def evaluateAP(gtFramesAll, prFramesAll, outputDir, bSaveAll=True, bSaveSeq=False): distThresh = 0.5 seqidxs = [] for imgidx in range(len(gtFramesAll)): seqidxs += [gtFramesAll[imgidx]["seq_id"]] seqidxs = np.array(seqidxs) seqidxsUniq = np.unique(seqidxs) nSeq = len(seqidxsUniq) names = Joint().name names['15'] = 'total' if (bSaveSeq): for si in range(nSeq): print("seqidx: %d/%d" % (si+1,nSeq)) # extract frames IDs for the sequence imgidxs = np.argwhere(seqidxs == seqidxsUniq[si]) seqName = gtFramesAll[imgidxs[0,0]]["seq_name"] gtFrames = [gtFramesAll[imgidx] for imgidx in imgidxs.flatten().tolist()] prFrames = [prFramesAll[imgidx] for imgidx in imgidxs.flatten().tolist()] # assign predicted poses to GT poses scores, labels, nGT, _ = eval_helpers.assignGTmulti(gtFrames, prFrames, distThresh) # compute average precision (AP), precision and recall per part ap, pre, rec = computeMetrics(scores, labels, nGT) metricsSeq = {'ap': ap.flatten().tolist(), 'pre': pre.flatten().tolist(), 'rec': rec.flatten().tolist(), 'names': names} filename = outputDir + '/' + seqName + '_AP_metrics.json' print('saving results to', filename) eval_helpers.writeJson(metricsSeq,filename) # assign predicted poses to GT poses scoresAll, labelsAll, nGTall, _ = eval_helpers.assignGTmulti(gtFramesAll, prFramesAll, distThresh) # compute average precision (AP), precision and recall per part apAll, preAll, recAll = computeMetrics(scoresAll, labelsAll, nGTall) if (bSaveAll): metrics = {'ap': apAll.flatten().tolist(), 'pre': preAll.flatten().tolist(), 'rec': recAll.flatten().tolist(), 'names': names} filename = outputDir + '/total_AP_metrics.json' print('saving results to', filename) eval_helpers.writeJson(metrics,filename) return apAll, preAll, recAll
def evaluateAP(gtFramesAll, prFramesAll, bSaveAll=True, bSaveSeq=False): distThresh = 0.5 names = Joint().name names['17'] = 'total' # assign predicted poses to GT poses scoresAll, labelsAll, nGTall = eval_helpers.assignGTmulti(gtFramesAll, prFramesAll, distThresh) # compute average precision (AP), precision and recall per part apAll, preAll, recAll = computeMetrics(scoresAll, labelsAll, nGTall) if (bSaveAll): metrics = {'ap': apAll.flatten().tolist(), 'pre': preAll.flatten().tolist(), 'rec': recAll.flatten().tolist(), 'names': names} filename = './total_AP_metrics.json' eval_helpers.writeJson(metrics,filename) return apAll, preAll, recAll
def computeMetrics(gtFramesAll, motAll, outputDir, bSaveAll, bSaveSeq): assert (len(gtFramesAll) == len(motAll)) nJoints = Joint().count seqidxs = [] for imgidx in range(len(gtFramesAll)): seqidxs += [gtFramesAll[imgidx]["seq_id"]] seqidxs = np.array(seqidxs) seqidxsUniq = np.unique(seqidxs) # intermediate metrics metricsMidNames = [ 'num_misses', 'num_switches', 'num_false_positives', 'num_objects', 'num_detections' ] # final metrics computed from intermediate metrics metricsFinNames = ['mota', 'motp', 'pre', 'rec'] # initialize intermediate metrics metricsMidAll = {} for name in metricsMidNames: metricsMidAll[name] = np.zeros([1, nJoints]) metricsMidAll['sumD'] = np.zeros([1, nJoints]) # initialize final metrics metricsFinAll = {} for name in metricsFinNames: metricsFinAll[name] = np.zeros([1, nJoints + 1]) # create metrics mh = mm.metrics.create() imgidxfirst = 0 # iterate over tracking sequences # seqidxsUniq = seqidxsUniq[:20] nSeq = len(seqidxsUniq) # initialize per-sequence metrics metricsSeqAll = {} for si in range(nSeq): metricsSeqAll[si] = {} for name in metricsFinNames: metricsSeqAll[si][name] = np.zeros([1, nJoints + 1]) names = Joint().name names['15'] = 'total' for si in range(nSeq): print("seqidx: %d/%d" % (si + 1, nSeq)) # init per-joint metrics accumulator accAll = {} for i in range(nJoints): accAll[i] = mm.MOTAccumulator(auto_id=True) # extract frames IDs for the sequence imgidxs = np.argwhere(seqidxs == seqidxsUniq[si]) imgidxs = imgidxs[:-1].copy() seqName = gtFramesAll[imgidxs[0, 0]]["seq_name"] print(seqName) # create an accumulator that will be updated during each frame # iterate over frames for j in range(len(imgidxs)): imgidx = imgidxs[j, 0] # iterate over joints for i in range(nJoints): # GT tracking ID trackidxGT = motAll[imgidx][i]["trackidxGT"] # prediction tracking ID trackidxPr = motAll[imgidx][i]["trackidxPr"] # distance GT <-> pred part to compute MOT metrics # 'NaN' means force no match dist = motAll[imgidx][i]["dist"] # Call update once per frame accAll[i].update( trackidxGT, # Ground truth objects in this frame trackidxPr, # Detector hypotheses in this frame dist # Distances from objects to hypotheses ) # compute intermediate metrics per joint per sequence for i in range(nJoints): metricsMid = mh.compute(accAll[i], metrics=metricsMidNames, return_dataframe=False, name='acc') for name in metricsMidNames: metricsMidAll[name][0, i] += metricsMid[name] s = accAll[i].events['D'].sum() if (np.isnan(s)): s = 0 metricsMidAll['sumD'][0, i] += s if (bSaveSeq): # compute metrics per joint per sequence for i in range(nJoints): metricsMid = mh.compute(accAll[i], metrics=metricsMidNames, return_dataframe=False, name='acc') # compute final metrics per sequence if (metricsMid['num_objects'] > 0): numObj = metricsMid['num_objects'] else: numObj = np.nan numFP = metricsMid['num_false_positives'] metricsSeqAll[si]['mota'][0, i] = 100 * ( 1. - 1. * (metricsMid['num_misses'] + metricsMid['num_switches'] + numFP) / numObj) numDet = metricsMid['num_detections'] s = accAll[i].events['D'].sum() if (numDet == 0 or np.isnan(s)): metricsSeqAll[si]['motp'][0, i] = 0.0 else: metricsSeqAll[si]['motp'][0, i] = 100 * (1. - (1. * s / numDet)) if (numFP + numDet > 0): totalDet = numFP + numDet else: totalDet = np.nan metricsSeqAll[si]['pre'][0, i] = 100 * (1. * numDet / totalDet) metricsSeqAll[si]['rec'][0, i] = 100 * (1. * numDet / numObj) # average metrics over all joints per sequence idxs = np.argwhere( ~np.isnan(metricsSeqAll[si]['mota'][0, :nJoints])) metricsSeqAll[si]['mota'][0, nJoints] = metricsSeqAll[si]['mota'][ 0, idxs].mean() idxs = np.argwhere( ~np.isnan(metricsSeqAll[si]['motp'][0, :nJoints])) metricsSeqAll[si]['motp'][0, nJoints] = metricsSeqAll[si]['motp'][ 0, idxs].mean() idxs = np.argwhere( ~np.isnan(metricsSeqAll[si]['pre'][0, :nJoints])) metricsSeqAll[si]['pre'][0, nJoints] = metricsSeqAll[si]['pre'][ 0, idxs].mean() idxs = np.argwhere( ~np.isnan(metricsSeqAll[si]['rec'][0, :nJoints])) metricsSeqAll[si]['rec'][0, nJoints] = metricsSeqAll[si]['rec'][ 0, idxs].mean() metricsSeq = metricsSeqAll[si].copy() metricsSeq['mota'] = metricsSeq['mota'].flatten().tolist() metricsSeq['motp'] = metricsSeq['motp'].flatten().tolist() metricsSeq['pre'] = metricsSeq['pre'].flatten().tolist() metricsSeq['rec'] = metricsSeq['rec'].flatten().tolist() metricsSeq['names'] = names filename = outputDir + '/' + seqName + '_MOT_metrics.json' print('saving results to', filename) eval_helpers.writeJson(metricsSeq, filename) # compute final metrics per joint for all sequences for i in range(nJoints): if (metricsMidAll['num_objects'][0, i] > 0): numObj = metricsMidAll['num_objects'][0, i] else: numObj = np.nan numFP = metricsMidAll['num_false_positives'][0, i] metricsFinAll['mota'][0, i] = 100 * ( 1. - (metricsMidAll['num_misses'][0, i] + metricsMidAll['num_switches'][0, i] + numFP) / numObj) numDet = metricsMidAll['num_detections'][0, i] s = metricsMidAll['sumD'][0, i] if (numDet == 0 or np.isnan(s)): metricsFinAll['motp'][0, i] = 0.0 else: metricsFinAll['motp'][0, i] = 100 * (1. - (s / numDet)) if (numFP + numDet > 0): totalDet = numFP + numDet else: totalDet = np.nan metricsFinAll['pre'][0, i] = 100 * (1. * numDet / totalDet) metricsFinAll['rec'][0, i] = 100 * (1. * numDet / numObj) # average metrics over all joints over all sequences idxs = np.argwhere(~np.isnan(metricsFinAll['mota'][0, :nJoints])) metricsFinAll['mota'][0, nJoints] = metricsFinAll['mota'][0, idxs].mean() idxs = np.argwhere(~np.isnan(metricsFinAll['motp'][0, :nJoints])) metricsFinAll['motp'][0, nJoints] = metricsFinAll['motp'][0, idxs].mean() idxs = np.argwhere(~np.isnan(metricsFinAll['pre'][0, :nJoints])) metricsFinAll['pre'][0, nJoints] = metricsFinAll['pre'][0, idxs].mean() idxs = np.argwhere(~np.isnan(metricsFinAll['rec'][0, :nJoints])) metricsFinAll['rec'][0, nJoints] = metricsFinAll['rec'][0, idxs].mean() if (bSaveAll): metricsFin = metricsFinAll.copy() metricsFin['mota'] = metricsFin['mota'].flatten().tolist() metricsFin['motp'] = metricsFin['motp'].flatten().tolist() metricsFin['pre'] = metricsFin['pre'].flatten().tolist() metricsFin['rec'] = metricsFin['rec'].flatten().tolist() metricsFin['names'] = names filename = outputDir + '/total_MOT_metrics.json' print('saving results to', filename) eval_helpers.writeJson(metricsFin, filename) return metricsFinAll