コード例 #1
0
#compDatasets = [sampleDatasets_pf_cpf_sv,["db","sv"],["db","sv"],["db","sv"],["db","sv"]]
#compTrainDataCollections = [trainDataCollection_pf_cpf_sv,trainDataCollection_sv,trainDataCollection_sv,trainDataCollection_sv,trainDataCollection_sv]
#compTestDataCollections = [testDataCollection_pf_cpf_sv, testDataCollection_sv,testDataCollection_sv,testDataCollection_sv,testDataCollection_sv]

from DataCollection import DataCollection

if os.path.isdir(compareDir):
    raise Exception('output directory: %s must not exists yet' % compareDir)
else:
    os.mkdir(compareDir)

models = []
testds = []
for i in range(len(compModels)):
    curModel = loadModel(compTrainDirs[i], compTrainDataCollections[i],
                         compModels[i], compLoadModels[i], compDatasets[i],
                         compRemovals[i])
    testd = DataCollection()
    testd.readFromFile(compTestDataCollections[i])

    models.append(curModel)
    testds.append(testd)
    #print testd
    #print testds
    #makeComparisonPlots(testd,curModel,compNames,compareDir)

print testds
print models
print compNames
print compareDir
makeComparisonPlots(testds, models, compNames, compareDir)
コード例 #2
0
ファイル: deepDoubleB_eval.py プロジェクト: rsyarif/DeepJet
inputDataset = sampleDatasets_cpf_sv
trainDir = opts.d
inputTrainDataCollection = opts.i
inputTestDataCollection = opts.t
LoadModel = False
removedVars = None
forceNClasses = False
signals = [1]
sigNames = ['Hbb']
backgrounds = [0]
backNames = ['QCD']
NClasses = len(signals) + len(backgrounds)

if True:
    evalModel = loadModel(trainDir, inputTrainDataCollection, trainingModel,
                          LoadModel, forceNClasses, NClasses, inputDataset,
                          removedVars)

    evalDir = opts.o

    from DeepJetCore.DataCollection import DataCollection
    testd = DataCollection()
    testd.readFromFile(inputTestDataCollection)

    if os.path.isdir(evalDir):
        raise Exception('output directory: %s must not exists yet' % evalDir)
    else:
        os.mkdir(evalDir)

    df, features_val = makePlots(testd, evalModel, evalDir)
    makeLossPlot(trainDir, evalDir)
コード例 #3
0
ファイル: plots.py プロジェクト: DeepDoubleB/DeepJet_old
trainDataCollection = '/cms-sc17/convert_20180401_ak8_deepDoubleB_db_cpf_sv_reduced_6label_train_val/dataCollection.dc'
testDataCollection = '/cms-sc17/convert_20180401_ak8_deepDoubleB_db_cpf_sv_reduced_6label_test/dataCollection.dc'

datasets = ["db", "cpf", "SV"]
removedVars = None
LoadModel = True

from DeepJet_models_final import conv_model_final as trainingModel
from eval_funcs import loadModel, _byteify, makeLossPlot

trainDir = "train_2018Samples_60Track_fixed/"

#trainDir_massPen = "train_2018Samples_60Track_fixed_BNfixed/"
trainDir_massPen = "../independence/example/train_2018Samples_60Track_fixed_lossFunc/"

evalModel = loadModel(trainDir, trainDataCollection, trainingModel, LoadModel,
                      datasets)
evalModel_massPen = loadModel(trainDir_massPen, trainDataCollection,
                              trainingModel, LoadModel, datasets)

#outputDir = "Plots/2018Samples_6Label/"
outputDir = "Plots/2018Samples_fixed_31May/"

if os.path.isdir(outputDir):
    shutil.rmtree(outputDir)
    os.mkdir(outputDir)
else:
    os.mkdir(outputDir)

shutil.copy2('plots.py', outputDir)

#### READ IN DATA ###