コード例 #1
0
    def test_get_array(self):

        p = CombinationHyperparameters([
            CovariateHyperparameters(23.6),
            LocalHyperparameters(log_sigma=0.1, log_rho=1.2)
        ])
        numpy.testing.assert_equal([23.6, 0.1, 1.2], p.get_array())
コード例 #2
0
    def test_get_element_ranges(self):

        p = CombinationHyperparameters([
            CovariateHyperparameters(23.6),
            LocalHyperparameters(log_sigma=0.1, log_rho=1.2),
            CovariateHyperparameters(24.7)
        ])
        self.assertEqual([[0], [1, 2], [3]], p.get_element_ranges())
コード例 #3
0
    def test_set_array(self):

        p = CombinationHyperparameters([
            CovariateHyperparameters(23.6),
            LocalHyperparameters(log_sigma=0.1, log_rho=1.2),
            CovariateHyperparameters(24.7)
        ])
        p.set_array(numpy.array([1.4, 1.5, 1.6, 1.7]))
        self.assertEqual(3, len(p.elementparameters))
        self.assertEqual(1.4, p.elementparameters[0].value)
        self.assertEqual(1.5, p.elementparameters[1].log_sigma)
        self.assertEqual(1.6, p.elementparameters[1].log_rho)
        self.assertEqual(1.7, p.elementparameters[2].value)
        numpy.testing.assert_equal([1.4, 1.5, 1.6, 1.7], p.get_array())
コード例 #4
0
    def __init__(self):

        # Number of factors for large scale (factor analysis) component and initial hyperparameters
        n_factors = 5
        factors = []
        factor_hyperparameters = []
        for factor_index in range(n_factors):

            factor_hyperparameters.append(
                SpaceTimeSPDEHyperparameters(
                    space_log_sigma=0.0,
                    space_log_rho=numpy.log(10.0 * numpy.pi / 180 +
                                            25.0 * numpy.pi / 180 *
                                            (n_factors - factor_index) /
                                            n_factors),
                    time_log_rho=numpy.log(1 / 12.0 + 6 / 12.0 *
                                           (n_factors - factor_index) /
                                           n_factors)))

            factors.append(
                SpaceTimeFactorElement(n_triangulation_divisions=5,
                                       alpha=2,
                                       starttime=0,
                                       endtime=36,
                                       overlap_factor=2.5,
                                       H=1))

        super(LargeScaleDefinition, self).__init__(
            CombinationElement(factors),
            CombinationHyperparameters(factor_hyperparameters))
コード例 #5
0
    def __init__(self,
                 bias_terms=False,
                 global_biases_group_list=[],
                 local_hyperparameter_file=None):

        setup = ShortScaleSetup(local_hyperparameter_file)

        bias_elements, bias_hyperparameters = [], []
        if bias_terms:
            for groupname in global_biases_group_list:
                if (groupname == 'surfaceairmodel_land_global') or (
                        groupname == 'surfaceairmodel_ocean_global'):
                    bias_elements.append(BiasElement(groupname, 1))
                    bias_hyperparameters.append(
                        CovariateHyperparameters(
                            numpy.log(setup.bias_settings.bias_amplitude)))
                elif (groupname == 'surfaceairmodel_ice_global'):
                    bias_elements.append(BiasElement(groupname, 2))
                    bias_hyperparameters.append(
                        CovariateHyperparameters(
                            numpy.log(setup.bias_settings.bias_amplitude)))

        local_hyperparameters = ExpandedLocalHyperparameters(log_sigma=None,
                                                             log_rho=None)
        local_hyperparameters.values_from_npy_savefile(
            local_hyperparameter_file)

        super(NonStationaryLocalDefinition, self).__init__(
            CombinationElement([
                NonStationaryLocal(
                    setup.local_settings.n_triangulation_divisions)
            ] + bias_elements),
            CombinationHyperparameters([local_hyperparameters] +
                                       bias_hyperparameters))
コード例 #6
0
    def test_init(self):

        p = CombinationHyperparameters(
            [CovariateHyperparameters(23.6),
             CovariateHyperparameters(22.9)])
        self.assertEqual(2, len(p.elementparameters))
        self.assertEqual(23.6, p.elementparameters[0].value)
        self.assertEqual(22.9, p.elementparameters[1].value)
コード例 #7
0
    def test_prior_number_of_state_parameters(self):

        h = CombinationHyperparameters(
            [CovariateHyperparameters(0.1),
             CovariateHyperparameters(0.2)])
        priorlist = [
            CovariatePrior(h.elementparameters[0],
                           number_of_state_parameters=4),
            CovariatePrior(h.elementparameters[1],
                           number_of_state_parameters=5)
        ]
        prior = CombinationPrior(h, priorlist)
        self.assertEqual(9, prior.prior_number_of_state_parameters())
コード例 #8
0
    def test_element_prior(self):

        hyperparameters = CombinationHyperparameters([
            CovariateHyperparameters(23.6),
            LocalHyperparameters(log_sigma=0.1, log_rho=1.2)
        ])
        prior = CombinationElement([GrandMeanElement(),
                                    LocalElement(0)
                                    ]).element_prior(hyperparameters)
        self.assertTrue(isinstance(prior, CombinationPrior))
        self.assertEqual(2, len(prior.priorlist))
        self.assertTrue(isinstance(prior.priorlist[0], CovariatePrior))
        self.assertTrue(isinstance(prior.priorlist[1], LocalPrior))
コード例 #9
0
    def __init__(self, bias_terms = False, global_biases_group_list = []):         
    
        setup = LocalSetup()
        
        if bias_terms:
            bias_elements = [BiasElement(groupname, 1) for groupname in global_biases_group_list]
            bias_hyperparameters = [CovariateHyperparameters(numpy.log(setup.bias_amplitude)) for index in range(len(global_biases_group_list))]
        else:
            bias_elements, bias_hyperparameters = [], []

        super(LocalDefinition, self).__init__(
            CombinationElement([LocalElement(setup.n_triangulation_divisions)] + bias_elements),         
            CombinationHyperparameters([LocalHyperparameters(numpy.log(setup.amplitude), 
                                                             numpy.log(numpy.radians(setup.space_length_scale)))] + bias_hyperparameters))
コード例 #10
0
    def __init__(self, bias_terms = False, global_biases_group_list = [], local_hyperparameter_file = None):         
    
        setup = NonStationaryLocalSetup()
        
        if bias_terms:
            bias_elements = [BiasElement(groupname, 1) for groupname in global_biases_group_list]
            bias_hyperparameters = [CovariateHyperparameters(numpy.log(setup.bias_amplitude)) for index in range(len(global_biases_group_list))]
        else:
            bias_elements, bias_hyperparameters = [], []

        local_hyperparameters = ExpandedLocalHyperparameters(log_sigma = None, log_rho = None)
        local_hyperparameters.values_from_npy_savefile(local_hyperparameter_file)
        
        super(NonStationaryLocalDefinition, self).__init__(
            CombinationElement([NonStationaryLocal(setup.n_triangulation_divisions)] + bias_elements),         
            CombinationHyperparameters([local_hyperparameters]+bias_hyperparameters))
コード例 #11
0
    def test_element_prior(self):

        element = LatitudeHarmonicsElement()
        prior = element.element_prior(
            CombinationHyperparameters(
                [CovariateHyperparameters(c) for c in [1.0, 1.1, 1.2, 1.3]]))
        self.assertIsInstance(prior, LatitudeHarmonicsPrior)

