コード例 #1
0
ファイル: model_a_r2.py プロジェクト: EAexist/RACL
    def run(self):
        batch_size = tf.shape(self.x)[0]
        inputs_word = tf.nn.embedding_lookup(self.word_embedding, self.x)
        inputs_domain = tf.nn.embedding_lookup(self.domain_embedding, self.x)
        inputs = tf.concat([inputs_word, inputs_domain], -1)

        aspect_prob, opinion_prob, sentiment_prob = self.RACL(
            inputs, self.position)
        aspect_value = tf.nn.softmax(aspect_prob, -1)
        opinion_value = tf.nn.softmax(opinion_prob, -1)
        senti_value = tf.nn.softmax(sentiment_prob, -1)

        # AE & OE Regulation Loss
        reg_cost = tf.reduce_sum(
            tf.maximum(
                0.,
                tf.reduce_sum(aspect_value[:, :, 1:], -1) +
                tf.reduce_sum(opinion_value[:, :, 1:], -1) -
                1.)) / tf.reduce_sum(self.word_mask)

        # Mask AE & OE Probabilities
        word_mask = tf.tile(tf.expand_dims(self.word_mask, -1),
                            [1, 1, self.opt.class_num])
        aspect_prob = tf.reshape(word_mask * aspect_prob,
                                 [-1, self.opt.class_num])
        aspect_label = tf.reshape(self.aspect_y, [-1, self.opt.class_num])
        opinion_prob = tf.reshape(word_mask * opinion_prob,
                                  [-1, self.opt.class_num])
        opinion_label = tf.reshape(self.opinion_y, [-1, self.opt.class_num])

        # Relation R4 (Only in Training)
        # In training/validation, the sentiment masks are set to 1.0 only for the aspect terms.
        # In testing, the sentiment masks are set to 1.0 for all words (except padding ones).
        senti_mask = tf.tile(tf.expand_dims(self.senti_mask, -1),
                             [1, 1, self.opt.class_num])

        # Mask SC Probabilities
        sentiment_prob = tf.reshape(
            tf.cast(senti_mask, tf.float32) * sentiment_prob,
            [-1, self.opt.class_num])
        sentiment_label = tf.reshape(self.sentiment_y,
                                     [-1, self.opt.class_num])

        with tf.name_scope('loss'):
            tv = tf.trainable_variables()
            total_para = count_parameter()
            self.logger.info('>>> total parameter: {}'.format(total_para))

            aspect_cost = tf.reduce_mean(
                tf.nn.softmax_cross_entropy_with_logits(logits=aspect_prob,
                                                        labels=tf.cast(
                                                            aspect_label,
                                                            tf.float32)))
            opinion_cost = tf.reduce_mean(
                tf.nn.softmax_cross_entropy_with_logits(logits=opinion_prob,
                                                        labels=tf.cast(
                                                            opinion_label,
                                                            tf.float32)))
            sentiment_cost = tf.reduce_mean(
                tf.nn.softmax_cross_entropy_with_logits(logits=sentiment_prob,
                                                        labels=tf.cast(
                                                            sentiment_label,
                                                            tf.float32)))

            cost = aspect_cost + opinion_cost + sentiment_cost + self.opt.reg_scale * reg_cost

        with tf.name_scope('train'):
            global_step = tf.Variable(0,
                                      name="tr_global_step",
                                      trainable=False)
            optimizer = tf.train.AdamOptimizer(
                learning_rate=self.opt.learning_rate).minimize(
                    cost, global_step=global_step)

        with tf.name_scope('predict'):
            true_ay = tf.reshape(aspect_label,
                                 [batch_size, self.opt.max_sentence_len, -1])
            pred_ay = tf.reshape(aspect_prob,
                                 [batch_size, self.opt.max_sentence_len, -1])

            true_oy = tf.reshape(opinion_label,
                                 [batch_size, self.opt.max_sentence_len, -1])
            pred_oy = tf.reshape(opinion_prob,
                                 [batch_size, self.opt.max_sentence_len, -1])

