コード例 #1
0
def test_model(state,
               reference_tsv_path,
               reduced_number_of_data=None,
               strore_predicitions_fname=None):
    dataset = DatasetDcase2019Task4(os.path.join(cfg.workspace),
                                    base_feature_dir=os.path.join(
                                        cfg.workspace, "dataset", "features"),
                                    save_log_feature=False)

    crnn_kwargs = state["model"]["kwargs"]
    crnn = CRNN(**crnn_kwargs)
    crnn.load(parameters=state["model"]["state_dict"])
    LOG.info("Model loaded at epoch: {}".format(state["epoch"]))
    pooling_time_ratio = state["pooling_time_ratio"]

    crnn.load(parameters=state["model"]["state_dict"])
    scaler = Scaler()
    scaler.load_state_dict(state["scaler"])
    classes = cfg.classes
    many_hot_encoder = ManyHotEncoder.load_state_dict(
        state["many_hot_encoder"])

    crnn = crnn.eval()
    [crnn] = to_cuda_if_available([crnn])
    transforms_valid = get_transforms(cfg.max_frames, scaler=scaler)

    LOG.info(reference_tsv_path)
    df = dataset.initialize_and_get_df(reference_tsv_path,
                                       reduced_number_of_data)
    strong_dataload = DataLoadDf(df,
                                 dataset.get_feature_file,
                                 many_hot_encoder.encode_strong_df,
                                 transform=transforms_valid)

    predictions = get_predictions(crnn,
                                  strong_dataload,
                                  many_hot_encoder.decode_strong,
                                  pooling_time_ratio,
                                  save_predictions=strore_predicitions_fname)
    compute_strong_metrics(predictions, df)

    weak_dataload = DataLoadDf(df,
                               dataset.get_feature_file,
                               many_hot_encoder.encode_weak,
                               transform=transforms_valid)
    weak_metric = get_f_measure_by_class(
        crnn, len(classes), DataLoader(weak_dataload,
                                       batch_size=cfg.batch_size))
    LOG.info("Weak F1-score per class: \n {}".format(
        pd.DataFrame(weak_metric * 100, many_hot_encoder.labels)))
    LOG.info("Weak F1-score macro averaged: {}".format(np.mean(weak_metric)))
コード例 #2
0
ファイル: TestModel.py プロジェクト: aagnone3/dc19t2
def test_model(state, reduced_number_of_data, strore_predicitions_fname=None):
    crnn_kwargs = state["model"]["kwargs"]
    crnn = CRNN(**crnn_kwargs)
    crnn.load(parameters=state["model"]["state_dict"])
    LOG.info("Model loaded at epoch: {}".format(state["epoch"]))
    pooling_time_ratio = state["pooling_time_ratio"]

    crnn.load(parameters=state["model"]["state_dict"])
    scaler = Scaler()
    scaler.load_state_dict(state["scaler"])
    classes = cfg.classes
    many_hot_encoder = ManyHotEncoder.load_state_dict(
        state["many_hot_encoder"])

    # ##############
    # Validation
    # ##############
    crnn = crnn.eval()
    [crnn] = to_cuda_if_available([crnn])
    transforms_valid = get_transforms(cfg.max_frames, scaler=scaler)

    # # 2018
    # LOG.info("Eval 2018")
    # eval_2018_df = dataset.initialize_and_get_df(cfg.eval2018, reduced_number_of_data)
    # # Strong
    # eval_2018_strong = DataLoadDf(eval_2018_df, dataset.get_feature_file, many_hot_encoder.encode_strong_df,
    #                               transform=transforms_valid)
    # predictions = get_predictions(crnn, eval_2018_strong, many_hot_encoder.decode_strong)
    # compute_strong_metrics(predictions, eval_2018_df, pooling_time_ratio)
    # # Weak
    # eval_2018_weak = DataLoadDf(eval_2018_df, dataset.get_feature_file, many_hot_encoder.encode_weak,
    #                             transform=transforms_valid)
    # weak_metric = get_f_measure_by_class(crnn, len(classes), DataLoader(eval_2018_weak, batch_size=cfg.batch_size))
    # LOG.info("Weak F1-score per class: \n {}".format(pd.DataFrame(weak_metric * 100, many_hot_encoder.labels)))
    # LOG.info("Weak F1-score macro averaged: {}".format(np.mean(weak_metric)))

