def calc_euroc_seq_errors(est_traj, gt_traj): gt_traj_synced, est_traj_synced = sync.associate_trajectories( gt_traj, est_traj, max_diff=0.01) est_traj_aligned = trajectory.align_trajectory(est_traj_synced, gt_traj_synced, correct_scale=False, correct_only_scale=False) pose_relation = metrics.PoseRelation.translation_part ape_metric = metrics.APE(pose_relation) ape_metric.process_data(( gt_traj_synced, est_traj_aligned, )) ape_stat = ape_metric.get_statistic(metrics.StatisticsType.rmse) # ape_metric = metrics.RPE(pose_relation) # ape_metric.process_data((gt_traj_synced, est_traj_aligned,)) # ape_stat = ape_metric.get_statistic(metrics.StatisticsType.rmse) # fig = plt.figure() # traj_by_label = { # "estimate (not aligned)": est_traj, # "estimate (aligned)": est_traj_aligned, # "reference": gt_traj # } # plot.trajectories(fig, traj_by_label, plot.PlotMode.xyz) # plt.show() return ape_metric, ape_stat
def test_se3_alignment(self): traj = helpers.fake_trajectory(1000, 1) traj_transformed = copy.deepcopy(traj) traj_transformed.transform(lie.random_se3()) self.assertNotEqual(traj, traj_transformed) traj_aligned = trajectory.align_trajectory(traj_transformed, traj) self.assertEqual(traj_aligned, traj)
def test_alignment_degenerate_case(self): length = 100 poses = [lie.random_se3()] * length traj_1 = PoseTrajectory3D(poses_se3=poses, timestamps=helpers.fake_timestamps( length, 1, 0.0)) traj_2 = copy.deepcopy(traj_1) traj_2.transform(lie.random_se3()) traj_2.scale(1.234) self.assertNotEqual(traj_1, traj_2) with self.assertRaises(GeometryException): trajectory.align_trajectory(traj_1, traj_2) with self.assertRaises(GeometryException): trajectory.align_trajectory(traj_1, traj_2, correct_scale=True)
def test_scale_correction(self): traj = helpers.fake_trajectory(1000, 1) traj_transformed = copy.deepcopy(traj) traj_transformed.scale(1.234) self.assertNotEqual(traj, traj_transformed) traj_aligned = trajectory.align_trajectory(traj_transformed, traj, correct_only_scale=True) self.assertEqual(traj_aligned, traj)
def test_sim3_alignment(self): traj = helpers.fake_trajectory(1000, 1) traj_transformed = copy.deepcopy(traj) traj_transformed.transform(lie.random_se3()) traj_transformed.scale(1.234) self.assertNotEqual(traj, traj_transformed) traj_aligned = trajectory.align_trajectory(traj_transformed, traj, correct_scale=True) self.assertEqual(traj_aligned, traj)
def rpe(traj_ref, traj_est, pose_relation, delta, delta_unit, rel_delta_tol=0.1, all_pairs=False, align=False, correct_scale=False, ref_name="reference", est_name="estimate", support_loop=False): from evo.core import metrics from evo.core import trajectory # Align the trajectories. only_scale = correct_scale and not align if align or correct_scale: logger.debug(SEP) traj_est = trajectory.align_trajectory(traj_est, traj_ref, correct_scale, only_scale) # Calculate RPE. logger.debug(SEP) data = (traj_ref, traj_est) rpe_metric = metrics.RPE(pose_relation, delta, delta_unit, rel_delta_tol, all_pairs) rpe_metric.process_data(data) title = str(rpe_metric) if align and not correct_scale: title += "\n(with SE(3) Umeyama alignment)" elif align and correct_scale: title += "\n(with Sim(3) Umeyama alignment)" elif only_scale: title += "\n(scale corrected)" else: title += "\n(not aligned)" rpe_result = rpe_metric.get_result(ref_name, est_name) rpe_result.info["title"] = title logger.debug(SEP) logger.info(rpe_result.pretty_str()) # Restrict trajectories to delta ids for further processing steps. if support_loop: # Avoid overwriting if called repeatedly e.g. in Jupyter notebook. import copy traj_ref = copy.deepcopy(traj_ref) traj_est = copy.deepcopy(traj_est) traj_ref.reduce_to_ids(rpe_metric.delta_ids) traj_est.reduce_to_ids(rpe_metric.delta_ids) rpe_result.add_trajectory(ref_name, traj_ref) rpe_result.add_trajectory(est_name, traj_est) if isinstance(traj_est, trajectory.PoseTrajectory3D) and not all_pairs: seconds_from_start = [ t - traj_est.timestamps[0] for t in traj_est.timestamps ] rpe_result.add_np_array("seconds_from_start", seconds_from_start) rpe_result.add_np_array("timestamps", traj_est.timestamps) return rpe_result
def ape(traj_ref, traj_est, pose_relation, align=False, correct_scale=False, align_origin=False, ref_name="reference", est_name="estimate"): from evo.core import metrics from evo.core import trajectory # Align the trajectories. only_scale = correct_scale and not align if align or correct_scale: logger.debug(SEP) traj_est = trajectory.align_trajectory(traj_est, traj_ref, correct_scale, only_scale) elif align_origin: logger.debug(SEP) traj_est = trajectory.align_trajectory_origin(traj_est, traj_ref) # Calculate APE. logger.debug(SEP) data = (traj_ref, traj_est) ape_metric = metrics.APE(pose_relation) ape_metric.process_data(data) title = str(ape_metric) if align and not correct_scale: title += "\n(with SE(3) Umeyama alignment)" elif align and correct_scale: title += "\n(with Sim(3) Umeyama alignment)" elif only_scale: title += "\n(scale corrected)" elif align_origin: title += "\n(with origin alignment)" else: title += "\n(not aligned)" ape_result = ape_metric.get_result(ref_name, est_name) ape_result.info["title"] = title logger.debug(SEP) logger.info(ape_result.pretty_str()) ape_result.add_trajectory(ref_name, traj_ref) ape_result.add_trajectory(est_name, traj_est) if isinstance(traj_est, trajectory.PoseTrajectory3D): seconds_from_start = [ t - traj_est.timestamps[0] for t in traj_est.timestamps ] ape_result.add_np_array("seconds_from_start", seconds_from_start) ape_result.add_np_array("timestamps", traj_est.timestamps) return ape_result
def original_ape(traj_ref, traj_est, pose_relation, align=False, correct_scale=False, align_origin=False, ref_name="reference", est_name="estimate"): ''' Copied from main_ape.py ''' traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est) # Align the trajectories. only_scale = correct_scale and not align if align or correct_scale: traj_est = trajectory.align_trajectory(traj_est, traj_ref, correct_scale, only_scale) elif align_origin: traj_est = trajectory.align_trajectory_origin(traj_est, traj_ref) # Calculate APE. data = (traj_ref, traj_est) ape_metric = metrics.APE(pose_relation) ape_metric.process_data(data) title = str(ape_metric) if align and not correct_scale: title += "\n(with SE(3) Umeyama alignment)" elif align and correct_scale: title += "\n(with Sim(3) Umeyama alignment)" elif only_scale: title += "\n(scale corrected)" elif align_origin: title += "\n(with origin alignment)" else: title += "\n(not aligned)" ape_result = ape_metric.get_result(ref_name, est_name) ape_result.info["title"] = title ape_result.add_trajectory(ref_name, traj_ref) ape_result.add_trajectory(est_name, traj_est) if isinstance(traj_est, trajectory.PoseTrajectory3D): seconds_from_start = [ t - traj_est.timestamps[0] for t in traj_est.timestamps ] ape_result.add_np_array("seconds_from_start", seconds_from_start) ape_result.add_np_array("timestamps", traj_est.timestamps) return ape_result
def three_plots(ref, est, table, name): """Generates plots and statistics table into Report :ref: PoseTrajectory3D object that is used as reference :est: PoseTrajectory3D object that is plotted against reference :table: Tabular object that is generated by Tabular('c c') :name: String that is used as name for file and table entry :returns: translation of reference against estimation """ ref, est = sync.associate_trajectories(ref, est) est, rot, tra, s = trajectory.align_trajectory(est, ref, correct_scale=False, return_parameters=True) data = (ref, est) ape_metric = metrics.APE(metrics.PoseRelation.translation_part) ape_metric.process_data(data) ape_statistics = ape_metric.get_all_statistics() # [ Localization ] fig, axarr = plt.subplots(3) #sharex=True) fig.suptitle('Localization', fontsize=30) fig.tight_layout() plot.traj_xyyaw(axarr, est, '-', 'red', 'estimation', 1, ref.timestamps[0]) plot.traj_xyyaw(axarr, ref, '-', 'gray', 'original') fig.subplots_adjust(hspace=0.2) plt.waitforbuttonpress(0) plt.savefig("/home/kostas/results/latest/" + name + ".png", format='png', bbox_inches='tight') plt.close(fig) table.add_row(( name, round(ape_statistics["rmse"], 3), round(ape_statistics["mean"], 3), round(ape_statistics["median"], 3), round(ape_statistics["std"], 3), round(ape_statistics["min"], 3), round(ape_statistics["max"], 3), round(ape_statistics["sse"], 3), )) table.add_hline