            true_sy = tf.reshape(sentiment_label,
                                 [batch_size, self.opt.max_sentence_len, -1])
            pred_sy = tf.reshape(sentiment_prob,
                                 [batch_size, self.opt.max_sentence_len, -1])

        saver = tf.train.Saver(max_to_keep=120)
        # gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.2)
        with tf.Session() as sess:
            if self.opt.load == 0:
                init = tf.global_variables_initializer()
                sess.run(init)
            else:
                ckpt = tf.train.get_checkpoint_state('checkpoint/{}'.format(
                    self.opt.task))
                saver.restore(sess, ckpt.model_checkpoint_path)

            train_sets = read_data(self.opt.train_path, self.word_id_mapping,
                                   self.opt.max_sentence_len)
            dev_sets = read_data(self.opt.dev_path, self.word_id_mapping,
                                 self.opt.max_sentence_len)
            test_sets = read_data(self.opt.test_path,
                                  self.word_id_mapping,
                                  self.opt.max_sentence_len,
                                  is_testing=True)

            aspect_f1_list = []
            opinion_f1_list = []
            sentiment_acc_list = []
            sentiment_f1_list = []
            ABSA_f1_list = []
            dev_metric_list = []
            dev_loss_list = []
            for i in range(self.opt.n_iter):
                'Train'
                tr_loss = 0.
                tr_aloss = 0.
                tr_oloss = 0.
                tr_sloss = 0.
                tr_rloss = 0.
                if self.opt.load == 0:
                    epoch_start = time.time()
                    for train, num in self.get_batch_data(
                            train_sets, self.opt.batch_size, self.opt.kp1,
                            self.opt.kp2, True, True):
                        tr_eloss, tr_aeloss, tr_oeloss, tr_seloss, tr_reloss, _, step = sess.run(
                            [
                                cost, aspect_cost, opinion_cost,
                                sentiment_cost, reg_cost, optimizer,
                                global_step
                            ],
                            feed_dict=train)
                        tr_loss += tr_eloss * num
                        tr_aloss += tr_aeloss * num
                        tr_oloss += tr_oeloss * num
                        tr_sloss += tr_seloss * num
                        tr_rloss += tr_reloss * num
                    # if i >= self.opt.warmup_iter:
                    #     saver.save(sess, 'checkpoint/{}/RACL.ckpt'.format(self.opt.task), global_step=i)
                    epoch_end = time.time()
                    epoch_time = 'Epoch Time: {:.0f}m {:.0f}s'.format(
                        (epoch_end - epoch_start) // 60,
                        (epoch_end - epoch_start) % 60)

                'Test'
                a_preds, a_labels = [], []
                o_preds, o_labels = [], []
                s_preds, s_labels = [], []
                final_mask = []
                for test, _ in self.get_batch_data(test_sets, 200, 1.0, 1.0):
                    _step, t_ay, p_ay, t_oy, p_oy, t_sy, p_sy, e_mask = sess.run(
                        [
                            global_step, true_ay, pred_ay, true_oy, pred_oy,
                            true_sy, pred_sy, self.word_mask
                        ],
                        feed_dict=test)
                    a_preds.extend(p_ay)
                    a_labels.extend(t_ay)
                    o_preds.extend(p_oy)
                    o_labels.extend(t_oy)
                    s_preds.extend(p_sy)
                    s_labels.extend(t_sy)
                    final_mask.extend(e_mask)

                aspect_f1, opinion_f1, sentiment_acc, sentiment_f1, ABSA_f1 \
                    = get_metric(a_labels, a_preds, o_labels, o_preds, s_labels, s_preds, final_mask, 1)

                aspect_f1_list.append(aspect_f1)
                opinion_f1_list.append(opinion_f1)
                sentiment_acc_list.append(sentiment_acc)
                sentiment_f1_list.append(sentiment_f1)
                ABSA_f1_list.append(ABSA_f1)