        # As an example check precision - should be diagonals with exp(-2 x hyperparameter)
        precision = prior.prior_precision()
        self.assertEqual(SPARSEFORMAT, precision.getformat())
        self.assertEqual(4, precision.nnz)
        self.assertAlmostEqual(numpy.exp(-2.0), precision[0, 0])
        self.assertAlmostEqual(numpy.exp(-2.2), precision[1, 1])
        self.assertAlmostEqual(numpy.exp(-2.4), precision[2, 2])
        self.assertAlmostEqual(numpy.exp(-2.6), precision[3, 3])
コード例 #12
0
    def __init__(self):
        setup = SlowSetupT2M1()

        model_elements = CombinationElement( [AnnualKroneckerElement( setup.n_triangulation_divisions, 
                                                                        setup.alpha, 
                                                                        setup.starttime, 
                                                                        setup.endtime, 
                                                                        setup.n_nodes, 
                                                                        setup.overlap_factor, 
                                                                        setup.H ),] )

        model_hyperparameters = CombinationHyperparameters( [SpaceTimeSPDEHyperparameters(numpy.log(setup.amplitude), 
                                                                                            numpy.log(numpy.radians(setup.space_length_scale)), 
                                                                                            numpy.log(setup.time_length_scale)),] )

        super(TestComponentDefinition, self).__init__(model_elements, model_hyperparameters)
コード例 #13
0
    def __init__(self, bias_terms=False, breakpoints_file=None):

        setup = MidScaleSetup()

        if bias_terms:
            bias_element = [
                InsituLandBiasElement(breakpoints_file,
                                      apply_policy=True,
                                      cut_value=3)
            ]
            bias_hyperparameters = [
                CovariateHyperparameters(
                    numpy.log(setup.bias_settings.bias_amplitude))
            ]
        else:
            bias_element, bias_hyperparameters = [], []

        super(LargeScaleDefinition, self).__init__(
            CombinationElement([
                SpaceTimeKroneckerElement(
                    setup.midscale_settings.n_triangulation_divisions, setup.
                    midscale_settings.alpha, setup.midscale_settings.starttime,
                    setup.midscale_settings.endtime, setup.midscale_settings.
                    n_nodes, setup.midscale_settings.overlap_factor,
                    setup.midscale_settings.H),
                AnnualKroneckerElement(
                    setup.slow_settings.n_triangulation_divisions,
                    setup.slow_settings.alpha, setup.slow_settings.starttime,
                    setup.slow_settings.endtime, setup.slow_settings.n_nodes,
                    setup.slow_settings.overlap_factor, setup.slow_settings.H),
            ] + bias_element),
            CombinationHyperparameters([
                SpaceTimeSPDEHyperparameters(
                    numpy.log(setup.midscale_settings.amplitude),
                    numpy.log(
                        numpy.radians(
                            setup.midscale_settings.space_length_scale)),
                    numpy.log(setup.midscale_settings.time_length_scale)),
                SpaceTimeSPDEHyperparameters(
                    numpy.log(setup.slow_settings.amplitude),
                    numpy.log(
                        numpy.radians(setup.slow_settings.space_length_scale)),
                    numpy.log(setup.slow_settings.time_length_scale)),
            ] + bias_hyperparameters))
コード例 #14
0
    def test_prior_precision_derivative(self):

        h = CombinationHyperparameters([
            CovariateHyperparameters(-0.5 * numpy.log(23.6)),
            CovariateHyperparameters(-0.5 * numpy.log(88.9))
        ])
        priorlist = [
            CovariatePrior(h.elementparameters[0],
                           number_of_state_parameters=2),
            CovariatePrior(h.elementparameters[1],
                           number_of_state_parameters=3)
        ]
        prior = CombinationPrior(h, priorlist)
        dQ = prior.prior_precision_derivative(1)
        self.assertEqual(SPARSEFORMAT, dQ.getformat())
        self.assertEqual((5, 5), dQ.shape)
        self.assertEqual(3, dQ.nnz)
        self.assertAlmostEqual(-2.0 * 88.9, dQ[2, 2])
        self.assertAlmostEqual(-2.0 * 88.9, dQ[3, 3])
        self.assertAlmostEqual(-2.0 * 88.9, dQ[4, 4])
コード例 #15
0
    def test_prior_precision(self):

        h = CombinationHyperparameters([
            CovariateHyperparameters(-0.5 * numpy.log(23.6)),
            CovariateHyperparameters(-0.5 * numpy.log(88.9))
        ])
        priorlist = [
            CovariatePrior(h.elementparameters[0],
                           number_of_state_parameters=2),
            CovariatePrior(h.elementparameters[1],
                           number_of_state_parameters=3)
        ]
        prior = CombinationPrior(h, priorlist)
        Q = prior.prior_precision()
        self.assertEqual(SPARSEFORMAT, Q.getformat())
        numpy.testing.assert_almost_equal(
            Q.todense(),
            [[23.6, 0.0, 0.0, 0.0, 0.0], [0.0, 23.6, 0.0, 0.0, 0.0],
             [0.0, 0.0, 88.9, 0.0, 0.0], [0.0, 0.0, 0.0, 88.9, 0.0],
             [0.0, 0.0, 0.0, 0.0, 88.9]])
コード例 #16
0
    def __init__(self, covariates_descriptor):
        if covariates_descriptor is not None:
            loader = LoadCovariateElement(covariates_descriptor)
            loader.check_keys()
            covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters()
            print('The following fields have been added as covariates of the climatology model')
            print(loader.data.keys())
        else:
            covariate_elements, covariate_hyperparameters = [], []

        setup = ClimatologySetup()
        
        super(ClimatologyDefinition, self).__init__(
            CombinationElement( [SeasonalElement(setup.n_triangulation_divisions, 
                                                 setup.n_harmonics, 
                                                 include_local_mean=True), GrandMeanElement()] + covariate_elements),
            CombinationHyperparameters( [SeasonalHyperparameters(setup.n_spatial_components, 
                                                                 numpy.log(setup.amplitude), 
                                                                 numpy.log(numpy.radians(setup.space_length_scale))), 
                                         CovariateHyperparameters(numpy.log(setup.grandmean_amplitude))] + covariate_hyperparameters))
コード例 #17
0
    def __init__(self, bias_terms=False, global_biases_group_list=[]):

        setup = ShortScaleSetup()

        if bias_terms:
            bias_elements = [
                BiasElement(groupname, 1)
                for groupname in global_biases_group_list
            ]
            bias_hyperparameters = [
                CovariateHyperparameters(
                    numpy.log(setup.bias_settings.bias_amplitude))
                for index in range(len(global_biases_group_list))
            ]
        else:
            bias_elements, bias_hyperparameters = [], []

        super(PureBiasComponentDefinition,
              self).__init__(CombinationElement(bias_elements),
                             CombinationHyperparameters(bias_hyperparameters))
コード例 #18
0
    def test_mini_world_latitude_harmonics(self):
        """Testing on a simple mock data file using latitude harmonics"""