    # Validation 2019
    # LOG.info("Validation 2019 (original code)")
    # b_dataset = B_DatasetDcase2019Task4(cfg.workspace,
    #                                   base_feature_dir=os.path.join(cfg.workspace, 'dataset', 'features'),
    #                                   save_log_feature=False)
    # b_validation_df = b_dataset.initialize_and_get_df(cfg.validation, reduced_number_of_data)
    # b_validation_df.to_csv('old.csv')
    # b_validation_strong = B_DataLoadDf(b_validation_df,
    #                                  b_dataset.get_feature_file, many_hot_encoder.encode_strong_df,
    #                                  transform=transforms_valid)

    # predictions2 = get_predictions(crnn, b_validation_strong, many_hot_encoder.decode_strong,
    #                               save_predictions=strore_predicitions_fname)
    # compute_strong_metrics(predictions2, b_validation_df, pooling_time_ratio)

    # b_validation_weak = B_DataLoadDf(b_validation_df, b_dataset.get_feature_file, many_hot_encoder.encode_weak,
    #                              transform=transforms_valid)
    # weak_metric = get_f_measure_by_class(crnn, len(classes), DataLoader(b_validation_weak, batch_size=cfg.batch_size))
    # LOG.info("Weak F1-score per class: \n {}".format(pd.DataFrame(weak_metric * 100, many_hot_encoder.labels)))
    # LOG.info("Weak F1-score macro averaged: {}".format(np.mean(weak_metric)))

    # ============================================================================================
    # ============================================================================================
    # ============================================================================================

    dataset = DatasetDcase2019Task4(feature_dir=cfg.feature_dir,
                                    local_path=cfg.workspace,
                                    exp_tag=cfg.exp_tag,
                                    save_log_feature=False)
    # Validation 2019
    LOG.info("Validation 2019")
    validation_df = dataset.initialize_and_get_df(cfg.validation,
                                                  reduced_number_of_data)
    validation_strong = DataLoadDf(validation_df,
                                   dataset.get_feature_file,
                                   many_hot_encoder.encode_strong_df,
                                   transform=transforms_valid)

    predictions = get_predictions(crnn,
                                  validation_strong,
                                  many_hot_encoder.decode_strong,
                                  save_predictions=strore_predicitions_fname)
    vdf = validation_df.copy()
    vdf.filename = vdf.filename.str.replace('.npy', '.wav')
    pdf = predictions.copy()
    pdf.filename = pdf.filename.str.replace('.npy', '.wav')
    compute_strong_metrics(pdf, vdf, pooling_time_ratio)

    validation_weak = DataLoadDf(validation_df,
                                 dataset.get_feature_file,
                                 many_hot_encoder.encode_weak,
                                 transform=transforms_valid)
    weak_metric = get_f_measure_by_class(
        crnn, len(classes),
        DataLoader(validation_weak, batch_size=cfg.batch_size))
    LOG.info("Weak F1-score per class: \n {}".format(
        pd.DataFrame(weak_metric * 100, many_hot_encoder.labels)))
    LOG.info("Weak F1-score macro averaged: {}".format(np.mean(weak_metric)))
コード例 #3
0
                           transform=transforms_valid)

    [crnn] = to_cuda_if_available([crnn])
    for epoch in range(cfg.n_epoch):
        crnn = crnn.train()

        train(training_data, crnn, optimizer, epoch, weak_mask, strong_mask)

        crnn = crnn.eval()
        LOG.info("Training synthetic metric:")
        train_predictions = get_predictions(crnn,
                                            train_synth_data,
                                            many_hot_encoder.decode_strong,
                                            pooling_time_ratio,
                                            save_predictions=None)
        train_metric = compute_strong_metrics(train_predictions,
                                              train_synth_df)

        if not no_weak:
            LOG.info("Training weak metric:")
            weak_metric = get_f_measure_by_class(
                crnn, len(classes),
                DataLoader(train_weak_data, batch_size=cfg.batch_size))
            LOG.info("Weak F1-score per class: \n {}".format(
                pd.DataFrame(weak_metric * 100, many_hot_encoder.labels)))
            LOG.info("Weak F1-score macro averaged: {}".format(
                np.mean(weak_metric)))

            LOG.info("Valid weak metric:")
            weak_metric = get_f_measure_by_class(
                crnn, len(classes),
                DataLoader(valid_weak_data, batch_size=cfg.batch_size))
コード例 #4
0
    # ##############
    # Train
    # ##############
    for epoch in range(cfg.n_epoch):
        crnn = crnn.train()
        crnn_ema = crnn_ema.train()

