e = s + 5 opt.weights = opt.weights[:s] + ('fold%d' % fold) + opt.weights[e:] opt.fold = fold if opt.h5: testset = h5_dataset.H5Dataset(opt, split=2) opt.num_workers = 0 else: testset = datasets.Dataset(opt, 'test') loader = DataLoader(testset, batch_size=1, shuffle=False, num_workers=0) model.load_weights(opt.weights) model.cuda() log, rf, rt = mAP(model, loader, args, 0) rt['log'] = average_dictionary(rt['log'], r_keys) copy_log(rt) print(log) rts.append(rt) else: log, _, avg = mAP(model, loader, args, 0) avg['log'] = average_dictionary(avg['log'], r_keys) copy_log(avg) rts = [avg] print(log) def final_log(dicts, keys, title): res = average_dictionary(dicts, keys, False, True)
args.score_threshold = opt.score_threshold args.num_queries = -1 args.score_nms_overlap = opt.score_nms_overlap args.overlap_threshold = 0.5 args.gpu = True args.use_external_proposals = int(opt.external_proposals) args.max_proposals = opt.max_proposals args.rpn_nms_thresh = opt.test_rpn_nms_thresh args.num_workers = 6 args.numpy = False trainlog = '' start = time.time() loss_history, mAPs = [], [] if opt.eval_first_iteration: log, rf, rt = mAP(model, valloader, args, it) trainlog += log if show: print(log) best_score = (rt.mAP_qbe_50 + rt.mAP_qbs_50) / 2 mAPs.append((it, [rt.mAP_qbe_50, rt.mAP_qbs_50])) else: best_score = 0.0 if opt.weights: opt.save_id += '_pretrained' if not os.path.exists('checkpoints/ctrlfnet_mini/'): os.makedirs('checkpoints/ctrlfnet_mini/')