def ape(traj_ref, traj_est, pose_relation, align=False, correct_scale=False, ref_name="reference", est_name="estimate"): from evo.core import metrics from evo.core import trajectory # Align the trajectories. only_scale = correct_scale and not align if align or correct_scale: logger.debug(SEP) traj_est = trajectory.align_trajectory( traj_est, traj_ref, correct_scale, only_scale) # Calculate APE. logger.debug(SEP) data = (traj_ref, traj_est) ape_metric = metrics.APE(pose_relation) ape_metric.process_data(data) title = str(ape_metric) if align and not correct_scale: title += "\n(with SE(3) Umeyama alignment)" elif align and correct_scale: title += "\n(with Sim(3) Umeyama alignment)" elif only_scale: title += "\n(scale corrected)" else: title += "\n(not aligned)" ape_result = ape_metric.get_result(ref_name, est_name) ape_result.info["title"] = title logger.debug(SEP) logger.info(ape_result.pretty_str()) ape_result.add_trajectory(ref_name, traj_ref) ape_result.add_trajectory(est_name, traj_est) if isinstance(traj_est, trajectory.PoseTrajectory3D): seconds_from_start = [t - traj_est.timestamps[0] for t in traj_est.timestamps] ape_result.add_np_array("seconds_from_start", seconds_from_start) ape_result.add_np_array("timestamps", traj_est.timestamps) return ape_result
def compare_using_APE(ref_file, est_file, use_aligned_trajectories=False): """ Compare two files using EVO API. Using the APE metric. :param ref_file: :param est_file: :param use_aligned_trajectories: True to align before comparing. False to leave original data as it is. :return: """ # Load trajectories traj_ref = file_interface.read_tum_trajectory_file(ref_file) traj_est = file_interface.read_tum_trajectory_file(est_file) # Sinchronize trajectories by timestamps max_diff = 0.01 traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est, max_diff) # -------------EVO_APE------------- # Settings pose_relation = metrics.PoseRelation.translation_part use_aligned_trajectories = False # OPTION -va on the scripts. Is related to Uleyamas alignment # The aligned trajectories can be used if we want it to if use_aligned_trajectories: # Align trajectories with Uleyamas algorithm try: traj_est_aligned = trajectory.align_trajectory(traj_est, traj_ref, correct_scale=False, correct_only_scale=False) data = (traj_ref, traj_est_aligned) except GeometryException: print("Couldnt align with Uleyamas algorithm...") data = (traj_ref, traj_est) else: data = (traj_ref, traj_est) ape_metric = metrics.APE(pose_relation) # APE with only pose is in reality ATE (Absolute trajectory error) instead of APE (abs. pose error) ape_metric.process_data(data) # Get all stadistics in a dict ape_stats = ape_metric.get_all_statistics() return ape_stats
def ape(traj_ref, traj_est, pose_relation, align=False, correct_scale=False, align_origin=False, ref_name="reference", est_name="estimate"): ''' Based on main_ape.py ''' traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est) # Align the trajectories. only_scale = correct_scale and not align if align or correct_scale: traj_est = trajectory.align_trajectory(traj_est, traj_ref, correct_scale, only_scale) elif align_origin: traj_est = trajectory.align_trajectory_origin(traj_est, traj_ref) # Calculate APE. data = (traj_ref, traj_est) ape_metric = APE(pose_relation) ape_metric.process_data(data) ape_result = ape_metric.get_result(ref_name, est_name) ape_result.add_trajectory(ref_name, traj_ref) ape_result.add_trajectory(est_name, traj_est) if isinstance(traj_est, trajectory.PoseTrajectory3D): seconds_from_start = [ t - traj_est.timestamps[0] for t in traj_est.timestamps ] ape_result.add_np_array("seconds_from_start", seconds_from_start) ape_result.add_np_array("timestamps", traj_est.timestamps) return ape_result
#!/usr/bin/env python from __future__ import print_function print("loading required evo modules") from evo.core import trajectory, sync, metrics from evo.tools import file_interface print("loading trajectories") traj_ref = file_interface.read_tum_trajectory_file("../../test/data/fr2_desk_groundtruth.txt") traj_est = file_interface.read_tum_trajectory_file("../../test/data/fr2_desk_ORB.txt") print("registering and aligning trajectories") traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est) traj_est = trajectory.align_trajectory(traj_est, traj_ref, correct_scale=False) print("calculating APE") data = (traj_ref, traj_est) ape_metric = metrics.APE(metrics.PoseRelation.translation_part) ape_metric.process_data(data) ape_statistics = ape_metric.get_all_statistics() print("mean:", ape_statistics["mean"]) print("loading plot modules") from evo.tools import plot import matplotlib.pyplot as plt print("plotting") plot_collection = plot.PlotCollection("Example") # metric values fig_1 = plt.figure(figsize=(8, 8))
import numpy as np import matplotlib.pyplot as plt logger = logging.getLogger("evo") log.configure_logging(verbose=True) traj_ref = file_interface.read_kitti_poses_file("../test/data/KITTI_00_gt.txt") traj_est = file_interface.read_kitti_poses_file("../test/data/KITTI_00_ORB.txt") # add artificial Sim(3) transformation traj_est.transform(lie.se3(np.eye(3), [0, 0, 0])) traj_est.scale(0.5) logger.info("\nUmeyama alignment without scaling") traj_est_aligned = trajectory.align_trajectory(traj_est, traj_ref) logger.info("\nUmeyama alignment with scaling") traj_est_aligned_scaled = trajectory.align_trajectory( traj_est, traj_ref, correct_scale=True) logger.info("\nUmeyama alignment with scaling only") traj_est_aligned_only_scaled = trajectory.align_trajectory( traj_est, traj_ref, correct_only_scale=True) fig = plt.figure(figsize=(8, 8)) plot_mode = plot.PlotMode.xz ax = plot.prepare_axis(fig, plot_mode, subplot_arg='221') plot.traj(ax, plot_mode, traj_ref, '--', 'gray') plot.traj(ax, plot_mode, traj_est, '-', 'blue')
def run_analysis(traj_ref_path, traj_est_path, segments, save_results, display_plot, save_plots, save_folder, confirm_overwrite=False, dataset_name="", discard_n_start_poses=0, discard_n_end_poses=0): """ Run analysis on given trajectories, saves plots on given path: :param traj_ref_path: path to the reference (ground truth) trajectory. :param traj_est_path: path to the estimated trajectory. :param save_results: saves APE, and RPE per segment results. :param save_plots: whether to save the plots. :param save_folder: where to save the plots. :param confirm_overwrite: whether to confirm overwriting plots or not. :param dataset_name: optional param, to allow setting the same scale on different plots. """ # Load trajectories. from evo.tools import file_interface traj_ref = None try: traj_ref = file_interface.read_euroc_csv_trajectory( traj_ref_path) # TODO make it non-euroc specific. except file_interface.FileInterfaceException as e: raise Exception( "\033[91mMissing ground truth csv! \033[93m {}.".format(e)) traj_est = None try: traj_est = file_interface.read_swe_csv_trajectory(traj_est_path) except file_interface.FileInterfaceException as e: log.info(e) raise Exception("\033[91mMissing vio output csv.\033[99m") evt.print_purple("Registering trajectories") traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est) evt.print_purple("Aligning trajectories") traj_est = trajectory.align_trajectory( traj_est, traj_ref, correct_scale=False, discard_n_start_poses=int(discard_n_start_poses), discard_n_end_poses=int(discard_n_end_poses)) num_of_poses = traj_est.num_poses traj_est.reduce_to_ids( range(int(discard_n_start_poses), int(num_of_poses - discard_n_end_poses), 1)) traj_ref.reduce_to_ids( range(int(discard_n_start_poses), int(num_of_poses - discard_n_end_poses), 1)) results = dict() evt.print_purple("Calculating APE translation part") data = (traj_ref, traj_est) ape_metric = metrics.APE(metrics.PoseRelation.translation_part) ape_metric.process_data(data) ape_result = ape_metric.get_result() results["absolute_errors"] = ape_result log.info(ape_result.pretty_str(info=True)) # TODO(Toni): Save RPE computation results rather than the statistics # you can compute statistics later... evt.print_purple("Calculating RPE translation part for plotting") rpe_metric_trans = metrics.RPE(metrics.PoseRelation.translation_part, 1.0, metrics.Unit.frames, 0.0, False) rpe_metric_trans.process_data(data) rpe_stats_trans = rpe_metric_trans.get_all_statistics() log.info("mean: %f" % rpe_stats_trans["mean"]) evt.print_purple("Calculating RPE rotation angle for plotting") rpe_metric_rot = metrics.RPE(metrics.PoseRelation.rotation_angle_deg, 1.0, metrics.Unit.frames, 1.0, False) rpe_metric_rot.process_data(data) rpe_stats_rot = rpe_metric_rot.get_all_statistics() log.info("mean: %f" % rpe_stats_rot["mean"]) results["relative_errors"] = dict() # Read segments file for segment in segments: results["relative_errors"][segment] = dict() evt.print_purple("RPE analysis of segment: %d" % segment) evt.print_lightpurple("Calculating RPE segment translation part") rpe_segment_metric_trans = metrics.RPE( metrics.PoseRelation.translation_part, float(segment), metrics.Unit.meters, 0.01, True) rpe_segment_metric_trans.process_data(data) rpe_segment_stats_trans = rpe_segment_metric_trans.get_all_statistics() results["relative_errors"][segment][ "rpe_trans"] = rpe_segment_stats_trans # print(rpe_segment_stats_trans) # print("mean:", rpe_segment_stats_trans["mean"]) evt.print_lightpurple("Calculating RPE segment rotation angle") rpe_segment_metric_rot = metrics.RPE( metrics.PoseRelation.rotation_angle_deg, float(segment), metrics.Unit.meters, 0.01, True) rpe_segment_metric_rot.process_data(data) rpe_segment_stats_rot = rpe_segment_metric_rot.get_all_statistics() results["relative_errors"][segment]["rpe_rot"] = rpe_segment_stats_rot # print(rpe_segment_stats_rot) # print("mean:", rpe_segment_stats_rot["mean"]) if save_results: # Save results file results_file = os.path.join(save_folder, 'results.yaml') evt.print_green("Saving analysis results to: %s" % results_file) with open(results_file, 'w') as outfile: if confirm_overwrite: if evt.user.check_and_confirm_overwrite(results_file): outfile.write(yaml.dump(results, default_flow_style=False)) else: log.info("Not overwritting results.") else: outfile.write(yaml.dump(results, default_flow_style=False)) # For each segment in segments file # Calculate rpe with delta = segment in meters with all-pairs set to True # Calculate max, min, rmse, mean, median etc # Plot boxplot, or those cumulative figures you see in evo (like demographic plots) if display_plot or save_plots: evt.print_green("Plotting:") log.info(dataset_name) plot_collection = plot.PlotCollection("Example") # metric values fig_1 = plt.figure(figsize=(8, 8)) ymax = -1 if dataset_name is not "" and FIX_MAX_Y: ymax = Y_MAX_APE_TRANS[dataset_name] ape_statistics = ape_metric.get_all_statistics() plot.error_array( fig_1, ape_metric.error, statistics=ape_statistics, name="APE translation", title="" #str(ape_metric) , xlabel="Keyframe index [-]", ylabel="APE translation [m]", y_min=0.0, y_max=ymax) plot_collection.add_figure("APE_translation", fig_1) # trajectory colormapped with error fig_2 = plt.figure(figsize=(8, 8)) plot_mode = plot.PlotMode.xy ax = plot.prepare_axis(fig_2, plot_mode) plot.traj(ax, plot_mode, traj_ref, '--', 'gray', 'reference') plot.traj_colormap(ax, traj_est, ape_metric.error, plot_mode, min_map=0.0, max_map=math.ceil(ape_statistics['max'] * 10) / 10, title="ATE mapped onto trajectory [m]") plot_collection.add_figure("APE_translation_trajectory_error", fig_2) # RPE ## Trans ### metric values fig_3 = plt.figure(figsize=(8, 8)) if dataset_name is not "" and FIX_MAX_Y: ymax = Y_MAX_RPE_TRANS[dataset_name] plot.error_array( fig_3, rpe_metric_trans.error, statistics=rpe_stats_trans, name="RPE translation", title="" #str(rpe_metric_trans) , xlabel="Keyframe index [-]", ylabel="RPE translation [m]", y_max=ymax) plot_collection.add_figure("RPE_translation", fig_3) ### trajectory colormapped with error fig_4 = plt.figure(figsize=(8, 8)) plot_mode = plot.PlotMode.xy ax = plot.prepare_axis(fig_4, plot_mode) traj_ref_trans = copy.deepcopy(traj_ref) traj_ref_trans.reduce_to_ids(rpe_metric_trans.delta_ids) traj_est_trans = copy.deepcopy(traj_est) traj_est_trans.reduce_to_ids(rpe_metric_trans.delta_ids) plot.traj(ax, plot_mode, traj_ref_trans, '--', 'gray', 'Reference') plot.traj_colormap( ax, traj_est_trans, rpe_metric_trans.error, plot_mode, min_map=0.0, max_map=math.ceil(rpe_stats_trans['max'] * 10) / 10, title="RPE translation error mapped onto trajectory [m]") plot_collection.add_figure("RPE_translation_trajectory_error", fig_4) ## Rot ### metric values fig_5 = plt.figure(figsize=(8, 8)) if dataset_name is not "" and FIX_MAX_Y: ymax = Y_MAX_RPE_ROT[dataset_name] plot.error_array( fig_5, rpe_metric_rot.error, statistics=rpe_stats_rot, name="RPE rotation error", title="" #str(rpe_metric_rot) , xlabel="Keyframe index [-]", ylabel="RPE rotation [deg]", y_max=ymax) plot_collection.add_figure("RPE_rotation", fig_5) ### trajectory colormapped with error fig_6 = plt.figure(figsize=(8, 8)) plot_mode = plot.PlotMode.xy ax = plot.prepare_axis(fig_6, plot_mode) traj_ref_rot = copy.deepcopy(traj_ref) traj_ref_rot.reduce_to_ids(rpe_metric_rot.delta_ids) traj_est_rot = copy.deepcopy(traj_est) traj_est_rot.reduce_to_ids(rpe_metric_rot.delta_ids) plot.traj(ax, plot_mode, traj_ref_rot, '--', 'gray', 'Reference') plot.traj_colormap( ax, traj_est_rot, rpe_metric_rot.error, plot_mode, min_map=0.0, max_map=math.ceil(rpe_stats_rot['max'] * 10) / 10, title="RPE rotation error mapped onto trajectory [deg]") plot_collection.add_figure("RPE_rotation_trajectory_error", fig_6) if display_plot: evt.print_green("Displaying plots.") plot_collection.show() if save_plots: evt.print_green("Saving plots to: ") log.info(save_folder) # Config output format (pdf, eps, ...) using evo_config... plot_collection.export(os.path.join(save_folder, "plots.eps"), False) plot_collection.export(os.path.join(save_folder, "plots.pdf"), False)
# load trajectories (examples from TUM benchmark) ref_file = "data/freiburg1_xyz-groundtruth.txt" est_file = "data/freiburg1_xyz-rgbdslam_drift.txt" max_diff = 0.01 offset = 0.0 start = time.clock() traj_ref, traj_est = file_interface.load_assoc_tum_trajectories( est_file, ref_file, max_diff, offset, ) # align trajectories print("\naligning trajectories...") traj_est = trajectory.align_trajectory(traj_est, traj_ref) stop = time.clock() load_time = stop - start print("elapsed time for trajectory loading (seconds): \t", "{0:.6f}".format(load_time)) """ test absolute pose error algorithms for different types of pose relations """ for pose_relation in metrics.PoseRelation: print("\n------------------------------------------------------------------\n") data = (traj_ref, traj_est) start = time.clock() ape_metric = metrics.APE(pose_relation)
def ape(traj_ref_list, traj_est_list, pose_relation, align=False, correct_scale=False, align_origin=False, ref_name=["reference"], est_name=["estimate"]): from evo.core import metrics from evo.core import trajectory # Align the trajectories. only_scale = correct_scale and not align if align or correct_scale: logger.debug(SEP) for i in range(len(traj_ref_list)): print(traj_est_list[i], traj_ref_list[i]) traj_est_list[i] = trajectory.align_trajectory( traj_est_list[i], traj_ref_list[i], correct_scale, only_scale) elif align_origin: logger.debug(SEP) for i in range(len(traj_ref_list)): traj_est_list[i] = trajectory.align_trajectory_origin( traj_est_list[i], traj_ref_list[i]) # Calculate APE. logger.debug(SEP) data = [(traj_ref_list[i], traj_est_list[i]) for i in range(len(traj_ref_list))] ape_metric = [ metrics.APE(pose_relation) for i in range(len(traj_ref_list)) ] for i in range(len(traj_ref_list)): ape_metric[i].process_data(data[i]) ape_result = [ ape_metric[i].get_result(ref_name[i], est_name[i]) for i in range(len(traj_ref_list)) ] for i in range(len(traj_ref_list)): title = str(ape_metric[i]) if align and not correct_scale: title += "\n(with SE(3) Umeyama alignment)" elif align and correct_scale: title += "\n(with Sim(3) Umeyama alignment)" elif only_scale: title += "\n(scale corrected)" elif align_origin: title += "\n(with origin alignment)" else: title += "\n(not aligned)" ape_result[i].info["title"] = title logger.debug(SEP) logger.info(ape_result[i].pretty_str()) ape_result[i].add_trajectory(ref_name[i], traj_ref_list[i]) ape_result[i].add_trajectory(est_name[i], traj_est_list[i]) if isinstance(traj_est_list[i], trajectory.PoseTrajectory3D): seconds_from_start = [ t - traj_est_list[i].timestamps[0] for t in traj_est_list[i].timestamps ] ape_result[i].add_np_array("seconds_from_start", seconds_from_start) ape_result[i].add_np_array("timestamps", traj_est_list[i].timestamps) return ape_result