        # GENERATING OBSERVATIONS
        # Simulated locations: they will exactly sits on the grid points of the covariate datafile
        locations = numpy.array([[0.0, 0.0], [0.25, 0.5], [0.5, 0.0]])
        # Simulated model is y = a*cos(2x) + c*cos(4*x) + b*sin(2x) + d*sin(4*x) with x = latitude, so we expect a=c=1, c=d=0
        measurement = LatitudeFunction(numpy.cos, 2.0).compute(
            locations[:, 0]).ravel() + LatitudeFunction(
                numpy.cos, 4.0).compute(locations[:, 0]).ravel()

        # Simulated errors
        uncorrelatederror = 0.1 * numpy.ones(measurement.shape)

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(locations, measurement,
                                                      uncorrelatederror)

        # Simulate evaluation of this time index
        simulated_time_indices = [0]

        latitude_harmonics_component = SpatialComponent(
            ComponentStorage_InMemory(
                LatitudeHarmonicsElement(),
                CombinationHyperparameters([
                    CovariateHyperparameters(-0.5 * numpy.log(p))
                    for p in [10.0, 10.0, 10.0, 10.0]
                ])), SpatialComponentSolutionStorage_InMemory())

        # Analysis system using the specified components, for the Tmean observable
        analysis_system = AnalysisSystem([latitude_harmonics_component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # GENERATING THE ANALYSIS

        # Update with data
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Check state vector directly
        statevector = analysis_system.components[
            0].solutionstorage.partial_state_read(0).ravel()

        # These are the nodes where observations were put (see SimulatedObservationSource above)
        # - check they correspond to within 3 times the stated noise level
        self.assertAlmostEqual(1., statevector[0], delta=0.3)
        self.assertAlmostEqual(1., statevector[2], delta=0.3)
        self.assertAlmostEqual(0., statevector[1], delta=0.3)
        self.assertAlmostEqual(0., statevector[3], delta=0.3)
        # Also check entire state vector within outer bounds set by obs
        self.assertTrue(all(statevector < 1.0))

        # And check output corresponds too
        # (evaluate result on output structure same as input)
        simulated_output_structure = SimulatedObservationStructure(
            0, locations, None, None)
        result = analysis_system.evaluate_expected_value(
            'MAP', simulated_output_structure, flag='POINTWISE')
        expected = statevector[0]*LatitudeFunction(numpy.cos, 2.0).compute(locations[:,0]).ravel() + statevector[1]*LatitudeFunction(numpy.sin, 2.0).compute(locations[:,0]).ravel()\
                         + statevector[2] *LatitudeFunction(numpy.cos, 4.0).compute(locations[:,0]).ravel()+ statevector[3]*LatitudeFunction(numpy.sin, 4.0).compute(locations[:,0]).ravel()
        numpy.testing.assert_almost_equal(expected, result)
コード例 #19
0
    def __init__(self, bias_terms=False, global_biases_group_list=[]):

        setup = ShortScaleSetup()

        bias_elements, bias_hyperparameters = [], []
        if bias_terms:
            for groupname in global_biases_group_list:
                #if (groupname == 'surfaceairmodel_land_global') or (groupname == 'surfaceairmodel_ocean_global'):
                #bias_elements.append( BiasElement(groupname, 1) )
                #bias_hyperparameters.append( CovariateHyperparameters(numpy.log(setup.bias_settings.bias_amplitude)) )
                if (groupname == 'surfaceairmodel_land_global'):
                    # global mean term
                    bias_elements.append(BiasElement(groupname, 1))
                    bias_hyperparameters.append(
                        CovariateHyperparameters(
                            numpy.log(setup.bias_settings.bias_amplitude)))
                    # spatial bias term
                    bias_elements.append(
                        SpatialBiasElement(
                            groupname, setup.spatial_bias_settings.
                            n_triangulation_divisions))
                    bias_hyperparameters.append(
                        LocalHyperparameters(
                            numpy.log(setup.spatial_bias_settings.
                                      spatial_bias_amplitutde),
                            numpy.log(
                                numpy.radians(setup.spatial_bias_settings.
                                              spatial_bias_length_scale))))
                elif (groupname == 'surfaceairmodel_ocean_global'):
                    # global mean term
                    bias_elements.append(BiasElement(groupname, 1))
                    bias_hyperparameters.append(
                        CovariateHyperparameters(
                            numpy.log(setup.bias_settings.bias_amplitude)))
                elif (groupname == 'surfaceairmodel_ice_global'):
                    # hemispheric term
                    bias_elements.append(BiasElement(groupname, 2))
                    bias_hyperparameters.append(
                        CovariateHyperparameters(
                            numpy.log(setup.bias_settings.bias_amplitude)))
                    # spatial bias term
                    bias_elements.append(
                        SpatialBiasElement(
                            groupname, setup.spatial_bias_settings.
                            n_triangulation_divisions))
                    bias_hyperparameters.append(
                        LocalHyperparameters(
                            numpy.log(setup.spatial_bias_settings.
                                      spatial_bias_amplitutde),
                            numpy.log(
                                numpy.radians(setup.spatial_bias_settings.
                                              spatial_bias_length_scale))))

        super(LocalDefinition, self).__init__(
            CombinationElement(
                [LocalElement(setup.local_settings.n_triangulation_divisions)
                 ] + bias_elements),
            CombinationHyperparameters([
                LocalHyperparameters(
                    numpy.log(setup.local_settings.amplitude),
                    numpy.log(
                        numpy.radians(
                            setup.local_settings.space_length_scale)))
            ] + bias_hyperparameters))
コード例 #20
0
def main():

    print 'Advanced standard example using a few days of EUSTACE data'
    parser = argparse.ArgumentParser(
        description='Advanced standard example using a few days of EUSTACE data'
    )
    parser.add_argument('outpath',
                        help='directory where the output should be redirected')
    parser.add_argument(
        '--json_descriptor',
        default=None,
        help=
        'a json descriptor containing the covariates to include in the climatology model'
    )
    parser.add_argument('--land_biases',
                        action='store_true',
                        help='include insitu land homogenization bias terms')
    parser.add_argument('--global_biases',
                        action='store_true',
                        help='include global satellite bias terms')
    parser.add_argument('--n_iterations',
                        type=int,
                        default=5,
                        help='number of solving iterations')
    args = parser.parse_args()