                'Dev'
                dev_loss = 0.
                dev_aloss = 0.
                dev_oloss = 0.
                dev_sloss = 0.
                dev_rloss = 0.
                dev_a_preds, dev_a_labels = [], []
                dev_o_preds, dev_o_labels = [], []
                dev_s_preds, dev_s_labels = [], []
                dev_final_mask = []
                for dev, num in self.get_batch_data(dev_sets, 200, 1.0, 1.0):
                    dev_eloss, dev_aeloss, dev_oeloss, dev_seloss, dev_reloss, _step, dev_t_ay, dev_p_ay, dev_t_oy, dev_p_oy, dev_t_sy, dev_p_sy, dev_e_mask = \
                        sess.run([cost, aspect_cost, opinion_cost, sentiment_cost, reg_cost, global_step, true_ay, pred_ay, true_oy, pred_oy, true_sy, pred_sy, self.word_mask],
                                 feed_dict=dev)
                    dev_a_preds.extend(dev_p_ay)
                    dev_a_labels.extend(dev_t_ay)
                    dev_o_preds.extend(dev_p_oy)
                    dev_o_labels.extend(dev_t_oy)
                    dev_s_preds.extend(dev_p_sy)
                    dev_s_labels.extend(dev_t_sy)
                    dev_final_mask.extend(dev_e_mask)
                    dev_loss += dev_eloss * num
                    dev_aloss += dev_aeloss * num
                    dev_oloss += dev_oeloss * num
                    dev_sloss += dev_seloss * num
                    dev_rloss += dev_reloss * num

                dev_aspect_f1, dev_opinion_f1, dev_sentiment_acc, dev_sentiment_f1, dev_ABSA_f1 \
                    = get_metric(dev_a_labels, dev_a_preds, dev_o_labels, dev_o_preds, dev_s_labels, dev_s_preds,
                                 dev_final_mask, 1)

                if i < self.opt.warmup_iter:
                    dev_metric_list.append(0.)
                    dev_loss_list.append(1000.)
                else:
                    dev_metric_list.append(dev_ABSA_f1)
                    dev_loss_list.append(dev_loss)

                if self.opt.load == 0:
                    self.logger.info('\n{:-^80}'.format('Iter' + str(i)))

                    self.logger.info(
                        'Train: final loss={:.6f}, aspect loss={:.6f}, opinion loss={:.6f}, sentiment loss={:.6f}, reg loss={:.6f}, step={}'
                        .format(tr_loss, tr_aloss, tr_oloss, tr_sloss,
                                tr_rloss, step))
                    self.logger.info(
                        'Dev:   final loss={:.6f}, aspect loss={:.6f}, opinion loss={:.6f}, sentiment loss={:.6f}, reg loss={:.6f}, step={}'
                        .format(dev_loss, dev_aloss, dev_oloss, dev_sloss,
                                dev_rloss, step))

                    self.logger.info(
                        'Dev:   aspect f1={:.4f}, opinion f1={:.4f}, sentiment acc=={:.4f}, sentiment f1=={:.4f}, ABSA f1=={:.4f},'
                        .format(dev_aspect_f1, dev_opinion_f1,
                                dev_sentiment_acc, dev_sentiment_f1,
                                dev_ABSA_f1))
                    self.logger.info(
                        'Test:  aspect f1={:.4f}, opinion f1={:.4f}, sentiment acc=={:.4f}, sentiment f1=={:.4f}, ABSA f1=={:.4f},'
                        .format(aspect_f1, opinion_f1, sentiment_acc,
                                sentiment_f1, ABSA_f1))

                    self.logger.info(
                        'Current Max Metrics Index : {} Current Min Loss Index : {} {}'
                        .format(dev_metric_list.index(max(dev_metric_list)),
                                dev_loss_list.index(min(dev_loss_list)),
                                epoch_time))

                if self.opt.load == 1:
                    break
            self.logger.info('\n{:-^80}'.format('Mission Complete'))

            max_dev_index = dev_metric_list.index(max(dev_metric_list))
            self.logger.info('Dev Max Metrics Index: {}'.format(max_dev_index))
            self.logger.info(
                'aspect f1={:.4f}, opinion f1={:.4f}, sentiment acc=={:.4f}, sentiment f1=={:.4f}, ABSA f1=={:.4f},'
                .format(aspect_f1_list[max_dev_index],
                        opinion_f1_list[max_dev_index],
                        sentiment_acc_list[max_dev_index],
                        sentiment_f1_list[max_dev_index],
                        ABSA_f1_list[max_dev_index]))

