstorage.partial_state_marginal_std_read(21))

            for time, expected_array in zip([21, 532], [
                    numpy.array([-1.5 * -1.00133511 + 2.2 * 1.46862483]),
                    numpy.array([3.3 * 1.75376439])
            ]):
                # Observation at time t=t* should be design matrix for that time multiplied by expected state
                numpy.testing.assert_almost_equal(
                    s.solution_observation_expected_value(
                        TestDelayedSpatialComponentSolution.TestObservations(
                            t=time)), expected_array)

                # In this case we are considering a generical model solving iteration for the model, no marginal variances stored, hence we expect 0. as observation uncertainties
                numpy.testing.assert_array_equal(
                    s.solution_observation_expected_uncertainties(
                        TestDelayedSpatialComponentSolution.TestObservations(
                            t=time)), 0.)
コード例 #14
0
    def test_process_observations_no_uncertainties(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 5.0  0.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [ 0.0  5.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  13.25 -16.5  ] x = [ -37.5 ]
        # [-16.5   80.65 ]     [ 154.0 ]
        #
        # => x = [ -0.60697861 ]
        #        [  1.78530506 ]
        #

        c = SpaceTimeComponent(ComponentStorage_InMemory(
            TestSpaceTimeComponentSolution.TestElement(),
            CovariateHyperparameters(-0.5 * numpy.log(2.0))),
                               SpaceTimeComponentSolutionStorage_InMemory(),
                               sample_size=666)
        s = c.component_solution()
        self.assertIsInstance(s, SpaceTimeComponentSolution)
        self.assertFalse(s.compute_uncertainties)
        test_offset = numpy.array([2.0, 3.0])
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=21),
            test_offset[0:1])
        s.update_time_step()
        s.process_observations(
            TestSpaceTimeComponentSolution.TestObservations(t=532),
            test_offset[1:2])
        s.update_time_step()
        s.update()

        numpy.testing.assert_almost_equal(
            s.solutionstorage.state, numpy.array([-0.60697861, 1.78530506]))

        # No marginal variances should have been computed at all, same for the sample
        self.assertEqual(None, s.solutionstorage.state_marginal_std)
        self.assertEqual(None, s.solutionstorage.state_sample)

        for time, expected_array in zip([21, 532], [
                numpy.array([-1.5 * -0.60697861 + 2.2 * 1.78530506]),
                numpy.array([3.3 * 1.78530506])
        ]):
            # Observation at time t=t* should be design matrix for that time multiplied by expected state
            numpy.testing.assert_almost_equal(
                s.solution_observation_expected_value(
                    TestSpaceTimeComponentSolution.TestObservations(t=time)),
                expected_array)

            # In this case we are considering a generical model solving iteration for the model, no marginal variances stored, hence we expect 0. as observation uncertainties
            numpy.testing.assert_array_equal(
                s.solution_observation_expected_uncertainties(
                    TestSpaceTimeComponentSolution.TestObservations(t=time)),
                0.)
            # check samples are zero
            numpy.testing.assert_array_equal(
                0.,
                s.solution_observation_projected_sample(
                    TestSpaceTimeComponentSolution.TestObservations(t=time)))
            # check default number of samples
            self.assertEqual(
                s.solution_observation_projected_sample(
                    TestSpaceTimeComponentSolution.TestObservations(
                        t=time)).shape[1], 666)
コード例 #15
0
    def test_mini_world_altitude(self):
        """Testing using altitude as a covariate"""

        # GENERATING OBSERVATIONS
        # Simulated locations: they will exactly sits on the grid points of the covariate datafile
        DEM = Dataset(self.altitude_datafile)
        latitude = DEM.variables['lat'][:]
        longitude = DEM.variables['lon'][:]
        altitude = DEM.variables['dem'][:]

        indices = numpy.stack(
            (numpy.array([1, 3, 267, 80, 10, 215, 17, 120]),
             numpy.array([2, 256, 9, 110, 290, 154, 34, 151])),
            axis=1)

        selected_location = []
        altitude_observations = []
        for couple in indices:
            selected_location.append([
                latitude[couple[0], couple[1]], longitude[couple[0], couple[1]]
            ])
            altitude_observations.append(altitude[couple[0], couple[1]])
        DEM.close()

        locations = numpy.array(selected_location)
        # Simulated measurements: simple linear relation of type: y = PI*x
        measurement = numpy.pi * numpy.array(altitude_observations)