    # Input data path
    basepath = os.path.join('/work/scratch/eustace/rawbinary3')

    # Days to process
    #time_indices = range(int(days_since_epoch(datetime(2006, 2, 1))), int(days_since_epoch(datetime(2006, 2, 2))))
    #time_indices = range(int(days_since_epoch(datetime(1906, 2, 1))), int(days_since_epoch(datetime(1906, 2, 2))))

    date_list = [
        datetime(2006, 1, 1) + relativedelta(days=k) for k in range(3)
    ]

    #backwards_list = [date_list[i] for i in range(11, -1, -1)]
    #date_list = backwards_list

    time_indices = [int(days_since_epoch(date)) for date in date_list]

    # Sources to use
    sources = [
        'surfaceairmodel_land', 'surfaceairmodel_ocean', 'surfaceairmodel_ice',
        'insitu_land', 'insitu_ocean'
    ]
    sources = ['insitu_land', 'insitu_ocean']
    #sources = [ 'surfaceairmodel_land' ]
    # CLIMATOLOGY COMPONENT: combining the seasonal core along with latitude harmonics, altitude and coastal effects

    if args.json_descriptor is not None:
        loader = LoadCovariateElement(args.json_descriptor)
        loader.check_keys()
        covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters(
        )
        print(
            'The following fields have been added as covariates of the climatology model'
        )
        print(loader.data.keys())
    else:
        covariate_elements, covariate_hyperparameters = [], []

    #climatology_element = CombinationElement( [SeasonalElement(n_triangulation_divisions=2, n_harmonics=2, include_local_mean=False), GrandMeanElement()]+covariate_elements)
    #climatology_hyperparameters = CombinationHyperparameters( [SeasonalHyperparameters(n_spatial_components=2, common_log_sigma=0.0, common_log_rho=0.0), CovariateHyperparameters(numpy.log(15.0))] + covariate_hyperparameters )

    climatology_element = CombinationElement([
        GrandMeanElement(),
    ] + covariate_elements)
    climatology_hyperparameters = CombinationHyperparameters([
        CovariateHyperparameters(numpy.log(15.0)),
    ] + covariate_hyperparameters)

    #climatology_element =SeasonalElement(n_triangulation_divisions=2, n_harmonics=2, include_local_mean=False)
    #climatology_hyperparameters = SeasonalHyperparameters(n_spatial_components=2, common_log_sigma=0.0, common_log_rho=0.0)

    climatology_component = SpaceTimeComponent(
        ComponentStorage_InMemory(climatology_element,
                                  climatology_hyperparameters),
        SpaceTimeComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')

    # LARGE SCALE (kronecker product) COMPONENT: combining large scale trends with bias terms accounting for homogeneization effects

    if args.land_biases:
        bias_element, bias_hyperparameters = [
            InsituLandBiasElement(BREAKPOINTS_FILE)
        ], [CovariateHyperparameters(numpy.log(.9))]
        print('Adding bias terms for insitu land homogenization')
    else:
        bias_element, bias_hyperparameters = [], []

    large_scale_element = CombinationElement([
        SpaceTimeKroneckerElement(n_triangulation_divisions=2,
                                  alpha=2,
                                  starttime=-30,
                                  endtime=365 * 1 + 30,
                                  n_nodes=12 * 1 + 2,
                                  overlap_factor=2.5,
                                  H=1)
    ] + bias_element)
    large_scale_hyperparameters = CombinationHyperparameters([
        SpaceTimeSPDEHyperparameters(space_log_sigma=0.0,
                                     space_log_rho=numpy.log(
                                         numpy.radians(15.0)),
                                     time_log_rho=numpy.log(15.0))
    ] + bias_hyperparameters)
    large_scale_component = SpaceTimeComponent(
        ComponentStorage_InMemory(large_scale_element,
                                  large_scale_hyperparameters),
        SpaceTimeComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')

    # LOCAL COMPONENT: combining local scale variations with global satellite bias terms

    if args.global_biases:
        bias_elements = [
            BiasElement(groupname, 1) for groupname in GLOBAL_BIASES_GROUP_LIST
        ]
        bias_hyperparameters = [
            CovariateHyperparameters(numpy.log(15.0)) for index in range(3)
        ]
        print('Adding global bias terms for all the surfaces')
    else:
        bias_elements, bias_hyperparameters = [], []

    n_triangulation_divisions_local = 7
    local_log_sigma = numpy.log(5)
    local_log_rho = numpy.log(numpy.radians(5.0))
    local_element = NonStationaryLocal(
        n_triangulation_divisions=n_triangulation_divisions_local)
    n_local_nodes = local_element.spde.n_latent_variables()
    local_scale_element = CombinationElement([local_element] + bias_elements)
    local_hyperparameters = ExpandedLocalHyperparameters(
        log_sigma=numpy.repeat(local_log_sigma, n_local_nodes),
        log_rho=numpy.repeat(local_log_rho, n_local_nodes))
    local_scale_hyperparameters = CombinationHyperparameters(
        [local_hyperparameters] + bias_hyperparameters)
    local_component = DelayedSpatialComponent(
        ComponentStorage_InMemory(local_scale_element,
                                  local_scale_hyperparameters),
        SpatialComponentSolutionStorage_InMemory(),
        compute_uncertainties=True,
        method='APPROXIMATED')
    print "hyperparameter storage:", local_component.storage.hyperparameters
    print 'Analysing inputs'

    # Analysis system using the specified components, for the Tmean observable
    ##analysis_system = AnalysisSystem(
    ##    [ climatology_component, large_scale_component, local_component ],
    ##    ObservationSource.TMEAN)

    analysis_system = OptimizationSystem(
        [climatology_component, local_component], ObservationSource.TMEAN)

    # Object to load raw binary inputs at time indices
    inputloaders = [
        AnalysisSystemInputLoaderRawBinary_Sources(basepath, source,
                                                   time_indices)
        for source in sources
    ]

    for iteration in range(args.n_iterations):

        message = 'Iteration {}'.format(iteration)
        print(message)

        # Update with data
        analysis_system.update(inputloaders, time_indices)

    ##################################################

    # Optimize local model hyperparameters

    # Loop over local regions, generate optimization systems, fit hyperparameters and save

    # split spde and bias models for local component into two components
    global_spde_sub_component_definition = ComponentStorage_InMemory(
        CombinationElement([local_element]),
        CombinationHyperparameters([local_hyperparameters]))
    global_spde_sub_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
    )
    global_spde_sub_component = DelayedSpatialComponent(
        global_spde_sub_component_definition,
        global_spde_sub_component_storage_solution)

    bias_sub_component_definition = ComponentStorage_InMemory(
        CombinationElement(bias_elements),
        CombinationHyperparameters(bias_hyperparameters))
    bias_sub_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
    )
    bias_sub_component = DelayedSpatialComponent(
        bias_sub_component_definition, bias_sub_component_storage_solution)

    element_optimisation_flags = [True, False, False,
                                  False]  # one spde, three biases

    for time_key in time_indices:
        split_states_time(local_component, global_spde_sub_component,
                          bias_sub_component, element_optimisation_flags,
                          time_key)