def get_and_save_results_from_folder(folder_with_predicted_poses,category): global args global kitti_eval_tool global folder_with_gt_poses global output_folder global t global results values_for_excel = [] columns_for_excel = [] type_of_statistics = 'mean' for filename in sorted(os.listdir(folder_with_predicted_poses)): if not(os.path.exists(os.path.join(folder_with_gt_poses, filename))): print("file with gt poses doesn't exist for "+filename) continue if filename.find('.txt') == -1: continue seq_results = {} seq_results['name_seq'] = filename[:filename.rfind('.')] seq_results['category'] = category folder_name = seq_results['category'] seq_results['metrics'] = {} seq_results['lost'] = False os.makedirs(os.path.join(output_folder, folder_name), exist_ok=True) output_folder_seq = os.path.join(output_folder, folder_name, filename[:filename.rfind('.')]) os.makedirs(output_folder_seq, exist_ok=True) if os.path.isfile(os.path.join(output_folder, folder_name,"results.txt")): file_results_txt = open(os.path.join(output_folder, folder_name,"results.txt"), "a") else: file_results_txt = open(os.path.join(output_folder, folder_name,"results.txt"), "w") file_results_txt.write("translation_error(%) rotation_error(deg/m) ATE(m) APE_translation_error_median(m) APE_rotation_error_median(deg) dst_to_trgt\n") # -------------------------------------Getting results--------------------------------------------------- if args.gt_format == 'kitti': traj_ref = file_interface.read_kitti_poses_file(os.path.join(folder_with_gt_poses, filename)) if args.gt_format == 'tum': traj_ref = file_interface.read_tum_trajectory_file(os.path.join(folder_with_gt_poses, filename)) seq_results["length_of_ref_traj"] = traj_ref.path_length end_time_gt = traj_ref.get_infos()["t_end (s)"] if args.gt_format == 'euroc': traj_ref = file_interface.read_euroc_csv_trajectory(os.path.join(folder_with_gt_poses, filename)) if args.result_format == 'kitti': traj_est = file_interface.read_kitti_poses_file(os.path.join(folder_with_predicted_poses, filename)) if args.result_format == 'tum': traj_est = file_interface.read_tum_trajectory_file(os.path.join(folder_with_predicted_poses, filename)) seq_results["length_of_estimated_traj"] = traj_est.path_length if args.result_format == 'euroc': traj_est = file_interface.read_euroc_csv_trajectory(os.path.join(folder_with_predicted_poses, filename)) if args.result_format == 'tum' and args.gt_format == 'tum': seq_results["num_gt_poses"] = traj_ref.num_poses seq_results["num_predicted_poses"] = traj_est.num_poses traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est, args.max_diff) end_time_est = traj_est.get_infos()["t_end (s)"] if (abs(end_time_est - end_time_gt) > 0.2) or (traj_est.get_infos()["t_start (s)"] > 0.2): print('LOST in track '+filename[:filename.rfind('.')]) seq_results['lost'] = True results.append(seq_results) t.update(1) continue if args.alignment != None: traj_est = trajectory.align_trajectory(traj_est, traj_ref, correct_scale=args.alignment.find("scale") != -1, correct_only_scale=args.alignment=="scale") trajectory.align_trajectory_origin(traj_est, traj_ref) data = (traj_ref, traj_est) ape_metric_translation = metrics.APE(metrics.PoseRelation.translation_part) ape_metric_rotation = metrics.APE(metrics.PoseRelation.rotation_angle_deg) ape_metric_translation.process_data(data) ape_metric_rotation.process_data(data) ape_translation_statistics = ape_metric_translation.get_all_statistics() ape_rotation_statistics = ape_metric_rotation.get_all_statistics() ape_translation_statistics_plot = copy.deepcopy(ape_translation_statistics) ape_rotation_statistics_plot = copy.deepcopy(ape_rotation_statistics) ape_translation_statistics_plot.pop('sse') ape_translation_statistics_plot.pop('std') ape_translation_statistics_plot.pop('min') ape_translation_statistics_plot.pop('max') ape_rotation_statistics_plot.pop('sse') ape_rotation_statistics_plot.pop('std') ape_rotation_statistics_plot.pop('min') ape_rotation_statistics_plot.pop('max') kitti_trans_err, kitti_rot_err, ate = kitti_eval_tool.eval(traj_ref.poses_se3, traj_est.poses_se3, alignment=None) #---------------------------------adding results to variable seq_results for excel ----------------------------- seq_results['metrics']['dist_to_trgt'] = traj_est.get_infos()['pos_end (m)'] - traj_ref.get_infos()['pos_end (m)'] seq_results['metrics']['dist_to_trgt'] = np.sum(np.array(seq_results['metrics']['dist_to_trgt'])**2)**0.5 seq_results['metrics']["Kitti trans err (%)"] = kitti_trans_err seq_results['metrics']["Kitti rot err (deg/m)"] = kitti_rot_err seq_results['metrics']["ATE (m)"] = ate seq_results['metrics']["APE(trans err) median (m)"] = ape_translation_statistics["median"] seq_results['metrics']["APE(rot err) median (deg)"] = ape_rotation_statistics["median"] #-------------------------------------------------------------------------------------------------------- #------------------------------------------------------------------------------------------------------- # --------------------------------printing results into console---------------------------------------------- print('Results for "'+filename+'":') print('Kitti average translational error (%): {:.7f}'.format(kitti_trans_err)) print('Kitti average rotational error (deg/m): {:.7f}'.format(kitti_rot_err)) print('ATE (m): {:.7f}'.format(ate)) print('APE(translation error) median (m): {:.7f}'.format(ape_translation_statistics["median"])) print('APE(rotation error) median (deg): {:.7f}'.format(ape_rotation_statistics["median"])) print('distance to target on the last frame: {:.7f}'.format(seq_results['metrics']['dist_to_trgt'])) #------------------------------------------------------------------------------------------------------------ #---------------------------------Saving results into overall results text file------------------------------ file_results_txt.write('{:<24} '.format(filename[:filename.rfind('.')])) file_results_txt.write('{:>7.4f} '.format(kitti_trans_err)) file_results_txt.write('{:>7.4f} '.format(kitti_rot_err)) file_results_txt.write('{:>7.4f} '.format(ate)) file_results_txt.write('{:>7.4f} '.format(ape_translation_statistics["median"])) file_results_txt.write('{:>7.4f} '.format(ape_rotation_statistics["median"])) file_results_txt.write('{:>7.4f}\n'.format(seq_results['metrics']['dist_to_trgt'])) #------------------------------------------------------------------------------------------------------------ # --------------------------------Saving metrics to text file for one track---------------------------------- txt_filename = filename[:filename.rfind('.')]+"_metrics.txt" with open(os.path.join(output_folder_seq, txt_filename), "w") as txt_file: txt_file.write('Kitti average translational error (%): {:.7f}\n'.format(kitti_trans_err)) txt_file.write('Kitti average rotational error (deg/m): {:.7f}\n'.format(kitti_rot_err)) txt_file.write('ATE (m): {:.7f}\n'.format(ate)) txt_file.write('APE(translation error) median (m): {:.7f}\n'.format(ape_translation_statistics["median"])) txt_file.write('APE(rotation error) median (deg): {:.7f}\n'.format(ape_rotation_statistics["median"])) txt_file.write('Distance to target on the last frame: {:.7f}\n'.format(seq_results['metrics']['dist_to_trgt'])) #--------------------------------------------------------------------------------------------------------- # ---------------------------------Saving values of errors for each frame to text file------------------------ # ------------------------------------------for translation errors---------------------------------------- txt_filename = filename[:filename.rfind('.')]+"_APE(translation)_errors.txt" output_folder_seq_translation = os.path.join(output_folder_seq,"translation") output_folder_seq_rotation = os.path.join(output_folder_seq,"rotation") os.makedirs(output_folder_seq_translation, exist_ok=True) os.makedirs(output_folder_seq_rotation, exist_ok=True) with open(os.path.join(output_folder_seq_translation, txt_filename), "w") as txt_file: for error in ape_metric_translation.error: txt_file.write('{:.10f}\n'.format(error)) # -----------------------------------------for rotation degree errors-------------------------------------- txt_filename = filename[:filename.rfind('.')]+"_APE(rotation_deg)_errors.txt" with open(os.path.join(output_folder_seq_rotation, txt_filename), "w") as txt_file: for error in ape_metric_rotation.error: txt_file.write('{:.10f}\n'.format(error)) #---------------------------------------------------------------------------------------------------------- # ---------------------------------------Saving plot of errors of each frame------------------------------ # ------------------------------------------for translation errors---------------------------------------- plot_collection = plot.PlotCollection("Example") fig_1 = plt.figure(figsize=(8, 8)) plot.error_array(fig_1, ape_metric_translation.error, name="APE", title=str(ape_metric_translation), xlabel="Index of frame", ylabel='Error') plot_collection.add_figure("raw", fig_1) plot_filename = filename[:filename.rfind('.')]