        # Simulated errors
        uncorrelatederror = 0.1 * numpy.ones(measurement.shape)

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(locations, measurement,
                                                      uncorrelatederror)

        # Simulate evaluation of this time index
        simulated_time_indices = [0]

        # GENERATING THE MODEL
        # Local component
        geography_covariate_element = GeographyBasedElement(
            self.altitude_datafile, 'lat', 'lon', 'dem', 1.0)
        geography_covariate_element.load()
        geography_based_component = SpatialComponent(
            ComponentStorage_InMemory(
                geography_covariate_element,
                CovariateHyperparameters(-0.5 * numpy.log(10.))),
            SpatialComponentSolutionStorage_InMemory())

        # GENERATING THE ANALYSIS
        # Analysis system using the specified components, for the Tmean observable
        analysis_system = AnalysisSystem([geography_based_component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # Update with data
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Check state vector directly
        statevector = analysis_system.components[
            0].solutionstorage.partial_state_read(0).ravel()

        # These are the nodes where observations were put (see SimulatedObservationSource above)
        # - check they correspond to within 3 times the stated noise level
        self.assertAlmostEqual(numpy.pi, statevector[0], delta=0.3)

        # Also check entire state vector within outer bounds set by obs
        self.assertTrue(all(statevector < numpy.pi))

        # And check output corresponds too
        # (evaluate result on output structure same as input)
        simulated_output_structure = SimulatedObservationStructure(
            0, locations, None, None)
        result = analysis_system.evaluate_expected_value(
            'MAP', simulated_output_structure, flag='POINTWISE')
        numpy.testing.assert_almost_equal(
            statevector[0] * numpy.array(altitude_observations), result)
コード例 #16
0
    def test_mini_world_altitude_with_latitude(self):
        """Testing using altitude as a covariate"""

        # GENERATING OBSERVATIONS
        # Simulated locations: they will exactly sits on the grid points of the covariate datafile
        DEM = Dataset(self.altitude_datafile)
        latitude = DEM.variables['lat'][:]
        longitude = DEM.variables['lon'][:]
        altitude = DEM.variables['dem'][:]

        indices = numpy.stack(
            (numpy.array([1, 3, 5, 7, 8, 9, 10, 11
                          ]), numpy.array([0, 0, 0, 0, 0, 0, 0, 0])),
            axis=1)

        selected_location = []
        altitude_observations = []
        for couple in indices:
            selected_location.append([
                latitude[couple[0], couple[1]], longitude[couple[0], couple[1]]
            ])
            altitude_observations.append(altitude[couple[0], couple[1]])
        DEM.close()

        locations = numpy.array(selected_location)
        # Simulated model is y = z + a*cos(2x) + c*cos(4*x) + b*sin(2x) + d*sin(4*x), with z = altitude, x = latitude, a=b=c=d=0
        slope = 1e-3
        measurement = slope * numpy.array(altitude_observations)

        # Simulated errors
        uncorrelatederror = 0.1 * numpy.ones(measurement.shape)

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(locations, measurement,
                                                      uncorrelatederror)

        # Simulate evaluation of this time index
        simulated_time_indices = [0]

        # GENERATING THE MODEL
        # Local component
        geography_covariate_element = GeographyBasedElement(
            self.altitude_datafile, 'lat', 'lon', 'dem', 1.0)
        geography_covariate_element.load()
        combined_element = CombinationElement(
            [geography_covariate_element,
             LatitudeHarmonicsElement()])
        combined_hyperparamters = CombinationHyperparameters([
            CovariateHyperparameters(-0.5 * numpy.log(10.)),
            CombinationHyperparameters([
                CovariateHyperparameters(-0.5 * numpy.log(p))
                for p in [10.0, 10.0, 10.0, 10.0]
            ])
        ])
        combined_component = SpatialComponent(
            ComponentStorage_InMemory(combined_element,
                                      combined_hyperparamters),
            SpatialComponentSolutionStorage_InMemory())

        # GENERATING THE ANALYSIS
        # Analysis system using the specified components, for the Tmean observable
        analysis_system = AnalysisSystem([combined_component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # Update with data
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Check state vector directly
        statevector = analysis_system.components[
            0].solutionstorage.partial_state_read(0).ravel()

        # These are the nodes where observations were put (see SimulatedObservationSource above)
        # - check they correspond to within 3 times the stated noise level
        self.assertAlmostEqual(slope, statevector[0], delta=0.3)
        self.assertAlmostEqual(0., statevector[1], delta=0.3)
        self.assertAlmostEqual(0., statevector[2], delta=0.3)
        self.assertAlmostEqual(0., statevector[3], delta=0.3)
        self.assertAlmostEqual(0., statevector[4], delta=0.3)