    # Define subregions and extract their states
    neighbourhood_level = 1

    n_subregions = global_spde_sub_component.storage.element_read(
    ).combination[0].spde.n_triangles_at_level(neighbourhood_level)
    hyperparameter_file_template = "local_hyperparameters.%i.%i.%i.npy"

    fit_hyperparameters = True
    optimization_component_index = 2
    if fit_hyperparameters:
        for region_index in range(n_subregions):
            # Setup model for local subregion of neighours with super triangle
            view_flags = [
                True,
            ]
            region_element = CombinationElement([
                LocalSubRegion(n_triangulation_divisions_local,
                               neighbourhood_level, region_index)
            ])
            region_hyperparameters = ExtendedCombinationHyperparameters([
                LocalHyperparameters(log_sigma=local_log_sigma,
                                     log_rho=local_log_rho)
            ])
            region_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
            )
            region_sub_component = DelayedSpatialComponent(
                ComponentStorage_InMemory(region_element,
                                          region_hyperparameters),
                region_component_storage_solution)

            for time_key in time_indices:
                print "region_index, time_key:", region_index, time_key
                extract_local_view_states_time(global_spde_sub_component,
                                               region_sub_component,
                                               view_flags, time_key)

            print "running optimization for region:", region_index

            region_optimization_system = OptimizationSystem([
                climatology_component, bias_sub_component, region_sub_component
            ], ObservationSource.TMEAN)

            for time_key in time_indices:
                region_optimization_system.update_component_time(
                    inputloaders, optimization_component_index, time_key)

            # commented version that works for few days inputs
            #region_optimization_system.components[optimization_component_index].component_solution().optimize()
            #region_optimization_system.components[optimization_component_index].storage.hyperparameters.get_array()
            #hyperparameter_file = os.path.join(args.outpath, hyperparameter_file_template % (n_triangulation_divisions_local, neighbourhood_level, region_index) )
            #region_sub_component.storage.hyperparameters.values_to_npy_savefile( hyperparameter_file )

            # replaced with version for full processing based json dump of input files - need to generate the input_descriptor dict
            hyperparameter_file = os.path.join(
                args.outpath, hyperparameter_file_template %
                (n_triangulation_divisions_local, neighbourhood_level,
                 region_index))
            region_optimization_system.process_inputs(
                input_descriptor, optimization_component_index, time_indices)
            region_optimization_system.optimize_component(
                optimization_component_index,
                hyperparameter_storage_file=hyperparameter_file)

            fitted_hyperparameters_converted = region_sub_component.storage.hyperparameters.get_array(
            )
            fitted_hyperparameters_converted[0] = numpy.exp(
                fitted_hyperparameters_converted[0])
            fitted_hyperparameters_converted[1] = numpy.exp(
                fitted_hyperparameters_converted[1]) * 180.0 / numpy.pi
            print 'fitted_hyperparameters_converted:', fitted_hyperparameters_converted

    # Setup model for the super triangle without neighbours for hyperparameter merging
    region_spdes = []
    region_hyperparameter_values = []
    for region_index in range(n_subregions):
        # Redefine the region sub component as a supertriangle rather than a neighbourhood
        region_element = CombinationElement([
            LocalSuperTriangle(n_triangulation_divisions_local,
                               neighbourhood_level, region_index)
        ])
        region_hyperparameters = ExtendedCombinationHyperparameters([
            LocalHyperparameters(log_sigma=local_log_sigma,
                                 log_rho=local_log_rho)
        ])
        region_component_storage_solution = SpatialComponentSolutionStorage_InMemory(
        )
        region_sub_component = DelayedSpatialComponent(
            ComponentStorage_InMemory(region_element, region_hyperparameters),
            region_component_storage_solution)

        # Read the optimized hyperparameters
        hyperparameter_file = os.path.join(
            args.outpath,
            hyperparameter_file_template % (n_triangulation_divisions_local,
                                            neighbourhood_level, region_index))
        region_sub_component.storage.hyperparameters.values_from_npy_savefile(
            hyperparameter_file)

        # Append the spde model and hyperparameters to their lists for merging
        region_spdes.append(region_element.combination[0].spde)
        region_hyperparameter_values.append(
            region_sub_component.storage.hyperparameters.get_array())

    # merge and save hyperparameters
    full_spde = local_element.spde
    new_hyperparameter_values, global_sigma_design, global_rho_design = full_spde.merge_local_parameterisations(
        region_spdes, region_hyperparameter_values, merge_method='exp_average')

    local_hyperparameters.set_array(new_hyperparameter_values)
    hyperparameter_file_merged = "merged_hyperparameters.%i.%i.npy" % (
        n_triangulation_divisions_local, neighbourhood_level)
    local_hyperparameters.values_to_npy_savefile(
        os.path.join(args.outpath, hyperparameter_file_merged))

    # Refit local model with the optimized hyperparameters
    analysis_system.update_component(inputloaders, 1, time_indices)

    ##################################################

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Get date for output
        outputdate = inputloaders[0].datetime_at_time_index(time_index)
        print 'Evaluating output grid: ', outputdate

        #Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index,
            outputdate,
            latitudes=numpy.linspace(-89.875,
                                     89.875,
                                     num=definitions.GLOBAL_FIELD_SHAPE[1]),
            longitudes=numpy.linspace(-179.875,
                                      179.875,
                                      num=definitions.GLOBAL_FIELD_SHAPE[2]))

        # print 'Size of grid : ', outputstructure.number_of_observations()

        # Evaluate expected value at these locations
        result_expected_value = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        result_expected_uncertainties = analysis_system.evaluate_expected_value(
            'post_STD', outputstructure, 'POINTWISE')

        # Make output filename
        pathname = 'eustace_example_output_{0:04d}{1:02d}{2:02d}.nc'.format(
            outputdate.year, outputdate.month, outputdate.day)
        pathname = os.path.join(args.outpath, pathname)
        print 'Saving: ', pathname

        # Save results
        filebuilder = FileBuilderGlobalField(
            pathname, time_index, 'Infilling Example', 'UNVERSIONED',
            definitions.TAS.name, '', 'Example data only',
            'eustace.analysis.advanced_standard.examples.example_eustace_few_days',
            '')
        filebuilder.add_global_field(
            definitions.TAS,
            result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(
            definitions.TASUNCERTAINTY,
            result_expected_uncertainties.reshape(
                definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.save_and_close()

    print 'Complete'
コード例 #21
0
def main():

    print 'EUSTACE example using HadCRUT4 monthly data'

    # Input data path
    input_basepath = os.path.join(WORKSPACE_PATH, 'data/incoming/HadCRUT4.5.0.0')

    # Input filenames
    input_filenames = [
        'hadcrut4_median_netcdf.nc',
        'hadcrut4_uncorrelated_supplementary.nc',
        'hadcrut4_blended_uncorrelated.nc' ]