            min_dev_index = dev_loss_list.index(min(dev_loss_list))
            self.logger.info('Dev Min Loss Index: {}'.format(min_dev_index))
            self.logger.info(
                'aspect f1={:.4f}, opinion f1={:.4f}, sentiment acc=={:.4f}, sentiment f1=={:.4f}, ABSA f1=={:.4f},'
                .format(aspect_f1_list[min_dev_index],
                        opinion_f1_list[min_dev_index],
                        sentiment_acc_list[min_dev_index],
                        sentiment_f1_list[min_dev_index],
                        ABSA_f1_list[min_dev_index]))
コード例 #2
0
    def run(self):
        batch_size = tf.shape(self.word_mask)[0]
        aspect_prob, opinion_prob, sentiment_prob = self.RACL_BERT(
            self.bert_input_ids, self.bert_input_mask, self.bert_segment_ids,
            self.position)
        aspect_value = tf.nn.softmax(aspect_prob, -1)
        opinion_value = tf.nn.softmax(opinion_prob, -1)
        senti_value = tf.nn.softmax(sentiment_prob, -1)

        # AE & OE Regulation Loss
        reg_cost = tf.reduce_sum(
            tf.maximum(
                0.,
                tf.reduce_sum(aspect_value[:, :, 1:], -1) +
                tf.reduce_sum(opinion_value[:, :, 1:], -1) -
                1.)) / tf.reduce_sum(self.word_mask)

        # Mask AE & OE Probabilities
        word_mask = tf.tile(tf.expand_dims(self.word_mask, -1),
                            [1, 1, self.opt.class_num])
        aspect_prob = tf.reshape(word_mask * aspect_prob,
                                 [-1, self.opt.class_num])
        aspect_label = tf.reshape(self.aspect_y, [-1, self.opt.class_num])
        opinion_prob = tf.reshape(word_mask * opinion_prob,
                                  [-1, self.opt.class_num])
        opinion_label = tf.reshape(self.opinion_y, [-1, self.opt.class_num])

        # Relation R4 (Only in Training)
        # In training/validation, the sentiment masks are set to 1.0 only for the aspect terms.
        # In testing, the sentiment masks are set to 1.0 for all words (except padding ones).
        senti_mask = tf.tile(tf.expand_dims(self.senti_mask, -1),
                             [1, 1, self.opt.class_num])

        # Mask SC Probabilities
        sentiment_prob = tf.reshape(
            tf.cast(senti_mask, tf.float32) * sentiment_prob,
            [-1, self.opt.class_num])
        sentiment_label = tf.reshape(self.sentiment_y,
                                     [-1, self.opt.class_num])

        with tf.name_scope('loss'):
            tv = tf.trainable_variables()
            for idx, v in enumerate(tv):
                print('para {}/{}'.format(idx, len(tv)), v)
            total_para = count_parameter()
            self.logger.info('>>> total parameter: {}'.format(total_para))

            aspect_cost = tf.reduce_mean(
                tf.nn.softmax_cross_entropy_with_logits(logits=aspect_prob,
                                                        labels=tf.cast(
                                                            aspect_label,
                                                            tf.float32)))
            opinion_cost = tf.reduce_mean(
                tf.nn.softmax_cross_entropy_with_logits(logits=opinion_prob,
                                                        labels=tf.cast(
                                                            opinion_label,
                                                            tf.float32)))
            sentiment_cost = tf.reduce_mean(
                tf.nn.softmax_cross_entropy_with_logits(logits=sentiment_prob,
                                                        labels=tf.cast(
                                                            sentiment_label,
                                                            tf.float32)))

            cost = 2 * aspect_cost + opinion_cost + sentiment_cost + self.opt.reg_scale * reg_cost

        with tf.name_scope('train'):
            global_step = tf.Variable(0,
                                      name="tr_global_step",
                                      trainable=False)

            bert_lr = 0.00001
            mine_lr = self.opt.learning_rate
            mine_lr = tf.train.exponential_decay(mine_lr,
                                                 global_step,
                                                 decay_steps=self.decay_step,
                                                 decay_rate=0.95,
                                                 staircase=True)

            bert_vars = tv[:391]
            mine_vars = tv[391:]

            bert_opt = bert_optimization.AdamWeightDecayOptimizer(
                learning_rate=bert_lr)
            mine_opt = tf.train.AdamOptimizer(mine_lr)

            grads = tf.gradients(cost, bert_vars + mine_vars)
            (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)

            bert_grads = grads[:391]
            mine_grads = grads[391:]