        # And check output corresponds too
        # (evaluate result on output structure same as input)
        simulated_output_structure = SimulatedObservationStructure(
            0, locations, None, None)
        result = analysis_system.evaluate_expected_value(
            'MAP', simulated_output_structure, flag='POINTWISE')
        expected = statevector[0]*numpy.array(altitude_observations)\
                        + statevector[1]*LatitudeFunction(numpy.cos, 2.0).compute(locations[:,0]).ravel()\
                        + statevector[2]*LatitudeFunction(numpy.sin, 2.0).compute(locations[:,0]).ravel()\
                        + statevector[3]*LatitudeFunction(numpy.cos, 4.0).compute(locations[:,0]).ravel()\
                        + statevector[4]*LatitudeFunction(numpy.sin, 2.0).compute(locations[:,0]).ravel()
        numpy.testing.assert_almost_equal(expected, result)

        # test output gridding, pointwise limit
        outputstructure = OutputRectilinearGridStructure(
            2,
            epoch_plus_days(2),
            latitudes=numpy.linspace(-60., 60., num=5),
            longitudes=numpy.linspace(-90., 90, num=10))
        pointwise_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        pointwise_limit_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1, 1], 10)
        numpy.testing.assert_array_almost_equal(pointwise_result,
                                                pointwise_limit_result)
コード例 #17
0
    def test_mini_world_noiseless(self):

        # Use a number of time steps
        number_of_simulated_time_steps = 1

        # Build system
        element = SpaceTimeFactorElement(
            n_triangulation_divisions=3,
            alpha=2,
            starttime=0,
            endtime=number_of_simulated_time_steps + 1,
            n_nodes=number_of_simulated_time_steps + 2,
            overlap_factor=2.5,
            H=1)
        initial_hyperparameters = SpaceTimeSPDEHyperparameters(
            space_log_sigma=0.0,
            space_log_rho=numpy.log(numpy.radians(45.0)),
            time_log_rho=numpy.log(3.0 / 365.0))
        component = SpaceTimeComponent(
            ComponentStorage_InMemory(element, initial_hyperparameters),
            SpaceTimeComponentSolutionStorage_InMemory())
        analysis_system = AnalysisSystem([component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # use fixed locations from icosahedron
        fixed_locations = cartesian_to_polar2d(
            MeshIcosahedronSubdivision.build(3).points)

        # random measurement at each location
        numpy.random.seed(8976)
        field_basis = 10.0 * numpy.random.randn(fixed_locations.shape[0])

        # some time function that varies over a year
        time_basis = numpy.cos(
            numpy.linspace(0.1, 1.75 * numpy.pi,
                           number_of_simulated_time_steps))

        # kronecker product of the two
        measurement = numpy.kron(field_basis, numpy.expand_dims(time_basis, 1))

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(fixed_locations,
                                                      measurement, 0.01)

        # Simulate evaluation of this time index
        simulated_time_indices = range(number_of_simulated_time_steps)

        # Iterate
        for iteration in range(5):
            analysis_system.update([simulated_input_loader],
                                   simulated_time_indices)

        # Get all results
        result = numpy.zeros(measurement.shape)
        for t in range(number_of_simulated_time_steps):
            result[t, :] = analysis_system.evaluate_expected_value(
                'MAP',
                SimulatedObservationStructure(t, fixed_locations, None, None),
                flag='POINTWISE')

        # Should be very close to original because specified noise is low
        numpy.testing.assert_almost_equal(result, measurement)
        max_disparity = (numpy.abs(result - measurement)).ravel().max()
        self.assertTrue(max_disparity < 1E-5)
コード例 #18
0
    def test_process_observations_compute_uncertainties(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 10.0  3.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [  3.0 10.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  24.5   -47.85 ] x = [ -102.0 ]
        # [ -47.85  202.86 ]     [  397.1 ]
        #
        # => x = [ -0.63067268 ]
        #        [  1.80874649 ]
        #

        # Input data
        test_offset = numpy.array([2.0, 3.0])
        test_obs = TestSpatialComponentSolution.TestObservations()

        # Make component and check it's of the correct class
        c = SpatialComponent(ComponentStorage_InMemory(
            TestSpatialComponentSolution.TestElement(),
            CovariateHyperparameters(-0.5 * numpy.log(2.0))),
                             SpatialComponentSolutionStorage_InMemory(),
                             compute_uncertainties=True,
                             sample_size=666)
        s = c.component_solution()
        self.assertIsInstance(s, SpatialComponentSolution)
        self.assertTrue(s.compute_uncertainties)
        self.assertFalse(s.compute_sample)

