def evaluate_main_modified(dataset): args, train_args = _parse_args_modified(dataset) print("train_args:\n", train_args) # TODO do this argument transfering in the load_train_args instead of train.py, evaluate.py, ensemble_evaluate.py train_args.checkpoint_model_num = args.checkpoint_model_num train_args.entity_extension = args.entity_extension train.args = args args.batch_size = train_args.batch_size printPredictions = None if args.print_predictions: from evaluation.print_predictions import PrintPredictions printPredictions = PrintPredictions( config.base_folder + "data/tfrecords/" + args.experiment_name + "/", args.predictions_folder, args.entity_extension, args.gm_bucketing_pempos, args.print_global_voters, args.print_global_pairwise_scores) return printPredictions
'_z_') if args.el_datasets != "" else None args.ed_val_datasets = [int(x) for x in args.ed_val_datasets.split('_')] args.el_val_datasets = [int(x) for x in args.el_val_datasets.split('_')] args.gm_bucketing_pempos = [ int(x) for x in args.gm_bucketing_pempos.split('_') ] if args.gm_bucketing_pempos else [] print(args) return args, train_args if __name__ == "__main__": args, train_args = _parse_args() # TODO do this argument transfering in the load_train_args instead of train.py, evaluate.py, ensemble_evaluate.py train_args.checkpoint_model_num = args.checkpoint_model_num train_args.entity_extension = args.entity_extension train.args = args args.batch_size = train_args.batch_size printPredictions = None if args.print_predictions: from evaluation.print_predictions import PrintPredictions printPredictions = PrintPredictions( config.base_folder + "data/tfrecords/" + args.experiment_name + "/", args.predictions_folder, args.entity_extension, args.gm_bucketing_pempos, args.print_global_voters, args.print_global_pairwise_scores) from model.util import Tee tee = Tee(args.output_folder + 'evaluate-log.txt', 'a') print("train_args:\n", train_args) evaluate()
args.predictions_folder): os.makedirs(args.predictions_folder) if args.predictions_folder is not None and not os.path.exists( args.predictions_folder + "ed/"): os.makedirs(args.predictions_folder + "ed/") if args.predictions_folder is not None and not os.path.exists( args.predictions_folder + "el/"): os.makedirs(args.predictions_folder + "el/") args.output_folder = [] for training_name, prefix in zip(args.training_name, args.all_spans_training): args.output_folder.append(config.base_folder+"data/tfrecords/" + \ args.experiment_name+"/{}training_folder/".format(prefix) + \ training_name+"/") args.batch_size = 1 print(args) return args if __name__ == "__main__": args = _parse_args() printPredictions = None if args.predictions_folder is not None: from evaluation.print_predictions import PrintPredictions printPredictions = PrintPredictions( config.base_folder + "data/tfrecords/" + args.experiment_name + "/", args.predictions_folder) evaluate()