            # mine_grads = tf.gradients(cost, mine_vars)

            bert_op = bert_opt.apply_gradients(zip(bert_grads, bert_vars))
            mine_op = mine_opt.apply_gradients(zip(mine_grads, mine_vars),
                                               global_step=global_step)

            optimizer = tf.group(bert_op, mine_op)

        with tf.name_scope('predict'):
            true_ay = tf.reshape(aspect_label,
                                 [batch_size, self.opt.max_sentence_len, -1])
            pred_ay = tf.reshape(aspect_prob,
                                 [batch_size, self.opt.max_sentence_len, -1])

            true_oy = tf.reshape(opinion_label,
                                 [batch_size, self.opt.max_sentence_len, -1])
            pred_oy = tf.reshape(opinion_prob,
                                 [batch_size, self.opt.max_sentence_len, -1])

            true_sy = tf.reshape(sentiment_label,
                                 [batch_size, self.opt.max_sentence_len, -1])
            pred_sy = tf.reshape(sentiment_prob,
                                 [batch_size, self.opt.max_sentence_len, -1])

        with tf.name_scope('load-bert-large'):
            # load pre-trained bert-large model
            saver = tf.train.Saver(max_to_keep=120)
            # gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0)
            init_checkpoint = "./bert-large/bert_model.ckpt"
            use_tpu = False
            tvars = tf.trainable_variables()
            (assignment_map, initialized_variable_names
             ) = bert_modeling.get_assignment_map_from_checkpoint(
                 tvars, init_checkpoint)
            # print(initialized_variable_names)
            tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

        with tf.Session() as sess:
            if self.opt.load == 0:
                init = tf.global_variables_initializer()
                sess.run(init)
            else:
                ckpt = tf.train.get_checkpoint_state('checkpoint/{}'.format(
                    self.opt.task))
                saver.restore(sess, ckpt.model_checkpoint_path)

            # R4 deactivated
            train_sets = read_bert_data(self.opt.train_path,
                                        self.opt.max_sentence_len,
                                        is_testing=True)
            dev_sets = read_bert_data(self.opt.dev_path,
                                      self.opt.max_sentence_len,
                                      is_testing=True)
            test_sets = read_bert_data(self.opt.test_path,
                                       self.opt.max_sentence_len,
                                       is_testing=True)

            aspect_f1_list = []
            opinion_f1_list = []
            sentiment_acc_list = []
            sentiment_f1_list = []
            ABSA_f1_list = []
            dev_metric_list = []
            dev_loss_list = []
            for i in range(self.opt.n_iter):
                'Train'
                tr_loss = 0.
                tr_aloss = 0.
                tr_oloss = 0.
                tr_sloss = 0.
                tr_rloss = 0.
                if self.opt.load == 0:
                    epoch_start = time.time()
                    for train, num in self.get_batch_data(
                            train_sets, self.opt.batch_size, self.opt.kp1,
                            self.opt.kp2, True, True):
                        tr_eloss, tr_aeloss, tr_oeloss, tr_seloss, tr_reloss, _, step = sess.run(
                            [
                                cost, aspect_cost, opinion_cost,
                                sentiment_cost, reg_cost, optimizer,
                                global_step
                            ],
                            feed_dict=train)
                        tr_loss += tr_eloss * num
                        tr_aloss += tr_aeloss * num
                        tr_oloss += tr_oeloss * num
                        tr_sloss += tr_seloss * num
                        tr_rloss += tr_reloss * num
                    # if i >= self.opt.warmup_iter:
                    #     saver.save(sess, 'checkpoint/{}/RACL.ckpt'.format(self.opt.task), global_step=i)
                    epoch_end = time.time()
                    epoch_time = 'Epoch Time: {:.0f}m {:.0f}s'.format(
                        (epoch_end - epoch_start) // 60,
                        (epoch_end - epoch_start) % 60)