        # Do the processing
        s.process_observations(test_obs, test_offset)
        s.update_time_step()

        # In this case we are considering the last iteration of model solving, hence marginal variances should have been stored
        expected_marginal_std = numpy.sqrt(
            numpy.diag(
                numpy.linalg.inv(
                    numpy.array([[24.5, -47.85], [-47.85, 202.86]]))))
        numpy.testing.assert_array_almost_equal(
            s.solutionstorage.partial_state_marginal_std_read(21),
            expected_marginal_std)
        self.assertEqual(len(s.solutionstorage.state_marginal_std_at_time), 1)
        self.assertListEqual(
            s.solutionstorage.state_marginal_std_at_time.keys(), [21])

        # We also test the computation of prior marginal variances, and their projection onto observations

        expected_prior_std = numpy.sqrt(
            numpy.diag(numpy.linalg.inv(numpy.array([[2., 0.], [0., 2.]]))))
        numpy.testing.assert_array_almost_equal(s.solution_prior_std(100),
                                                expected_prior_std,
                                                decimal=1)
        numpy.testing.assert_array_almost_equal(s.solution_prior_std(10000),
                                                expected_prior_std,
                                                decimal=2)

        design_matrix = numpy.array([[-1.5, 2.2], [0.0, 3.3]])
        expected_prior_std_projection = numpy.dot(design_matrix,
                                                  expected_prior_std)
        numpy.testing.assert_array_almost_equal(
            s.solution_observation_prior_uncertainties(None),
            expected_prior_std_projection,
            decimal=1)

        # In this case we did not allowed the computation of uncertainties samples
        self.assertEqual(s.solutionstorage.partial_state_sample_read(21), None)
        self.assertEqual(s.solutionstorage.state_sample_at_time, {})
        numpy.testing.assert_almost_equal(
            s.solution_observation_projected_sample(
                TestSpatialComponentSolution.TestObservations()), 0.)
        self.assertEqual(
            666,
            s.solution_observation_projected_sample(
                TestSpatialComponentSolution.TestObservations()).shape[1])
コード例 #19
0
    def test_mini_world_noiseless(self):

        number_of_simulated_time_steps = 1

        # Build system
        element = SeasonalElement(n_triangulation_divisions=3,
                                  n_harmonics=5,
                                  include_local_mean=True)
        hyperparameters = SeasonalHyperparameters(n_spatial_components=6,
                                                  common_log_sigma=0.0,
                                                  common_log_rho=0.0)

        component = SpaceTimeComponent(
            ComponentStorage_InMemory(element, hyperparameters),
            SpaceTimeComponentSolutionStorage_InMemory())

        analysis_system = AnalysisSystem([component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # use fixed locations from icosahedron
        fixed_locations = cartesian_to_polar2d(
            MeshIcosahedronSubdivision.build(3).points)

        # random measurement at each location
        numpy.random.seed(8976)
        field_basis = numpy.random.randn(fixed_locations.shape[0])
        #print(field_basis.shape)
        #time_basis = numpy.array(harmonics_list)
        # some time function that varies over a year
        #decimal_years = numpy.array([datetime_to_decimal_year(epoch_plus_days(step)) for step in range(number_of_simulated_time_steps)])
        time_basis = numpy.cos(
            numpy.linspace(0.1, 1.75 * numpy.pi,
                           number_of_simulated_time_steps))
        # kronecker product of the two
        #print(numpy.expand_dims(time_basis, 1))
        measurement = numpy.kron(field_basis, numpy.expand_dims(
            time_basis, 1))  #numpy.expand_dims(time_basis, 1))

        #print(measurement.shape)
        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(fixed_locations,
                                                      measurement, 0.0001)

        # Simulate evaluation of this time index
        simulated_time_indices = range(number_of_simulated_time_steps)

        # Iterate
        for iteration in range(5):
            analysis_system.update([simulated_input_loader],
                                   simulated_time_indices)

    # Get all results
        result = numpy.zeros(measurement.shape)
        for t in range(number_of_simulated_time_steps):
            result[t, :] = analysis_system.evaluate_expected_value(
                'MAP',
                SimulatedObservationStructure(t, fixed_locations, None, None),
                flag='POINTWISE')