    # Months to process
    time_indices = range(2)

    # Climatology component
    climatology_component = SpaceTimeComponent(ComponentStorage_InMemory(SeasonalElement(n_triangulation_divisions=5, n_harmonics=5, include_local_mean=True),
                                                                         SeasonalHyperparameters(n_spatial_components=6, common_log_sigma=1.0, common_log_rho=0.0)),
                                               SpaceTimeComponentSolutionStorage_InMemory())

    # Number of factors for large scale (factor analysis) component and initial hyperparameters
    n_factors = 5
    factors = [ ]
    factor_hyperparameters = [ ]
    for factor_index in range(n_factors):

        factor_hyperparameters.append( SpaceTimeSPDEHyperparameters(
                space_log_sigma=0.0,
                space_log_rho=numpy.log(10.0 * numpy.pi/180 + 25.0 * numpy.pi/180 *(n_factors - factor_index) / n_factors),
                time_log_rho=numpy.log(1/12.0 + 6/12.0*(n_factors - factor_index) / n_factors)) )

        factors.append( SpaceTimeFactorElement(n_triangulation_divisions=5, alpha=2, starttime=0, endtime=36, overlap_factor=2.5, H=1) )

    # Large scale (factor analysis) component
    large_scale_component = SpaceTimeComponent(ComponentStorage_InMemory(CombinationElement(factors), CombinationHyperparameters(factor_hyperparameters)),
                                               SpaceTimeComponentSolutionStorage_InMemory())

    # Local component
    local_component = SpatialComponent(ComponentStorage_InMemory(LocalElement(n_triangulation_divisions=4), 
                                                                 LocalHyperparameters(log_sigma=0.0, log_rho=numpy.log(10.0 * numpy.pi/180))),
                                       SpatialComponentSolutionStorage_InMemory())

    print 'Analysing inputs'

    # Analysis system using the specified components, for the Tmean observable
    analysis_system = AnalysisSystem(
        [ climatology_component, large_scale_component, local_component ],
        ObservationSource.TMEAN)

    # Make filelist
    input_filelist = [ os.path.join(input_basepath, filename) for filename in input_filenames ]

    # Object to load HadCRUT4 inputs at time indices
    inputloader = AnalysisSystemInputLoaderHadCRUT4(input_filelist)

    # Update with data
    analysis_system.update([ inputloader ], time_indices)

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Make output filename
        outputdate = inputloader.datetime_at_time_index(time_index)
        pathname = 'example_output_{0:04d}{1:02d}.nc'.format(outputdate.year, outputdate.month)
        print 'Saving: ', pathname

        # Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index, outputdate,
            latitudes=numpy.linspace(-87.5, 87.5, num=36),
            longitudes=numpy.linspace(-177.5, 177.5, num=72))

        # Evaluate expected value at these locations
        result_expected_value = analysis_system.evaluate_expected_value(outputstructure)

        # Save results
        filebuilder = FileBuilderHadCRUT4ExampleOutput(pathname, outputstructure)
        filebuilder.add_global_field(TAS_ANOMALY, result_expected_value.reshape(1,36,72))
        filebuilder.save_and_close()

    print 'Complete'
コード例 #22
0
def main():

    print 'Advanced standard example using a few days of EUSTACE data'
    parser = argparse.ArgumentParser(description='Advanced standard example using a few days of EUSTACE data')
    parser.add_argument('outpath', help='directory where the output should be redirected')
    parser.add_argument('--json_descriptor', default = None, help='a json descriptor containing the covariates to include in the climatology model')
    parser.add_argument('--land_biases', action='store_true', help='include insitu land homogenization bias terms')
    parser.add_argument('--global_biases', action='store_true', help='include global satellite bias terms')
    parser.add_argument('--n_iterations', type=int, default=5, help='number of solving iterations')
    args = parser.parse_args()

    # Input data path
    basepath = os.path.join('/work/scratch/eustace/rawbinary3')

    # Days to process
    time_indices = range(int(days_since_epoch(datetime(2006, 2, 1))), int(days_since_epoch(datetime(2006, 2, 2))))

    # Sources to use
    sources = [ 'surfaceairmodel_land', 'surfaceairmodel_ocean', 'surfaceairmodel_ice', 'insitu_land', 'insitu_ocean' ]    

    #SETUP
    # setup for the seasonal core: climatology covariates setup read from file
    seasonal_setup = {'n_triangulation_divisions':5,
		      'n_harmonics':4,
		      'n_spatial_components':6,
		      'amplitude':2.,
		      'space_length_scale':5., # length scale in units of degrees
		     }
    grandmean_amplitude = 15.0
    
    # setup for the large scale component
    spacetime_setup = {'n_triangulation_divisions':2,
		       'alpha':2,
		       'starttime':0,
		       'endtime':10.,
		       'n_nodes':2,
		       'overlap_factor':2.5,
		       'H':1,
		       'amplitude':1.,
		       'space_lenght_scale':15.0, # length scale in units of degrees
		       'time_length_scale':15.0   # length scal in units of days
		      }
    bias_amplitude = .9

    # setup for the local component
    local_setup = {'n_triangulation_divisions':6,
                   'amplitude':2.,
                   'space_length_scale':2. # length scale in units of degrees
                  }
    globalbias_amplitude = 15.0

    # CLIMATOLOGY COMPONENT: combining the seasonal core along with latitude harmonics, altitude and coastal effects    
    if args.json_descriptor is not None:
      loader = LoadCovariateElement(args.json_descriptor)
      loader.check_keys()
      covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters()
      print('The following fields have been added as covariates of the climatology model')
      print(loader.data.keys())
    else:
      covariate_elements, covariate_hyperparameters = [], []

    climatology_element = CombinationElement( [SeasonalElement(n_triangulation_divisions=seasonal_setup['n_triangulation_divisions'], 
							       n_harmonics=seasonal_setup['n_harmonics'], 
							       include_local_mean=True), 
					       GrandMeanElement()]+covariate_elements)       
    climatology_hyperparameters = CombinationHyperparameters( [SeasonalHyperparameters(n_spatial_components=seasonal_setup['n_spatial_components'], 
										       common_log_sigma=numpy.log(seasonal_setup['amplitude']), 
										       common_log_rho=numpy.log(numpy.radians(seasonal_setup['space_length_scale']))), 
							       CovariateHyperparameters(numpy.log(grandmean_amplitude))] + covariate_hyperparameters )
    climatology_component = SpaceTimeComponent(ComponentStorage_InMemory(climatology_element, climatology_hyperparameters), SpaceTimeComponentSolutionStorage_InMemory(), 
                                                                         compute_uncertainties=True, method='APPROXIMATED',
                                                                         compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])