                'Test'
                a_preds, a_labels = [], []
                o_preds, o_labels = [], []
                s_preds, s_labels = [], []
                final_mask = []
                for test, _ in self.get_batch_data(test_sets, 200, 1.0, 1.0):
                    _step, t_ay, p_ay, t_oy, p_oy, t_sy, p_sy, e_mask = sess.run(
                        [
                            global_step, true_ay, pred_ay, true_oy, pred_oy,
                            true_sy, pred_sy, self.word_mask
                        ],
                        feed_dict=test)
                    a_preds.extend(p_ay)
                    a_labels.extend(t_ay)
                    o_preds.extend(p_oy)
                    o_labels.extend(t_oy)
                    s_preds.extend(p_sy)
                    s_labels.extend(t_sy)
                    final_mask.extend(e_mask)

                aspect_f1, opinion_f1, sentiment_acc, sentiment_f1, ABSA_f1 \
                    = get_metric(a_labels, a_preds, o_labels, o_preds, s_labels, s_preds, final_mask, 1)

                aspect_f1_list.append(aspect_f1)
                opinion_f1_list.append(opinion_f1)
                sentiment_acc_list.append(sentiment_acc)
                sentiment_f1_list.append(sentiment_f1)
                ABSA_f1_list.append(ABSA_f1)

                'Dev'
                dev_loss = 0.
                dev_aloss = 0.
                dev_oloss = 0.
                dev_sloss = 0.
                dev_rloss = 0.
                dev_a_preds, dev_a_labels = [], []
                dev_o_preds, dev_o_labels = [], []
                dev_s_preds, dev_s_labels = [], []
                dev_final_mask = []
                for dev, num in self.get_batch_data(dev_sets, 200, 1.0, 1.0):
                    dev_eloss, dev_aeloss, dev_oeloss, dev_seloss, dev_reloss, _step, dev_t_ay, dev_p_ay, dev_t_oy, dev_p_oy, dev_t_sy, dev_p_sy, dev_e_mask = \
                        sess.run([cost, aspect_cost, opinion_cost, sentiment_cost, reg_cost, global_step, true_ay, pred_ay, true_oy, pred_oy, true_sy, pred_sy, self.word_mask],
                                 feed_dict=dev)
                    dev_a_preds.extend(dev_p_ay)
                    dev_a_labels.extend(dev_t_ay)
                    dev_o_preds.extend(dev_p_oy)
                    dev_o_labels.extend(dev_t_oy)
                    dev_s_preds.extend(dev_p_sy)
                    dev_s_labels.extend(dev_t_sy)
                    dev_final_mask.extend(dev_e_mask)
                    dev_loss += dev_eloss * num
                    dev_aloss += dev_aeloss * num
                    dev_oloss += dev_oeloss * num
                    dev_sloss += dev_seloss * num
                    dev_rloss += dev_reloss * num

                dev_aspect_f1, dev_opinion_f1, dev_sentiment_acc, dev_sentiment_f1, dev_ABSA_f1 \
                    = get_metric(dev_a_labels, dev_a_preds, dev_o_labels, dev_o_preds, dev_s_labels, dev_s_preds,
                                 dev_final_mask, 1)

                if i < self.opt.warmup_iter:
                    dev_metric_list.append(0.)
                    dev_loss_list.append(1000.)
                else:
                    dev_metric_list.append(dev_ABSA_f1)
                    dev_loss_list.append(dev_loss)

                if self.opt.load == 0:
                    self.logger.info('\n{:-^80}'.format('Iter' + str(i)))

                    self.logger.info(
                        'Train: final loss={:.6f}, aspect loss={:.6f}, opinion loss={:.6f}, sentiment loss={:.6f}, reg loss={:.6f}, step={}'
                        .format(tr_loss, tr_aloss, tr_oloss, tr_sloss,
                                tr_rloss, step))
                    self.logger.info(
                        'Dev:   final loss={:.6f}, aspect loss={:.6f}, opinion loss={:.6f}, sentiment loss={:.6f}, reg loss={:.6f}, step={}'
                        .format(dev_loss, dev_aloss, dev_oloss, dev_sloss,
                                dev_rloss, step))