    # Should be very close to original because specified noise is low
        numpy.testing.assert_almost_equal(result, measurement)
        max_disparity = (numpy.abs(result - measurement)).ravel().max()
        self.assertTrue(max_disparity < 1E-5)

        # test output gridding, pointwise limit
        outputstructure = OutputRectilinearGridStructure(
            2,
            epoch_plus_days(2),
            latitudes=numpy.linspace(-60., 60., num=5),
            longitudes=numpy.linspace(-90., 90, num=10))
        pointwise_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        pointwise_limit_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1, 1], 10)
        numpy.testing.assert_array_almost_equal(pointwise_result,
                                                pointwise_limit_result)
コード例 #20
0
    def test_process_observations(self):

        # Our test system is:
        #
        # ( [ 2.0  0.0 ]  +  [ -1.5  0.0 ] [ 10.0  3.0 ] [ -1.5  2.2 ] ) x = [ -1.5  0.0 ] [ 10.0  3.0 ] [ 7.0 - 2.0 ]
        # ( [ 0.0  2.0 ]     [  2.2  3.3 ] [  3.0 10.0 ] [  0.0  3.3 ] )     [  2.2  3.3 ] [  3.0 10.0 ] [ 9.0 - 3.0 ]
        #
        # [  24.5   -47.85 ] x = [ -102.0 ]
        # [ -47.85  202.86 ]     [  397.1 ]
        #
        # => x = [ -0.63067268 ]
        #        [  1.80874649 ]
        #

        # Input data
        test_offset = numpy.array([2.0, 3.0])
        test_obs = TestSpatialComponentSolution.TestObservations()

        # Make component and check it's of the correct class
        c = SpatialComponent(
            ComponentStorage_InMemory(
                TestSpatialComponentSolution.TestElement(),
                CovariateHyperparameters(-0.5 * numpy.log(2.0))),
            SpatialComponentSolutionStorage_InMemory())
        s = c.component_solution()
        self.assertIsInstance(s, SpatialComponentSolution)
        self.assertFalse(s.compute_uncertainties)
        self.assertFalse(s.compute_sample)

        # Do the processing
        s.process_observations(test_obs, test_offset)
        s.update_time_step()

        # Should be the value of x (see matrices in comment above)
        numpy.testing.assert_almost_equal(
            s.solutionstorage.partial_state_read(21),
            numpy.array([[-0.63067268], [1.80874649]]))

        # Should be the value of x multiplied by the design matrix
        numpy.testing.assert_almost_equal(
            s.solution_observation_expected_value(
                TestSpatialComponentSolution.TestObservations()),
            numpy.array([[-1.5 * -0.63067268 + 2.2 * 1.80874649],
                         [3.3 * 1.80874649]]))

        # This should be zero as we have no information for other times
        numpy.testing.assert_almost_equal(
            s.solution_observation_expected_value(
                TestSpatialComponentSolution.TestSomeOtherTime()),
            numpy.zeros((7, )))

        # In this case we did not allowed the computation of uncertainties or samples, hence the state of marginal variances should be None, while the expected uncertainties zero
        self.assertEqual(s.solutionstorage.partial_state_marginal_std_read(21),
                         None)
        self.assertEqual(s.solutionstorage.state_marginal_std_at_time, {})
        numpy.testing.assert_almost_equal(
            s.solution_observation_expected_uncertainties(
                TestSpatialComponentSolution.TestObservations()), 0.)

        self.assertEqual(s.solutionstorage.partial_state_sample_read(21), None)
        self.assertEqual(s.solutionstorage.state_sample_at_time, {})
        numpy.testing.assert_almost_equal(
            s.solution_observation_projected_sample(
                TestSpatialComponentSolution.TestObservations()), 0.)
コード例 #21
0
def main():

    print 'Advanced standard example using a few days of EUSTACE data'
    parser = argparse.ArgumentParser(
        description='Advanced standard example using a few days of EUSTACE data'
    )
    parser.add_argument('outpath',
                        help='directory where the output should be redirected')
    parser.add_argument(
        '--json_descriptor',
        default=None,
        help=
        'a json descriptor containing the covariates to include in the climatology model'
    )
    parser.add_argument('--land_biases',
                        action='store_true',
                        help='include insitu land homogenization bias terms')
    parser.add_argument('--global_biases',
                        action='store_true',
                        help='include global satellite bias terms')
    parser.add_argument('--n_iterations',
                        type=int,
                        default=5,
                        help='number of solving iterations')
    args = parser.parse_args()

