yTrainRegistered = yRegistered[train] XTest = X[test] yTestCasual = yCasual[test] yTestRegistered = yRegistered[test] clfCasual = ExtraTreesRegressor() # selectorCasual = SelectKBest(score_func=f_regression,k=20) # print [1+zero_based_index for zero_based_index in list(selectorCasual.get_support(indices=True))] clfRegistered = ExtraTreesRegressor() modelCasualETR = clfCasual.fit(XTrain, yTrainCasual) modelRegisteredETR = clfRegistered.fit(XTrain, yTrainRegistered) predictionsCasual = clfCasual.predict(XTest) actualCasual = yCasual[test] scoresCasualExtraTreesRegression.append(evaluation.rmsle(actualCasual, predictionsCasual)) predictionsRegistered = clfRegistered.predict(XTest) actualRegistered = yRegistered[test] scoresRegisteredExtraTreesRegression.append(evaluation.rmsle(actualRegistered, predictionsRegistered)) predictionsTotal = np.sum([predictionsCasual, predictionsRegistered], axis=0) actualTotal = np.sum([yTestCasual, yTestRegistered], axis=0) currentScore = evaluation.rmsle(actualTotal, predictionsTotal) scoresTotalExtraTreesRegression.append(evaluation.rmsle(actualTotal, predictionsTotal)) if currentScore == min(scoresTotalExtraTreesRegression): mdlExtraTreesRegressorCasual = modelCasualETR mdlExtraTreesRegressorRegistered = modelRegisteredETR clfAdaBoostCasual = RandomForestRegressor()
XTest = X[test] yTestCasual = yCasual[test] yTestRegistered = yRegistered[test] clfCasual = ExtraTreesRegressor() # selectorCasual = SelectKBest(score_func=f_regression,k=20) # print [1+zero_based_index for zero_based_index in list(selectorCasual.get_support(indices=True))] clfRegistered = ExtraTreesRegressor() modelCasualETR = clfCasual.fit(XTrain, yTrainCasual) modelRegisteredETR = clfRegistered.fit(XTrain, yTrainRegistered) predictionsCasual = clfCasual.predict(XTest) actualCasual = yCasual[test] scoresCasualExtraTreesRegression.append( evaluation.rmsle(actualCasual, predictionsCasual)) predictionsRegistered = clfRegistered.predict(XTest) actualRegistered = yRegistered[test] scoresRegisteredExtraTreesRegression.append( evaluation.rmsle(actualRegistered, predictionsRegistered)) predictionsTotal = np.sum([predictionsCasual, predictionsRegistered], axis=0) actualTotal = np.sum([yTestCasual, yTestRegistered], axis=0) currentScore = evaluation.rmsle(actualTotal, predictionsTotal) scoresTotalExtraTreesRegression.append( evaluation.rmsle(actualTotal, predictionsTotal)) if currentScore == min(scoresTotalExtraTreesRegression): mdlExtraTreesRegressorCasual = modelCasualETR
kf = KFold(len(X), n_folds=10) for train, test in kf: XTrain = X[train] yTrainCasual = yCasual[train] yTrainRegistered = yRegistered[train] XTest = X[test] yTestCasual = yCasual[test] yTestRegistered = yRegistered[test] model1 = BernoulliRBM(n_components=80) model1.fit(XTrain) weights_1 = model1.components_ XTrain_stage1 = XTrain.dot(weights_1.T) model2 = BernoulliRBM(n_components=40) model2.fit(XTrain_stage1) weights_2 = model2.components_ XTrain_stage2 = XTrain_stage1.dot(weights_2.T) #perform linear regression regrCasual = linear_model.LinearRegression() regrCasual.fit(XTrain_stage2, yTrainCasual) regrRegistered = linear_model.LinearRegression() regrRegistered.fit(XTrain_stage2, yTrainRegistered) predictionsCasual = regrCasual.predict(XTrain_stage2) score = evaluation.rmsle(yTrainCasual, predictionsCasual) print score