        [crnn, crnn_ema] = to_cuda_if_available([crnn, crnn_ema])

        train(training_data, crnn, optimizer, epoch, ema_model=crnn_ema, weak_mask=weak_mask, strong_mask=strong_mask)

        crnn = crnn.eval()
        LOG.info("\n ### Valid synthetic metric ### \n")
        predictions = get_predictions(crnn, valid_synth_data, many_hot_encoder.decode_strong,
                                      save_predictions=None)
        valid_events_metric = compute_strong_metrics(predictions, valid_synth_df, pooling_time_ratio)

        LOG.info("\n ### Valid weak metric ### \n")
        weak_metric = get_f_measure_by_class(crnn, len(classes),
                                             DataLoader(valid_weak_data, batch_size=cfg.batch_size))

        LOG.info("Weak F1-score per class: \n {}".format(pd.DataFrame(weak_metric * 100, many_hot_encoder.labels)))
        LOG.info("Weak F1-score macro averaged: {}".format(np.mean(weak_metric)))

        state['model']['state_dict'] = crnn.state_dict()
        state['model_ema']['state_dict'] = crnn_ema.state_dict()
        state['optimizer']['state_dict'] = optimizer.state_dict()
        state['epoch'] = epoch
        state['valid_metric'] = valid_events_metric.results()
        if cfg.checkpoint_epochs is not None and (epoch + 1) % cfg.checkpoint_epochs == 0:
            model_fname = os.path.join(saved_model_dir, "baseline_epoch_" + str(epoch))
コード例 #5
0
    # Eval 2018
    eval_2018_df = dataset.initialize_and_get_df(cfg.eval2018, reduced_number_of_data)
    eval_2018 = DataLoadDf(eval_2018_df, dataset.get_feature_file, many_hot_encoder.encode_strong_df,
                           transform=transforms_valid)

    [crnn] = to_cuda_if_available([crnn])
    for epoch in range(cfg.n_epoch):
        crnn = crnn.train()

        train(training_data, crnn, optimizer, epoch, weak_mask, strong_mask)

        crnn = crnn.eval()
        LOG.info("Training synthetic metric:")
        train_predictions = get_predictions(crnn, train_synth_data, many_hot_encoder.decode_strong,
                                            save_predictions=None)
        train_metric = compute_strong_metrics(train_predictions, train_synth_df, pooling_time_ratio)

        if not no_weak:
            LOG.info("Training weak metric:")
            weak_metric = get_f_measure_by_class(crnn, len(classes),
                                                 DataLoader(train_weak_data, batch_size=cfg.batch_size))
            LOG.info("Weak F1-score per class: \n {}".format(pd.DataFrame(weak_metric * 100, many_hot_encoder.labels)))
            LOG.info("Weak F1-score macro averaged: {}".format(np.mean(weak_metric)))

            LOG.info("Valid weak metric:")
            weak_metric = get_f_measure_by_class(crnn, len(classes),
                                                 DataLoader(valid_weak_data, batch_size=cfg.batch_size))

            LOG.info(
                "Weak F1-score per class: \n {}".format(pd.DataFrame(weak_metric * 100, many_hot_encoder.labels)))
            LOG.info("Weak F1-score macro averaged: {}".format(np.mean(weak_metric)))
コード例 #6
0
        train(training_data,
              crnn,
              optimizer,
              epoch,
              ema_model=crnn_ema,
              weak_mask=weak_mask,
              strong_mask=strong_mask)

        crnn = crnn.eval()
        LOG.info("\n ### Valid synthetic metric ### \n")
        predictions = get_predictions(crnn,
                                      valid_synth_data,
                                      many_hot_encoder.decode_strong,
                                      pooling_time_ratio,
                                      save_predictions=None)
        valid_events_metric = compute_strong_metrics(predictions,
                                                     valid_synth_df)

        LOG.info("\n ### Valid weak metric ### \n")
        weak_metric = get_f_measure_by_class(
            crnn, len(classes),
            DataLoader(valid_weak_data, batch_size=cfg.batch_size))

        LOG.info("Weak F1-score per class: \n {}".format(
            pd.DataFrame(weak_metric * 100, many_hot_encoder.labels)))
        LOG.info("Weak F1-score macro averaged: {}".format(
            np.mean(weak_metric)))

        state['model']['state_dict'] = crnn.state_dict()
        state['model_ema']['state_dict'] = crnn_ema.state_dict()
        state['optimizer']['state_dict'] = optimizer.state_dict()
        state['epoch'] = epoch