    # Input data path
    basepath = os.path.join('/work/scratch/eustace/rawbinary3')

    # Days to process
    #time_indices = range(int(days_since_epoch(datetime(2006, 2, 1))), int(days_since_epoch(datetime(2006, 2, 2))))
    #time_indices = range(int(days_since_epoch(datetime(1906, 2, 1))), int(days_since_epoch(datetime(1906, 2, 2))))

    date_list = [
        datetime(2006, 1, 1) + relativedelta(days=k) for k in range(3)
    ]

    #backwards_list = [date_list[i] for i in range(11, -1, -1)]
    #date_list = backwards_list

    time_indices = [int(days_since_epoch(date)) for date in date_list]

    # Sources to use
    sources = [
        'surfaceairmodel_land', 'surfaceairmodel_ocean', 'surfaceairmodel_ice',
        'insitu_land', 'insitu_ocean'
    ]
    sources = ['insitu_land', 'insitu_ocean']
    #sources = [ 'surfaceairmodel_land' ]
    # CLIMATOLOGY COMPONENT: combining the seasonal core along with latitude harmonics, altitude and coastal effects

    if args.json_descriptor is not None:
        loader = LoadCovariateElement(args.json_descriptor)
        loader.check_keys()
        covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters(
        )
        print(
            'The following fields have been added as covariates of the climatology model'
        )
        print(loader.data.keys())
    else:
        covariate_elements, covariate_hyperparameters = [], []

    #climatology_element = CombinationElement( [SeasonalElement(n_triangulation_divisions=2, n_harmonics=2, include_local_mean=False), GrandMeanElement()]+covariate_elements)
    #climatology_hyperparameters = CombinationHyperparameters( [SeasonalHyperparameters(n_spatial_components=2, common_log_sigma=0.0, common_log_rho=0.0), CovariateHyperparameters(numpy.log(15.0))] + covariate_hyperparameters )

    climatology_element = CombinationElement([
        GrandMeanElement(),
    ] + covariate_elements)
    climatology_hyperparameters = CombinationHyperparameters([
        CovariateHyperparameters(numpy.log(15.0)),
    ] + covariate_hyperparameters)

    #climatology_element =SeasonalElement(n_triangulation_divisions=2, n_harmonics=2, include_local_mean=False)
    #climatology_hyperparameters = SeasonalHyperparameters(n_spatial_components=2, common_log_sigma=0.0, common_log_rho=0.0)

    climatology_component = SpaceTimeComponent(
        ComponentStorage_InMemory(climatology_element,
                                  climatology_hyperparameters),
        SpaceTimeComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')

    # LARGE SCALE (kronecker product) COMPONENT: combining large scale trends with bias terms accounting for homogeneization effects

    if args.land_biases:
        bias_element, bias_hyperparameters = [
            InsituLandBiasElement(BREAKPOINTS_FILE)
        ], [CovariateHyperparameters(numpy.log(.9))]
        print('Adding bias terms for insitu land homogenization')
    else:
        bias_element, bias_hyperparameters = [], []

    large_scale_element = CombinationElement([
        SpaceTimeKroneckerElement(n_triangulation_divisions=2,
                                  alpha=2,
                                  starttime=-30,
                                  endtime=365 * 1 + 30,
                                  n_nodes=12 * 1 + 2,
                                  overlap_factor=2.5,
                                  H=1)
    ] + bias_element)
    large_scale_hyperparameters = CombinationHyperparameters([
        SpaceTimeSPDEHyperparameters(space_log_sigma=0.0,
                                     space_log_rho=numpy.log(
                                         numpy.radians(15.0)),
                                     time_log_rho=numpy.log(15.0))
    ] + bias_hyperparameters)
    large_scale_component = SpaceTimeComponent(
        ComponentStorage_InMemory(large_scale_element,
                                  large_scale_hyperparameters),
        SpaceTimeComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')