    # LARGE SCALE (kronecker product) COMPONENT: combining large scale trends with bias terms accounting for homogeneization effects    
    if args.land_biases:
	bias_element, bias_hyperparameters = [InsituLandBiasElement(BREAKPOINTS_FILE)], [CovariateHyperparameters(numpy.log(bias_amplitude))]
	print('Adding bias terms for insitu land homogenization')
    else:
	bias_element, bias_hyperparameters = [], []

    large_scale_element = CombinationElement( [SpaceTimeKroneckerElement(n_triangulation_divisions=spacetime_setup['n_triangulation_divisions'], 
                                                                         alpha=spacetime_setup['alpha'], 
                                                                         starttime=spacetime_setup['starttime'], 
                                                                         endtime=spacetime_setup['endtime'], 
                                                                         n_nodes=spacetime_setup['n_nodes'], 
                                                                         overlap_factor=spacetime_setup['overlap_factor'], 
                                                                         H=spacetime_setup['H'])] + bias_element)
    large_scale_hyperparameters = CombinationHyperparameters( [SpaceTimeSPDEHyperparameters(space_log_sigma=numpy.log(spacetime_setup['amplitude']),
                                                                                            space_log_rho=numpy.log(numpy.radians(spacetime_setup['space_lenght_scale'])), 
                                                                                            time_log_rho=numpy.log(spacetime_setup['time_length_scale']))] + bias_hyperparameters) 
    large_scale_component =  SpaceTimeComponent(ComponentStorage_InMemory(large_scale_element, large_scale_hyperparameters), SpaceTimeComponentSolutionStorage_InMemory(), 
                                                                          compute_uncertainties=True, method='APPROXIMATED',
                                                                          compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])
                                 
    # LOCAL COMPONENT: combining local scale variations with global satellite bias terms    
    if args.global_biases:
	bias_elements = [BiasElement(groupname, 1) for groupname in GLOBAL_BIASES_GROUP_LIST]
	bias_hyperparameters = [CovariateHyperparameters(numpy.log(globalbias_amplitude)) for index in range(len(GLOBAL_BIASES_GROUP_LIST))]
	print('Adding global bias terms for all the surfaces')
    else:
	bias_elements, bias_hyperparameters = [], []

    local_scale_element = CombinationElement([LocalElement(n_triangulation_divisions=local_setup['n_triangulation_divisions'])] + bias_elements)
    local_scale_hyperparameters = CombinationHyperparameters([LocalHyperparameters(log_sigma=numpy.log(local_setup['amplitude']), 
                                                                                   log_rho=numpy.log(numpy.radians(local_setup['space_length_scale'])))] + bias_hyperparameters)
    local_component = SpatialComponent(ComponentStorage_InMemory(local_scale_element, local_scale_hyperparameters), SpatialComponentSolutionStorage_InMemory(), 
                                                                 compute_uncertainties=True, method='APPROXIMATED',
                                                                 compute_sample=True, sample_size=definitions.GLOBAL_SAMPLE_SHAPE[3])

    # Analysis system using the specified components, for the Tmean observable
    print 'Analysing inputs'

    analysis_system = AnalysisSystem(
        [ climatology_component, large_scale_component, local_component ],
        ObservationSource.TMEAN)

    # Object to load raw binary inputs at time indices
    inputloaders = [ AnalysisSystemInputLoaderRawBinary_Sources(basepath, source, time_indices) for source in sources ]

    for iteration in range(args.n_iterations):
	
	message = 'Iteration {}'.format(iteration)
	print(message)
	
	# Update with data
	analysis_system.update(inputloaders, time_indices)

    print 'Computing outputs'

    # Produce an output for each time index
    for time_index in time_indices:

        # Get date for output
        outputdate = inputloaders[0].datetime_at_time_index(time_index)
        print 'Evaluating output grid: ', outputdate

        #Configure output grid
        outputstructure = OutputRectilinearGridStructure(
            time_index, outputdate,
            latitudes=numpy.linspace(-90.+definitions.GLOBAL_FIELD_RESOLUTION/2., 90.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[1]),
            longitudes=numpy.linspace(-180.+definitions.GLOBAL_FIELD_RESOLUTION/2., 180.-definitions.GLOBAL_FIELD_RESOLUTION/2., num=definitions.GLOBAL_FIELD_SHAPE[2]))

        # Evaluate expected value at these locations
        for field in ['MAP', 'post_STD']:
	  print 'Evaluating: ',field
	  result_expected_value = analysis_system.evaluate_expected_value('MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
	  result_expected_uncertainties = analysis_system.evaluate_expected_value('post_STD', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1,1], 1000)
	  
	print 'Evaluating: climatology fraction'
	climatology_fraction = analysis_system.evaluate_climatology_fraction(outputstructure, [1,1], 1000)

	print 'Evaluating: the sample'
	sample = analysis_system.evaluate_projected_sample(outputstructure)

	# Make output filename
        pathname = 'eustace_example_output_{0:04d}{1:02d}{2:02d}.nc'.format(outputdate.year, outputdate.month, outputdate.day)
	pathname = os.path.join(args.outpath, pathname)
        print 'Saving: ', pathname

        # Save results
        filebuilder = FileBuilderGlobalField(
            pathname, 
            time_index,
            'Infilling Example',
            'UNVERSIONED',
            definitions.TAS.name,
            '',
            'Example data only',
            'eustace.analysis.advanced_standard.examples.example_eustace_few_days', 
            '')
        filebuilder.add_global_field(definitions.TAS, result_expected_value.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(definitions.TASUNCERTAINTY, result_expected_uncertainties.reshape(definitions.GLOBAL_FIELD_SHAPE))
        filebuilder.add_global_field(definitions.TAS_CLIMATOLOGY_FRACTION, climatology_fraction.reshape(definitions.GLOBAL_FIELD_SHAPE))

	for index in range(definitions.GLOBAL_SAMPLE_SHAPE[3]):
	  variable = copy.deepcopy(definitions.TASENSEMBLE)
	  variable.name = variable.name + '_' + str(index)
	  selected_sample = sample[:,index].ravel()+result_expected_value
	  filebuilder.add_global_field(variable, selected_sample.reshape(definitions.GLOBAL_FIELD_SHAPE))
	  
	filebuilder.save_and_close()

    print 'Complete'
コード例 #23
0
    def test_mini_world_altitude_with_latitude(self):
        """Testing using altitude as a covariate"""

        # GENERATING OBSERVATIONS
        # Simulated locations: they will exactly sits on the grid points of the covariate datafile
        DEM = Dataset(self.altitude_datafile)
        latitude = DEM.variables['lat'][:]
        longitude = DEM.variables['lon'][:]
        altitude = DEM.variables['dem'][:]

        indices = numpy.stack(
            (numpy.array([1, 3, 5, 7, 8, 9, 10, 11
                          ]), numpy.array([0, 0, 0, 0, 0, 0, 0, 0])),
            axis=1)

        selected_location = []
        altitude_observations = []
        for couple in indices:
            selected_location.append([
                latitude[couple[0], couple[1]], longitude[couple[0], couple[1]]
            ])
            altitude_observations.append(altitude[couple[0], couple[1]])
        DEM.close()

        locations = numpy.array(selected_location)
        # Simulated model is y = z + a*cos(2x) + c*cos(4*x) + b*sin(2x) + d*sin(4*x), with z = altitude, x = latitude, a=b=c=d=0
        slope = 1e-3
        measurement = slope * numpy.array(altitude_observations)