                    self.logger.info(
                        'Dev:   aspect f1={:.4f}, opinion f1={:.4f}, sentiment acc=={:.4f}, sentiment f1=={:.4f}, ABSA f1=={:.4f},'
                        .format(dev_aspect_f1, dev_opinion_f1,
                                dev_sentiment_acc, dev_sentiment_f1,
                                dev_ABSA_f1))
                    self.logger.info(
                        'Test:  aspect f1={:.4f}, opinion f1={:.4f}, sentiment acc=={:.4f}, sentiment f1=={:.4f}, ABSA f1=={:.4f},'
                        .format(aspect_f1, opinion_f1, sentiment_acc,
                                sentiment_f1, ABSA_f1))

                    self.logger.info(
                        'Current Max Metrics Index : {} Current Min Loss Index : {} {}'
                        .format(dev_metric_list.index(max(dev_metric_list)),
                                dev_loss_list.index(min(dev_loss_list)),
                                epoch_time))

                if self.opt.load == 1:
                    break
            self.logger.info('\n{:-^80}'.format('Mission Complete'))

            max_dev_index = dev_metric_list.index(max(dev_metric_list))
            self.logger.info('Dev Max Metrics Index: {}'.format(max_dev_index))
            self.logger.info(
                'aspect f1={:.4f}, opinion f1={:.4f}, sentiment acc=={:.4f}, sentiment f1=={:.4f}, ABSA f1=={:.4f},'
                .format(aspect_f1_list[max_dev_index],
                        opinion_f1_list[max_dev_index],
                        sentiment_acc_list[max_dev_index],
                        sentiment_f1_list[max_dev_index],
                        ABSA_f1_list[max_dev_index]))

            min_dev_index = dev_loss_list.index(min(dev_loss_list))
            self.logger.info('Dev Min Loss Index: {}'.format(min_dev_index))
            self.logger.info(
                'aspect f1={:.4f}, opinion f1={:.4f}, sentiment acc=={:.4f}, sentiment f1=={:.4f}, ABSA f1=={:.4f},'
                .format(aspect_f1_list[min_dev_index],
                        opinion_f1_list[min_dev_index],
                        sentiment_acc_list[min_dev_index],
                        sentiment_f1_list[min_dev_index],
                        ABSA_f1_list[min_dev_index]))
コード例 #3
0
ファイル: train.py プロジェクト: ahashisyuu/CoExtractionABSA
            batch_x_1, batch_y_1 = gen_doc_1.next()
            batch_x_2, batch_y_2 = gen_doc_2.next()
            doc_model.train_on_batch([batch_x_1, batch_x_2],
                                     [batch_y_1, batch_y_2])

    tr_time = time() - t0

    logger.info('Epoch %d, train: %is' % (ii, tr_time))
    print loss, loss_aspect, loss_sentiment

    y_pred_aspect, y_pred_sentiment = aspect_model.predict(
        [dev_x, dev_y_opinion,
         np.zeros((len(dev_x), overall_maxlen))])

    f_aspect, f_opinion, acc_s, f_s, f_absa \
         = get_metric(dev_y_aspect, y_pred_aspect, dev_y_sentiment, y_pred_sentiment, dev_y_mask, args.train_op)

    logger.info(
        'Validation results -- [Aspect f1]: %.4f, [Opinion f1]: %.4f, [Sentiment acc]: %.4f, [Sentiment f1]: %.4f, [Overall f1]: %.4f'
        % (f_aspect, f_opinion, acc_s, f_s, f_absa))

    if f_absa > best_dev_metric and ii > 60:
        best_dev_metric = f_absa
        save_model = True
    else:
        save_model = False

    y_pred_aspect, y_pred_sentiment = aspect_model.predict(
        [test_x, test_y_opinion,
         np.zeros((len(test_x), overall_maxlen))])