    # LOCAL COMPONENT: combining local scale variations with global satellite bias terms

    if args.global_biases:
        bias_elements = [
            BiasElement(groupname, 1) for groupname in GLOBAL_BIASES_GROUP_LIST
        ]
        bias_hyperparameters = [
            CovariateHyperparameters(numpy.log(15.0)) for index in range(3)
        ]
        print('Adding global bias terms for all the surfaces')
    else:
        bias_elements, bias_hyperparameters = [], []

    n_triangulation_divisions_local = 7
    local_log_sigma = numpy.log(5)
    local_log_rho = numpy.log(numpy.radians(5.0))
    local_element = NonStationaryLocal(
        n_triangulation_divisions=n_triangulation_divisions_local)
    n_local_nodes = local_element.spde.n_latent_variables()
    local_scale_element = CombinationElement([local_element] + bias_elements)
    local_hyperparameters = ExpandedLocalHyperparameters(
        log_sigma=numpy.repeat(local_log_sigma, n_local_nodes),
        log_rho=numpy.repeat(local_log_rho, n_local_nodes))
    local_scale_hyperparameters = CombinationHyperparameters(
        [local_hyperparameters] + bias_hyperparameters)
    local_component = DelayedSpatialComponent(
        ComponentStorage_InMemory(local_scale_element,
                                  local_scale_hyperparameters),
        SpatialComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')
    print "hyperparameter storage:", local_component.storage.hyperparameters
    print 'Analysing inputs'

    # Analysis system using the specified components, for the Tmean observable
    ##analysis_system = AnalysisSystem(
    ##    [ climatology_component, large_scale_component, local_component ],
    ##    ObservationSource.TMEAN)

    analysis_system = OptimizationSystem(
        [climatology_component, local_component], ObservationSource.TMEAN)

    # Object to load raw binary inputs at time indices
    inputloaders = [
        AnalysisSystemInputLoaderRawBinary_Sources(basepath, source,
                                                   time_indices)
        for source in sources
    ]

    for iteration in range(args.n_iterations):

        message = 'Iteration {}'.format(iteration)
        print(message)

        # Update with data
        analysis_system.update(inputloaders, time_indices)

    ##################################################

    # Optimize local model hyperparameters

    # Loop over local regions, generate optimization systems, fit hyperparameters and save

    # split spde and bias models for local component into two components
    global_spde_sub_component_definition = ComponentStorage_InMemory(
        CombinationElement([local_element]),
        CombinationHyperparameters([local_hyperparameters]))
    global_spde_sub_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
    )
    global_spde_sub_component = DelayedSpatialComponent(
        global_spde_sub_component_definition,
        global_spde_sub_component_storage_solution)

    bias_sub_component_definition = ComponentStorage_InMemory(
        CombinationElement(bias_elements),
        CombinationHyperparameters(bias_hyperparameters))
    bias_sub_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
    )
    bias_sub_component = DelayedSpatialComponent(
        bias_sub_component_definition, bias_sub_component_storage_solution)

    element_optimisation_flags = [True, False, False,
                                  False]  # one spde, three biases

    for time_key in time_indices:
        split_states_time(local_component, global_spde_sub_component,
                          bias_sub_component, element_optimisation_flags,
                          time_key)

    # Define subregions and extract their states
    neighbourhood_level = 1

    n_subregions = global_spde_sub_component.storage.element_read(
    ).combination[0].spde.n_triangles_at_level(neighbourhood_level)
    hyperparameter_file_template = "local_hyperparameters.%i.%i.%i.npy"

    fit_hyperparameters = True
    optimization_component_index = 2
    if fit_hyperparameters:
        for region_index in range(n_subregions):
            # Setup model for local subregion of neighours with super triangle
            view_flags = [
                True,
            ]
            region_element = CombinationElement([
                LocalSubRegion(n_triangulation_divisions_local,
                               neighbourhood_level, region_index)
            ])
            region_hyperparameters = ExtendedCombinationHyperparameters([
                LocalHyperparameters(log_sigma=local_log_sigma,
                                     log_rho=local_log_rho)
            ])
            region_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
            )
            region_sub_component = DelayedSpatialComponent(
                ComponentStorage_InMemory(region_element,
                                          region_hyperparameters),
                region_component_storage_solution)

            for time_key in time_indices:
                print "region_index, time_key:", region_index, time_key
                extract_local_view_states_time(global_spde_sub_component,
                                               region_sub_component,
                                               view_flags, time_key)

            print "running optimization for region:", region_index

            region_optimization_system = OptimizationSystem([
                climatology_component, bias_sub_component, region_sub_component
            ], ObservationSource.TMEAN)

            for time_key in time_indices:
                region_optimization_system.update_component_time(
                    inputloaders, optimization_component_index, time_key)

            # commented version that works for few days inputs
            #region_optimization_system.components[optimization_component_index].component_solution().optimize()
            #region_optimization_system.components[optimization_component_index].storage.hyperparameters.get_array()
            #hyperparameter_file = os.path.join(args.outpath, hyperparameter_file_template % (n_triangulation_divisions_local, neighbourhood_level, region_index) )
            #region_sub_component.storage.hyperparameters.values_to_npy_savefile( hyperparameter_file )