        # Simulated errors
        uncorrelatederror = 0.1 * numpy.ones(measurement.shape)

        # Simulated inputs
        simulated_input_loader = SimulatedInputLoader(locations, measurement,
                                                      uncorrelatederror)

        # Simulate evaluation of this time index
        simulated_time_indices = [0]

        # GENERATING THE MODEL
        # Local component
        geography_covariate_element = GeographyBasedElement(
            self.altitude_datafile, 'lat', 'lon', 'dem', 1.0)
        geography_covariate_element.load()
        combined_element = CombinationElement(
            [geography_covariate_element,
             LatitudeHarmonicsElement()])
        combined_hyperparamters = CombinationHyperparameters([
            CovariateHyperparameters(-0.5 * numpy.log(10.)),
            CombinationHyperparameters([
                CovariateHyperparameters(-0.5 * numpy.log(p))
                for p in [10.0, 10.0, 10.0, 10.0]
            ])
        ])
        combined_component = SpatialComponent(
            ComponentStorage_InMemory(combined_element,
                                      combined_hyperparamters),
            SpatialComponentSolutionStorage_InMemory())

        # GENERATING THE ANALYSIS
        # Analysis system using the specified components, for the Tmean observable
        analysis_system = AnalysisSystem([combined_component],
                                         ObservationSource.TMEAN,
                                         log=StringIO())

        # Update with data
        analysis_system.update([simulated_input_loader],
                               simulated_time_indices)

        # Check state vector directly
        statevector = analysis_system.components[
            0].solutionstorage.partial_state_read(0).ravel()

        # These are the nodes where observations were put (see SimulatedObservationSource above)
        # - check they correspond to within 3 times the stated noise level
        self.assertAlmostEqual(slope, statevector[0], delta=0.3)
        self.assertAlmostEqual(0., statevector[1], delta=0.3)
        self.assertAlmostEqual(0., statevector[2], delta=0.3)
        self.assertAlmostEqual(0., statevector[3], delta=0.3)
        self.assertAlmostEqual(0., statevector[4], delta=0.3)

        # And check output corresponds too
        # (evaluate result on output structure same as input)
        simulated_output_structure = SimulatedObservationStructure(
            0, locations, None, None)
        result = analysis_system.evaluate_expected_value(
            'MAP', simulated_output_structure, flag='POINTWISE')
        expected = statevector[0]*numpy.array(altitude_observations)\
                        + statevector[1]*LatitudeFunction(numpy.cos, 2.0).compute(locations[:,0]).ravel()\
                        + statevector[2]*LatitudeFunction(numpy.sin, 2.0).compute(locations[:,0]).ravel()\
                        + statevector[3]*LatitudeFunction(numpy.cos, 4.0).compute(locations[:,0]).ravel()\
                        + statevector[4]*LatitudeFunction(numpy.sin, 2.0).compute(locations[:,0]).ravel()
        numpy.testing.assert_almost_equal(expected, result)

        # test output gridding, pointwise limit
        outputstructure = OutputRectilinearGridStructure(
            2,
            epoch_plus_days(2),
            latitudes=numpy.linspace(-60., 60., num=5),
            longitudes=numpy.linspace(-90., 90, num=10))
        pointwise_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'POINTWISE')
        pointwise_limit_result = analysis_system.evaluate_expected_value(
            'MAP', outputstructure, 'GRID_CELL_AREA_AVERAGE', [1, 1], 10)
        numpy.testing.assert_array_almost_equal(pointwise_result,
                                                pointwise_limit_result)
コード例 #24
0
    def __init__(self, covariates_descriptor):
        if covariates_descriptor is not None:
            loader = LoadCovariateElement(covariates_descriptor)
            loader.check_keys()
            covariate_elements, covariate_hyperparameters = loader.load_covariates_and_hyperparameters(
            )
            print(
                'The following fields have been added as covariates of the climatology model'
            )
            print(loader.data.keys())
        else:
            covariate_elements, covariate_hyperparameters = [], []

        setup = MovingClimatologySetup()

        model_elements = CombinationElement([
            AnnualKroneckerElement(
                setup.seasonal_spline_settings.n_triangulation_divisions, setup
                .seasonal_spline_settings.alpha, setup.seasonal_spline_settings
                .starttime, setup.seasonal_spline_settings.endtime,
                setup.seasonal_spline_settings.n_nodes,
                setup.seasonal_spline_settings.overlap_factor,
                setup.seasonal_spline_settings.H,
                setup.seasonal_spline_settings.wrap_dimensions),
            #SeasonalElement(setup.seasonal_settings.n_triangulation_divisions,
            #setup.seasonal_settings.n_harmonics,
            #include_local_mean=setup.seasonal_settings.include_local_mean),
            GrandMeanElement(),
            LatitudeSplineElement(
                setup.latitude_settings.alpha,
                setup.latitude_settings.n_nodes,
                setup.latitude_settings.overlap_factor,
                setup.latitude_settings.H,
            ),
        ] + covariate_elements)

        seasonal_hyperparameters = SeasonalHyperparameters(
            setup.seasonal_settings.n_spatial_components,
            numpy.log(setup.seasonal_settings.amplitude),
            numpy.log(numpy.radians(
                setup.seasonal_settings.space_length_scale)))

        seasonal_spline_hyperparameters = SpaceTimeSPDEHyperparameters(
            numpy.log(setup.seasonal_spline_settings.amplitude),
            numpy.log(
                numpy.radians(
                    setup.seasonal_spline_settings.space_length_scale)),
            numpy.log(setup.seasonal_spline_settings.time_length_scale))

        seasonal_params = zip(
            numpy.log(setup.seasonal_settings.harmonic_amplitudes),
            numpy.log(
                numpy.radians(setup.seasonal_settings.harmonic_length_scales)))
        seasonal_hyperparameters.set_array(
            [val for pair in seasonal_params for val in pair])

        model_hyperparameters = CombinationHyperparameters([
            seasonal_spline_hyperparameters,
            #seasonal_hyperparameters,
            CovariateHyperparameters(
                numpy.log(setup.covariate_settings.grandmean_amplitude)),
            #SpaceTimeSPDEHyperparameters(numpy.log(setup.slow_settings.amplitude),
            #numpy.log(numpy.radians(setup.slow_settings.space_length_scale)),
            #numpy.log(setup.slow_settings.time_length_scale)),
            LocalHyperparameters(
                numpy.log(setup.latitude_settings.amplitude),
                numpy.log(setup.latitude_settings.length_scale))
        ] + covariate_hyperparameters)

        super(ClimatologyDefinition, self).__init__(model_elements,
                                                    model_hyperparameters)