            # replaced with version for full processing based json dump of input files - need to generate the input_descriptor dict
            hyperparameter_file = os.path.join(
                args.outpath, hyperparameter_file_template %
                (n_triangulation_divisions_local, neighbourhood_level,
                 region_index))
            region_optimization_system.process_inputs(
                input_descriptor, optimization_component_index, time_indices)
            region_optimization_system.optimize_component(
                optimization_component_index,
                hyperparameter_storage_file=hyperparameter_file)

            fitted_hyperparameters_converted = region_sub_component.storage.hyperparameters.get_array(
            )
            fitted_hyperparameters_converted[0] = numpy.exp(
                fitted_hyperparameters_converted[0])
            fitted_hyperparameters_converted[1] = numpy.exp(
                fitted_hyperparameters_converted[1]) * 180.0 / numpy.pi
            print 'fitted_hyperparameters_converted:', fitted_hyperparameters_converted

    # Setup model for the super triangle without neighbours for hyperparameter merging
    region_spdes = []
    region_hyperparameter_values = []
    for region_index in range(n_subregions):
        # Redefine the region sub component as a supertriangle rather than a neighbourhood
        region_element = CombinationElement([
            LocalSuperTriangle(n_triangulation_divisions_local,
                               neighbourhood_level, region_index)
        ])
        region_hyperparameters = ExtendedCombinationHyperparameters([
            LocalHyperparameters(log_sigma=local_log_sigma,
                                 log_rho=local_log_rho)
        ])
        region_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
        )
        region_sub_component = DelayedSpatialComponent(
            ComponentStorage_InMemory(region_element, region_hyperparameters),
            region_component_storage_solution)

        # Read the optimized hyperparameters
        hyperparameter_file = os.path.join(
            args.outpath,
            hyperparameter_file_template % (n_triangulation_divisions_local,
                                            neighbourhood_level, region_index))
        region_sub_component.storage.hyperparameters.values_from_npy_savefile(
            hyperparameter_file)

        # Append the spde model and hyperparameters to their lists for merging
        region_spdes.append(region_element.combination[0].spde)
        region_hyperparameter_values.append(
            region_sub_component.storage.hyperparameters.get_array())

    # merge and save hyperparameters
    full_spde = local_element.spde
    new_hyperparameter_values, global_sigma_design, global_rho_design = full_spde.merge_local_parameterisations(
        region_spdes, region_hyperparameter_values, merge_method='exp_average')

    local_hyperparameters.set_array(new_hyperparameter_values)
    hyperparameter_file_merged = "merged_hyperparameters.%i.%i.npy" % (
        n_triangulation_divisions_local, neighbourhood_level)
    local_hyperparameters.values_to_npy_savefile(
        os.path.join(args.outpath, hyperparameter_file_merged))

    # Refit local model with the optimized hyperparameters
    analysis_system.update_component(inputloaders, 1, time_indices)

    ##################################################

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Get date for output
        outputdate = inputloaders[0].datetime_at_time_index(time_index)
        print 'Evaluating output grid: ', outputdate

        #Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index,
            outputdate,
            latitudes=numpy.linspace(-89.875,
                                     89.875,
                                     num=definitions.GLOBAL_FIELD_SHAPE[1]),
            longitudes=numpy.linspace(-179.875,
                                      179.875,
                                      num=definitions.GLOBAL_FIELD_SHAPE[2]))

        # print 'Size of grid : ', outputstructure.number_of_observations()

        # Evaluate expected value at these locations
        result_expected_value = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        result_expected_uncertainties = analysis_system.evaluate_expected_value(
            'post_STD', outputstructure, 'POINTWISE')

        # Make output filename
        pathname = 'eustace_example_output_{0:04d}{1:02d}{2:02d}.nc'.format(
            outputdate.year, outputdate.month, outputdate.day)
        pathname = os.path.join(args.outpath, pathname)
        print 'Saving: ', pathname

        # Save results
        filebuilder = FileBuilderGlobalField(
            pathname, time_index, 'Infilling Example', 'UNVERSIONED',
            definitions.TAS.name, '', 'Example data only',
            'eustace.analysis.advanced_standard.examples.example_eustace_few_days',
            '')
        filebuilder.add_global_field(
            definitions.TAS,
            result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TASUNCERTAINTY,
            result_expected_uncertainties.reshape(
                definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.save_and_close()

    print 'Complete'