+"_APE(translation)_errors.png" plt.savefig(os.path.join(output_folder_seq_translation, plot_filename)) plt.close(fig_1) # -----------------------------------------for rotation degree errors-------------------------------------- plot_collection = plot.PlotCollection("Example") fig_1 = plt.figure(figsize=(8, 8)) plot.error_array(fig_1, ape_metric_rotation.error, name="APE", title=str(ape_metric_rotation), xlabel="Index of frame", ylabel='Error') plot_collection.add_figure("raw", fig_1) plot_filename = filename[:filename.rfind('.')]+"_APE(rotation)_errors.png" plt.savefig(os.path.join(output_folder_seq_rotation,plot_filename)) plt.close(fig_1) #----------------------------------------------------------------------------------------------------------- # -----------------------------------------Saving trajectory plot------------------------------------------- # ------------------------------------------for translation errors---------------------------------------- fig_2 = plt.figure(figsize=(8, 8)) ax = plot.prepare_axis(fig_2, plot_mode) plot.traj(ax, plot_mode, traj_ref, '--', 'gray', 'reference') plot.traj_colormap( ax, traj_est, ape_metric_translation.error, plot_mode, min_map=ape_translation_statistics["min"], max_map=ape_translation_statistics["max"], title="APE translation mapped onto trajectory") plot_collection.add_figure("traj (error)", fig_2) plot_filename = filename[:filename.rfind('.')]+"_APE(translation)_map.png" plt.savefig(os.path.join(output_folder_seq_translation,plot_filename)) plt.close(fig_2) # -----------------------------------------for rotation degree errors-------------------------------------- fig_2 = plt.figure(figsize=(8, 8)) ax = plot.prepare_axis(fig_2, plot_mode) plot.traj(ax, plot_mode, traj_ref, '--', 'gray', 'reference') plot.traj_colormap( ax, traj_est, ape_metric_rotation.error, plot_mode, min_map=ape_rotation_statistics["min"], max_map=ape_rotation_statistics["max"], title="APE rotation mapped onto trajectory") plot_collection.add_figure("traj (error)", fig_2) plot_filename = filename[:filename.rfind('.')]+"_APE(rotation)_map.png" plt.savefig(os.path.join(output_folder_seq_rotation,plot_filename)) plt.close(fig_2) #----------------------------------------------------------------------------------------------------------- print() active_worksheet = wb['sheet1'] thin = Side(border_style="thin", color="000000") thick = Side(border_style="thick", color="000000") medium = Side(border_style="medium", color="000000") font_header = Font(name='Arial', size=10, bold=True, italic=False, vertAlign=None, underline='none', strike=False, color='FF000000') font_values = Font(name='Arial', size=10, bold=False, italic=False, vertAlign=None, underline='none', strike=False, color='FF000000') active_worksheet.row_dimensions[2].height = 35 file_results_txt.close() results.append(seq_results) t.update(1)
def main_ape(traj_ref, traj_est, pose_relation, align=True, correct_scale=False, ref_name="", est_name="", show_plot=False, save_plot=None, plot_mode=None, save_results=None, no_warnings=False, serialize_plot=None, plot_colormap_max=None, plot_colormap_min=None, plot_colormap_max_percentile=None): from evo.core import metrics, result from evo.core import trajectory from evo.tools import file_interface from evo.tools.settings import SETTINGS import numpy as np only_scale = correct_scale and not align if align or correct_scale: logger.debug(SEP) if only_scale: logger.debug("correcting scale...") else: logger.debug("aligning using Umeyama's method..." + (" (with scale correction)" if correct_scale else "")) traj_est = trajectory.align_trajectory(traj_est, traj_ref, correct_scale, only_scale) logger.debug(SEP) # calculate APE data = (traj_ref, traj_est) ape_metric = metrics.APE(pose_relation) ape_metric.process_data(data) ape_statistics = ape_metric.get_all_statistics() title = str(ape_metric) if align and not correct_scale: title += "\n(with SE(3) Umeyama alignment)" elif align and correct_scale: title += "\n(with Sim(3) Umeyama alignment)" elif only_scale: title += "\n(scale corrected)" else: title += "\n(not aligned)" ape_result = ape_metric.get_result(ref_name, est_name) logger.debug(SEP) logger.info(ape_result.pretty_str()) if isinstance(traj_est, trajectory.PoseTrajectory3D): seconds_from_start = [ t - traj_est.timestamps[0] for t in traj_est.timestamps ] ape_result.add_np_array("seconds_from_start", seconds_from_start) ape_result.add_np_array("timestamps", traj_est.timestamps) else: seconds_from_start = None if show_plot or save_plot or save_results or serialize_plot: if show_plot or save_plot or serialize_plot: from evo.tools import plot import matplotlib.pyplot as plt logger.debug(SEP) logger.debug("plotting results... ") fig1 = plt.figure(figsize=(SETTINGS.plot_figsize[0], SETTINGS.plot_figsize[1])) # metric values plot.error_array( fig1, ape_metric.error, x_array=seconds_from_start, statistics=ape_statistics, name="APE" + (" (" + ape_metric.unit.value + ")") if ape_metric.unit else "", title=title, xlabel="$t$ (s)" if seconds_from_start else "index") # info text if SETTINGS.plot_info_text and est_name and ref_name: ax = fig1.gca() ax.text(0, -0.12, "estimate: " + est_name + "\nreference: " + ref_name, transform=ax.transAxes, fontsize=8, color="gray") # trajectory colormapped fig2 = plt.figure(figsize=(SETTINGS.plot_figsize[0], SETTINGS.plot_figsize[1])) plot_mode = plot_mode if plot_mode is not None else plot.PlotMode.xyz ax = plot.prepare_axis(fig2, plot_mode) plot.traj(ax, plot_mode, traj_ref, '--', 'gray', 'reference', alpha=0.0 if SETTINGS.plot_hideref else 1.0) min_map = ape_statistics[ "min"] if plot_colormap_min is None else plot_colormap_min if plot_colormap_max_percentile is not None: max_map = np.percentile(ape_result.np_arrays["error_array"], plot_colormap_max_percentile) else: max_map = ape_statistics[ "max"] if plot_colormap_max is None else plot_colormap_max plot.traj_colormap(ax, traj_est, ape_metric.error, plot_mode, min_map=min_map, max_map=max_map, title="APE mapped onto trajectory") fig2.axes.append(ax) plot_collection = plot.PlotCollection(title) plot_collection.add_figure("raw", fig1) plot_collection.add_figure("map", fig2) if show_plot: plot_collection.show() if save_plot: plot_collection.export(save_plot, confirm_overwrite=not no_warnings) if serialize_plot: logger.debug(SEP) plot_collection.serialize(serialize_plot, confirm_overwrite=not no_warnings) if save_results: logger.debug(SEP) if SETTINGS.save_traj_in_zip: ape_result.add_trajectory("traj_ref", traj_ref) ape_result.add_trajectory("traj_est", traj_est) file_interface.save_res_file(save_results, ape_result, confirm_overwrite=not no_warnings) return ape_result
def run_analysis(self, traj_ref_path, traj_vio_path, traj_pgo_path, segments, dataset_name="", discard_n_start_poses=0, discard_n_end_poses=0): """ Analyze data from a set of trajectory csv files. Args: traj_ref_path: string representing filepath of the reference (ground-truth) trajectory. traj_vio_path: string representing filepath of the vio estimated trajectory. traj_pgo_path: string representing filepath of the pgo estimated trajectory. segments: list of segments for RPE calculation, defined in the experiments yaml file. dataset_name: string representing the dataset's name discard_n_start_poses: int representing number of poses to discard from start of analysis. discard_n_end_poses: int representing the number of poses to discard from end of analysis. """ import copy # Mind that traj_est_pgo might be None traj_ref, traj_est_vio, traj_est_pgo = self.read_traj_files( traj_ref_path, traj_vio_path, traj_pgo_path) # We copy to distinguish from the pgo version that may be created traj_ref_vio = copy.deepcopy(traj_ref) # Register and align trajectories: evt.print_purple("Registering and aligning trajectories") traj_ref_vio, traj_est_vio = sync.associate_trajectories( traj_ref_vio, traj_est_vio) traj_est_vio = trajectory.align_trajectory( traj_est_vio, traj_ref_vio, correct_scale=False, discard_n_start_poses=int(discard_n_start_poses), discard_n_end_poses=int(discard_n_end_poses)) # We do the same for the PGO trajectory if needed: traj_ref_pgo = None if traj_est_pgo is not None: traj_ref_pgo = copy.deepcopy(traj_ref) traj_ref_pgo, traj_est_pgo = sync.associate_trajectories( traj_ref_pgo, traj_est_pgo) traj_est_pgo = trajectory.align_trajectory( traj_est_pgo, traj_ref_pgo, correct_scale=False, discard_n_start_poses=int(discard_n_start_poses), discard_n_end_poses=int(discard_n_end_poses)) # We need to pick the lowest num_poses before doing any computation: num_of_poses = traj_est_vio.num_poses if traj_est_pgo is not None: num_of_poses = min(num_of_poses, traj_est_pgo.num_poses) traj_est_pgo.reduce_to_ids( range(int(discard_n_start_poses), int(num_of_poses - discard_n_end_poses), 1)) traj_ref_pgo.reduce_to_ids( range(int(discard_n_start_poses), int(num_of_poses - discard_n_end_poses), 1)) traj_est_vio.reduce_to_ids( range(int(discard_n_start_poses), int(num_of_poses - discard_n_end_poses), 1)) traj_ref_vio.reduce_to_ids( range(int(discard_n_start_poses), int(num_of_poses - discard_n_end_poses), 1)) # Calculate all metrics: (ape_metric_vio, rpe_metric_trans_vio, rpe_metric_rot_vio, results_vio) = self.process_trajectory_data(traj_ref_vio, traj_est_vio, segments, True) # We do the same for the pgo trajectory if needed: ape_metric_pgo = None rpe_metric_trans_pgo = None rpe_metric_rot_pgo = None results_pgo = None if traj_est_pgo is not None: (ape_metric_pgo, rpe_metric_trans_pgo, rpe_metric_rot_pgo, results_pgo) = self.process_trajectory_data( traj_ref_pgo, traj_est_pgo, segments, False) # Generate plots for return: plot_collection = None if self.display_plots or self.save_plots: evt.print_green("Plotting:") log.info(dataset_name) plot_collection = plot.PlotCollection("Example") if traj_est_pgo is not None: # APE Metric Plot: plot_collection.add_figure( "PGO_APE_translation", plot_metric(ape_metric_pgo, "PGO + VIO APE Translation")) # Trajectory Colormapped with ATE Plot: plot_collection.add_figure( "PGO_APE_translation_trajectory_error", plot_traj_colormap_ape( ape_metric_pgo, traj_ref_pgo, traj_est_vio, traj_est_pgo, "PGO + VIO ATE Mapped Onto Trajectory")) # RPE Translation Metric Plot: plot_collection.add_figure( "PGO_RPE_translation", plot_metric(rpe_metric_trans_pgo, "PGO + VIO RPE Translation")) # Trajectory Colormapped with RTE Plot: plot_collection.add_figure( "PGO_RPE_translation_trajectory_error", plot_traj_colormap_rpe( rpe_metric_trans_pgo, traj_ref_pgo, traj_est_vio, traj_est_pgo, "PGO + VIO RPE Translation Error Mapped Onto Trajectory" )) # RPE Rotation Metric Plot: plot_collection.add_figure( "PGO_RPE_Rotation", plot_metric(rpe_metric_rot_pgo, "PGO + VIO RPE Rotation")) # Trajectory Colormapped with RTE Plot: plot_collection.add_figure( "PGO_RPE_rotation_trajectory_error", plot_traj_colormap_rpe( rpe_metric_rot_pgo, traj_ref_pgo, traj_est_vio, traj_est_pgo, "PGO + VIO RPE Rotation Error Mapped Onto Trajectory")) # Plot VIO results plot_collection.add_figure( "VIO_APE_translation", plot_metric(ape_metric_vio, "VIO APE Translation")) plot_collection.add_figure( "VIO_APE_translation_trajectory_error", plot_traj_colormap_ape(ape_metric_vio, traj_ref_vio, traj_est_vio, None, "VIO ATE Mapped Onto Trajectory")) plot_collection.add_figure( "VIO_RPE_translation", plot_metric(rpe_metric_trans_vio, "VIO RPE Translation")) plot_collection.add_figure( "VIO_RPE_translation_trajectory_error", plot_traj_colormap_rpe( rpe_metric_trans_vio, traj_ref_vio, traj_est_vio, None, "VIO RPE Translation Error Mapped Onto Trajectory")) plot_collection.add_figure( "VIO_RPE_Rotation", plot_metric(rpe_metric_rot_vio, "VIO RPE Rotation")) plot_collection.add_figure( "VIO_RPE_rotation_trajectory_error", plot_traj_colormap_rpe( rpe_metric_rot_vio, traj_ref_vio, traj_est_vio, None, "VIO RPE Rotation Error Mapped Onto Trajectory")) return [plot_collection, results_vio, results_pgo]
# res_final = [] for seq in seqs: traj_files = glob.glob(str(data_path / f'{seq}/*.txt')) # print(data_path / f'{seq}') gt_file = f'{gt_path}/{seq}.csv' failure_count = 0 if not len(traj_files) == 0: mean, rmse = [], [] for traj_file in traj_files: traj_gt = file_interface.read_euroc_csv_trajectory(gt_file) traj_est = file_interface.read_tum_trajectory_file(traj_file) kf_traj_est = file_interface.read_tum_trajectory_file(traj_file) traj_gt, traj_est = sync.associate_trajectories(traj_gt, traj_est) traj_est_aligned, rot, trans, scale = trajectory.align_trajectory( traj_est, traj_gt, correct_scale=True, return_parameters=True) data = (traj_gt, traj_est_aligned) ape_metric = metrics.APE(pose_relation=pose_relation) ape_metric.process_data(data) ape_stat = ape_metric.get_all_statistics() mean_curr = ape_stat['mean'] rmse_curr = ape_stat['rmse'] if mean_curr > 1.0 or rmse_curr > 1.0: failure_count += 1 continue mean.append(mean_curr) rmse.append(rmse_curr) print(
def run(args): import os import sys import numpy as np import evo.core.lie_algebra as lie from evo.core import trajectory from evo.core.trajectory import PoseTrajectory3D from evo.tools import file_interface, log from evo.tools.settings import SETTINGS log.configure_logging(verbose=args.verbose, silent=args.silent, debug=args.debug) if args.debug: import pprint logger.debug( "main_parser config:\n" + pprint.pformat({arg: getattr(args, arg) for arg in vars(args)}) + "\n") logger.debug(SEP) trajectories, ref_traj = load_trajectories(args) if args.merge: if args.subcommand == "kitti": die("Can't merge KITTI files.") if len(trajectories) == 0: die("No trajectories to merge (excluding --ref).") trajectories = { "merged_trajectory": trajectory.merge(trajectories.values()) } if args.transform_left or args.transform_right: tf_type = "left" if args.transform_left else "right" tf_path = args.transform_left \ if args.transform_left else args.transform_right transform = file_interface.load_transform_json(tf_path) logger.debug(SEP) if not lie.is_se3(transform): logger.warning("Not a valid SE(3) transformation!") if args.invert_transform: transform = lie.se3_inverse(transform) logger.debug("Applying a {}-multiplicative transformation:\n{}".format( tf_type, transform)) for traj in trajectories.values(): traj.transform(transform, right_mul=args.transform_right) if args.t_offset: logger.debug(SEP) for name, traj in trajectories.items(): if type(traj) is trajectory.PosePath3D: die("{} doesn't have timestamps - can't add time offset.". format(name)) logger.info("Adding time offset to {}: {} (s)".format( name, args.t_offset)) traj.timestamps += args.t_offset if args.sync or args.align or args.correct_scale: from evo.core import sync if not args.ref: logger.debug(SEP) die("Can't align or sync without a reference! (--ref) *grunt*") for name, traj in trajectories.items(): if args.subcommand == "kitti": ref_traj_tmp = ref_traj else: logger.debug(SEP) ref_traj_tmp, trajectories[name] = sync.associate_trajectories( ref_traj, traj, max_diff=args.t_max_diff, first_name="reference", snd_name=name) if args.align or args.correct_scale: logger.debug(SEP) logger.debug("Aligning {} to reference.".format(name)) trajectories[name] = trajectory.align_trajectory( trajectories[name], ref_traj_tmp, correct_scale=args.correct_scale, correct_only_scale=args.correct_scale and not args.align, n=args.n_to_align) for name, traj in trajectories.items(): print_traj_info(name, traj, args.verbose, args.full_check) if args.ref: print_traj_info(args.ref, ref_traj, args.verbose, args.full_check) if args.plot or args.save_plot or args.serialize_plot: from evo.tools.plot import PlotMode plot_mode = PlotMode.xyz if not args.plot_mode else PlotMode[ args.plot_mode] import numpy as np from evo.tools import plot import matplotlib.pyplot as plt import matplotlib.cm as cm plot_collection = plot.PlotCollection("evo_traj - trajectory plot") fig_xyz, axarr_xyz = plt.subplots(3, sharex="col", figsize=tuple(SETTINGS.plot_figsize)) fig_rpy, axarr_rpy = plt.subplots(3, sharex="col", figsize=tuple(SETTINGS.plot_figsize)) fig_traj = plt.figure(figsize=tuple(SETTINGS.plot_figsize)) ax_traj = plot.prepare_axis(fig_traj, plot_mode) pltstart = 0 pltend = traj.num_poses if args.plotstart: pltstart = args.plotstart if args.plotend != -1: pltend = args.plotend if args.ref: short_traj_name = os.path.splitext(os.path.basename(args.ref))[0] if SETTINGS.plot_usetex: short_traj_name = short_traj_name.replace("_", "\\_") plot.traj(ax_traj, plot_mode, ref_traj, style=SETTINGS.plot_reference_linestyle, color=SETTINGS.plot_reference_color, label=short_traj_name, alpha=SETTINGS.plot_reference_alpha, start=pltstart, end=pltend) plot.traj_xyz(axarr_xyz, ref_traj, style=SETTINGS.plot_reference_linestyle, color=SETTINGS.plot_reference_color, label=short_traj_name, alpha=SETTINGS.plot_reference_alpha, start=pltstart, end=pltend) plot.traj_rpy(axarr_rpy, ref_traj, style=SETTINGS.plot_reference_linestyle, color=SETTINGS.plot_reference_color, label=short_traj_name, alpha=SETTINGS.plot_reference_alpha, start=pltstart, end=pltend) cmap_colors = None if SETTINGS.plot_multi_cmap.lower() != "none": cmap = getattr(cm, SETTINGS.plot_multi_cmap) cmap_colors = iter(cmap(np.linspace(0, 1, len(trajectories)))) fig_3 = plt.figure(figsize=tuple(SETTINGS.plot_figsize)) #plot_mode = plot.PlotMode.xz ax = plot.prepare_axis(fig_3, plot_mode) fig_3.axes.append(ax) for name, traj in trajectories.items(): num = traj.positions_xyz.shape[0] if pltstart >= num: print(name, "plotstart > len!", num) pltstart = 0 if pltend != -1 and (pltend > num or pltend < pltstart): print(name, "plotend > len!", num) pltend = traj.num_poses pltstart = int(pltstart) pltend = int(pltend) if cmap_colors is None: color = next(ax_traj._get_lines.prop_cycler)['color'] else: color = next(cmap_colors) short_traj_name = os.path.splitext(os.path.basename(name))[0] if SETTINGS.plot_usetex: short_traj_name = short_traj_name.replace("_", "\\_") plot.traj(ax_traj, plot_mode, traj, '-', color, short_traj_name, start=pltstart, end=pltend) if args.ref and isinstance(ref_traj, trajectory.PoseTrajectory3D): start_time = ref_traj.timestamps[0] else: start_time = None plot.traj_xyz(axarr_xyz, traj, '-', color, short_traj_name, start_timestamp=start_time, start=pltstart, end=pltend) plot.traj_rpy(axarr_rpy, traj, '-', color, short_traj_name, start_timestamp=start_time, start=pltstart, end=pltend) speeds = [ trajectory.calc_speed(traj.positions_xyz[i], traj.positions_xyz[i + 1], traj.timestamps[i], traj.timestamps[i + 1]) for i in range(pltstart, pltend - 1) ] speeds.append(0) #plot.traj(ax, plot_mode, traj, '--', 'gray', 'reference') plot.traj_colormap(ax, traj, speeds, plot_mode, min_map=min(speeds), max_map=max(max(speeds), 10), title="speed mapped onto trajectory", start=pltstart, end=pltend) plot_collection.add_figure("trajectories", fig_traj) plot_collection.add_figure("xyz_view", fig_xyz) plot_collection.add_figure("rpy_view", fig_rpy) plot_collection.add_figure("traj (speed)", fig_3) if args.plot: plot_collection.show() if args.save_plot: logger.info(SEP) plot_collection.export(args.save_plot, confirm_overwrite=not args.no_warnings) if args.serialize_plot: logger.info(SEP) plot_collection.serialize(args.serialize_plot, confirm_overwrite=not args.no_warnings) if args.save_as_tum: logger.info(SEP) for name, traj in trajectories.items(): dest = os.path.splitext(os.path.basename(name))[0] + ".tum" file_interface.write_tum_trajectory_file( dest, traj, confirm_overwrite=not args.no_warnings) if args.ref: dest = os.path.splitext(os.path.basename(args.ref))[0] + ".tum" file_interface.write_tum_trajectory_file( dest, ref_traj, confirm_overwrite=not args.no_warnings) if args.save_as_kitti: logger.info(SEP) for name, traj in trajectories.items(): dest = os.path.splitext(os.path.basename(name))[0] + ".kitti" file_interface.write_kitti_poses_file( dest, traj, confirm_overwrite=not args.no_warnings) if args.ref: dest = os.path.splitext(os.path.basename(args.ref))[0] + ".kitti" file_interface.write_kitti_poses_file( dest, ref_traj, confirm_overwrite=not args.no_warnings) if args.save_as_bag: import datetime import rosbag dest_bag_path = str( datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")) + ".bag" logger.info(SEP) logger.info("Saving trajectories to " + dest_bag_path + "...") bag = rosbag.Bag(dest_bag_path, 'w') try: for name, traj in trajectories.items(): dest_topic = os.path.splitext(os.path.basename(name))[0] frame_id = traj.meta[ "frame_id"] if "frame_id" in traj.meta else "" file_interface.write_bag_trajectory(bag, traj, dest_topic, frame_id) if args.ref: dest_topic = os.path.splitext(os.path.basename(args.ref))[0] frame_id = ref_traj.meta[ "frame_id"] if "frame_id" in ref_traj.meta else "" file_interface.write_bag_trajectory(bag, ref_traj, dest_topic, frame_id) finally: bag.close()
import numpy as np import matplotlib.pyplot as plt logging.basicConfig(format="%(message)s", stream=sys.stdout, level=logging.DEBUG) traj_ref = file_interface.read_kitti_poses_file("../data/KITTI_00_gt.txt") traj_est = file_interface.read_kitti_poses_file("../data/KITTI_00_ORB.txt") # add artificial Sim(3) transformation traj_est.transform(lie.se3(np.eye(3), [0, 0, 0])) traj_est.scale(0.5) logging.info("\nUmeyama alignment without scaling") traj_est_aligned = trajectory.align_trajectory(traj_est, traj_ref) logging.info("\nUmeyama alignment with scaling") traj_est_aligned_scaled = trajectory.align_trajectory(traj_est, traj_ref, correct_scale=True) logging.info("\nUmeyama alignment with scaling only") traj_est_aligned_only_scaled = trajectory.align_trajectory( traj_est, traj_ref, correct_only_scale=True) fig = plt.figure(figsize=(8, 8)) # fig.suptitle("Umeyama $\mathrm{Sim}(3)$ alignment") plot_mode = plot.PlotMode.xz ax = plot.prepare_axis(fig, plot_mode, subplot_arg='221') # 122 = 1*2 grid, second plot.traj(ax, plot_mode, traj_ref, '--', 'gray') #, 'reference') plot.traj(ax, plot_mode, traj_est, '-', 'blue') #, 'not aligned')
def main_rpe_for_each(traj_ref, traj_est, pose_relation, mode, bins, rel_tols, align=False, correct_scale=False, ref_name="", est_name="", show_plot=False, save_plot=None, save_results=None, no_warnings=False, serialize_plot=None): from evo.core import metrics, result from evo.core import filters from evo.core import trajectory from evo.tools import file_interface from evo.tools.settings import SETTINGS if not bins or not rel_tols: raise RuntimeError("bins and tolerances must have more than one element") if len(bins) != len(rel_tols): raise RuntimeError("bins and tolerances must have the same number of elements") if mode in {"speed", "angular_speed"} and traj_est is trajectory.PosePath3D: raise RuntimeError("timestamps are required for mode: " + mode) bin_unit = None if mode == "speed": bin_unit = metrics.VelUnit.meters_per_sec elif mode == "path": bin_unit = metrics.Unit.meters elif mode == "angle": bin_unit = metrics.Unit.degrees elif mode == "angular_speed": bin_unit = metrics.VelUnit.degrees_per_sec rpe_unit = None if pose_relation is metrics.PoseRelation.translation_part: rpe_unit = metrics.Unit.meters elif pose_relation is metrics.PoseRelation.rotation_angle_deg: rpe_unit = metrics.Unit.degrees elif pose_relation is metrics.PoseRelation.rotation_angle_rad: rpe_unit = metrics.Unit.radians correct_only_scale = correct_scale and not align if align or correct_scale: logger.debug(SEP) if correct_only_scale: logger.debug("Correcting scale...") else: logger.debug("Aligning using Umeyama's method..." + (" (with scale correction)" if correct_scale else "")) traj_est = trajectory.align_trajectory(traj_est, traj_ref, correct_scale, correct_only_scale) results = [] for bin, rel_tol, in zip(bins, rel_tols): logger.debug(SEP) logger.info( "Calculating RPE for each sub-sequence of " + str(bin) + " (" + bin_unit.value + ")") tol = bin * rel_tol id_pairs = [] if mode == "path": id_pairs = filters.filter_pairs_by_path(traj_ref.poses_se3, bin, tol, all_pairs=True) elif mode == "angle": id_pairs = filters.filter_pairs_by_angle(traj_ref.poses_se3, bin, tol, degrees=True) elif mode == "speed": id_pairs = filters.filter_pairs_by_speed(traj_ref.poses_se3, traj_ref.timestamps, bin, tol) elif mode == "angular_speed": id_pairs = filters.filter_pairs_by_angular_speed(traj_ref.poses_se3, traj_ref.timestamps, bin, tol, True) if len(id_pairs) == 0: raise RuntimeError("bin " + str(bin) + " (" + str(bin_unit.value) + ") " + "produced empty index list - try other values") # calculate RPE with all IDs (delta 1 frames) data = (traj_ref, traj_est) # the delta here has nothing to do with the bin - 1f delta just to use all poses of the bin rpe_metric = metrics.RPE(pose_relation, delta=1, delta_unit=metrics.Unit.frames, all_pairs=True) rpe_metric.process_data(data, id_pairs) mean = rpe_metric.get_statistic(metrics.StatisticsType.mean) results.append(mean) if SETTINGS.plot_usetex: mode.replace("_", "\_") title = "mean RPE w.r.t. " + pose_relation.value + "\nfor different " + mode + " sub-sequences" if align and not correct_scale: title += "\n(with SE(3) Umeyama alignment)" elif align and correct_scale: title += "\n(with Sim(3) Umeyama alignment)" elif correct_only_scale: title += "\n(scale corrected)" else: title += "\n(not aligned)" rpe_for_each_result = result.Result() rpe_for_each_result.add_info({ "label": "RPE ({})".format(rpe_unit.value), "est_name": est_name, "ref_name": ref_name, "title": title, "xlabel": "{} sub-sequences ({})".format(mode, bin_unit.value) }) rpe_for_each_result.add_stats({bin: result for bin, result in zip(bins, results)}) # TODO use a more suitable name than seconds rpe_for_each_result.add_np_array("seconds_from_start", bins) rpe_for_each_result.add_np_array("error_array", results) logger.debug(SEP) logger.info(rpe_for_each_result.pretty_str()) if show_plot or save_plot or serialize_plot: from evo.tools import plot import matplotlib.pyplot as plt plot_collection = plot.PlotCollection(title) fig = plt.figure(figsize=(SETTINGS.plot_figsize[0], SETTINGS.plot_figsize[1])) plot.error_array(fig, results, x_array=bins, name="mean RPE" + (" (" + rpe_unit.value + ")") if rpe_unit else "", marker="o", title=title, xlabel=mode + " sub-sequences " + " (" + bin_unit.value + ")") # info text if SETTINGS.plot_info_text and est_name and ref_name: ax = fig.gca() ax.text(0, -0.12, "estimate: " + est_name + "\nreference: " + ref_name, transform=ax.transAxes, fontsize=8, color="gray") plt.title(title) plot_collection.add_figure("raw", fig) if show_plot: plot_collection.show() if save_plot: plot_collection.export(save_plot, confirm_overwrite=not no_warnings) if serialize_plot: logger.debug(SEP) plot_collection.serialize(serialize_plot, confirm_overwrite=not no_warnings) if save_results: logger.debug(SEP) if SETTINGS.save_traj_in_zip: rpe_for_each_result.add_trajectory("traj_ref", traj_ref) rpe_for_each_result.add_trajectory("traj_est", traj_est) file_interface.save_res_file(save_results, rpe_for_each_result, confirm_overwrite=not no_warnings) return rpe_for_each_result
def main_rpe(traj_ref, traj_est, pose_relation, delta, delta_unit, rel_delta_tol=0.1, all_pairs=False, align=False, correct_scale=False, ref_name="", est_name="", show_plot=False, save_plot=None, plot_mode=None, save_results=None, no_warnings=False, support_loop=False, serialize_plot=None): from evo.core import metrics, result from evo.core import trajectory from evo.tools import file_interface from evo.tools.settings import SETTINGS if (show_plot or save_plot or serialize_plot) and all_pairs: raise metrics.MetricsException( "all_pairs mode cannot be used with plotting functions") only_scale = correct_scale and not align if align or correct_scale: logging.debug(SEP) if only_scale: logging.debug("correcting scale...") else: logging.debug("aligning using Umeyama's method..." + ( " (with scale correction)" if correct_scale else "")) traj_est = trajectory.align_trajectory(traj_est, traj_ref, correct_scale, only_scale) logging.debug(SEP) # calculate RPE data = (traj_ref, traj_est) rpe_metric = metrics.RPE(pose_relation, delta, delta_unit, rel_delta_tol, all_pairs) rpe_metric.process_data(data) rpe_statistics = rpe_metric.get_all_statistics() title = str(rpe_metric) if align and not correct_scale: title += "\n(with SE(3) Umeyama alignment)" elif align and correct_scale: title += "\n(with Sim(3) Umeyama alignment)" elif only_scale: title += "\n(scale corrected)" else: title += "\n(not aligned)" rpe_result = result.from_metric(rpe_metric, title, ref_name, est_name) logging.debug(SEP) logging.info(rpe_result.pretty_str()) # restrict trajectories to delta ids if support_loop: # avoid overwriting if called repeatedly e.g. in Jupyter notebook import copy traj_ref = copy.deepcopy(traj_ref) traj_est = copy.deepcopy(traj_est) traj_ref.reduce_to_ids(rpe_metric.delta_ids) traj_est.reduce_to_ids(rpe_metric.delta_ids) if isinstance(traj_est, trajectory.PoseTrajectory3D) and not all_pairs: seconds_from_start = [ t - traj_est.timestamps[0] for t in traj_est.timestamps ] rpe_result.add_np_array("seconds_from_start", seconds_from_start) else: seconds_from_start = None if show_plot or save_plot or serialize_plot and not all_pairs: from evo.tools import plot import matplotlib.pyplot as plt logging.debug(SEP) logging.debug("plotting results... ") fig1 = plt.figure(figsize=(SETTINGS.plot_figsize[0], SETTINGS.plot_figsize[1])) # metric values plot.error_array( fig1, rpe_metric.error, x_array=seconds_from_start, statistics=rpe_statistics, name="RPE" + (" (" + rpe_metric.unit.value + ")") if rpe_metric.unit else "", title=title, xlabel="$t$ (s)" if seconds_from_start else "index") # info text if SETTINGS.plot_info_text and est_name and ref_name: ax = fig1.gca() ax.text(0, -0.12, "estimate: " + est_name + "\nreference: " + ref_name, transform=ax.transAxes, fontsize=8, color="gray") # trajectory colormapped fig2 = plt.figure(figsize=(SETTINGS.plot_figsize[0], SETTINGS.plot_figsize[1])) plot_mode = plot_mode if plot_mode is not None else plot.PlotMode.xyz ax = plot.prepare_axis(fig2, plot_mode) plot.traj(ax, plot_mode, traj_ref, '--', 'gray', 'reference', alpha=0 if SETTINGS.plot_hideref else 1) plot.traj_colormap(ax, traj_est, rpe_metric.error, plot_mode, min_map=rpe_statistics["min"], max_map=rpe_statistics["max"], title="RPE mapped onto trajectory") fig2.axes.append(ax) plot_collection = plot.PlotCollection(title) plot_collection.add_figure("raw", fig1) plot_collection.add_figure("map", fig2) if show_plot: plot_collection.show() if save_plot: plot_collection.export(save_plot, confirm_overwrite=not no_warnings) if serialize_plot: logging.debug(SEP) plot_collection.serialize(serialize_plot, confirm_overwrite=not no_warnings) if save_results: logging.debug(SEP) if SETTINGS.save_traj_in_zip: rpe_result.add_trajectory("traj_ref", traj_ref) rpe_result.add_trajectory("traj_est", traj_est) file_interface.save_res_file(save_results, rpe_result, confirm_overwrite=not no_warnings) return rpe_result
def run(args): import os import sys import numpy as np import evo.core.lie_algebra as lie from evo.core import trajectory from evo.core.trajectory import PoseTrajectory3D from evo.tools import file_interface, log from evo.tools.settings import SETTINGS log.configure_logging(verbose=args.verbose, silent=args.silent, debug=args.debug) if args.debug: import pprint logger.debug( "main_parser config:\n" + pprint.pformat({arg: getattr(args, arg) for arg in vars(args)}) + "\n") logger.debug(SEP) trajectories = [] ref_traj = None if args.subcommand == "tum": for traj_file in args.traj_files: if traj_file != args.ref: trajectories.append( (traj_file, file_interface.read_tum_trajectory_file(traj_file))) if args.ref: ref_traj = file_interface.read_tum_trajectory_file(args.ref) elif args.subcommand == "kitti": for pose_file in args.pose_files: if pose_file != args.ref: trajectories.append( (pose_file, file_interface.read_kitti_poses_file(pose_file))) if args.ref: ref_traj = file_interface.read_kitti_poses_file(args.ref) elif args.subcommand == "euroc": for csv_file in args.state_gt_csv: if csv_file != args.ref: trajectories.append( (csv_file, file_interface.read_euroc_csv_trajectory(csv_file))) if args.ref: ref_traj = file_interface.read_euroc_csv_trajectory(args.ref) elif args.subcommand == "bag": import rosbag bag = rosbag.Bag(args.bag) try: if args.all_topics: topic_info = bag.get_type_and_topic_info() topics = sorted([ t for t in topic_info[1].keys() if topic_info[1][t][0] == "geometry_msgs/PoseStamped" and t != args.ref ]) if len(topics) == 0: logger.error("No geometry_msgs/PoseStamped topics found!") sys.exit(1) else: topics = args.topics if not topics: logger.warning( "No topics used - specify topics or set --all_topics.") sys.exit(1) for topic in topics: trajectories.append( (topic, file_interface.read_bag_trajectory(bag, topic))) if args.ref: ref_traj = file_interface.read_bag_trajectory(bag, args.ref) finally: bag.close() else: raise RuntimeError("unsupported subcommand: " + args.subcommand) if args.merge: if args.subcommand == "kitti": raise TypeError( "can't merge KITTI files - but you can append them with 'cat'") if len(trajectories) == 0: raise RuntimeError("no trajectories to merge (excluding --ref)") merged_stamps = trajectories[0][1].timestamps merged_xyz = trajectories[0][1].positions_xyz merged_quat = trajectories[0][1].orientations_quat_wxyz for _, traj in trajectories[1:]: merged_stamps = np.concatenate((merged_stamps, traj.timestamps)) merged_xyz = np.concatenate((merged_xyz, traj.positions_xyz)) merged_quat = np.concatenate( (merged_quat, traj.orientations_quat_wxyz)) order = merged_stamps.argsort() merged_stamps = merged_stamps[order] merged_xyz = merged_xyz[order] merged_quat = merged_quat[order] trajectories = [("merged_trajectory", PoseTrajectory3D(merged_xyz, merged_quat, merged_stamps))] if args.transform_left or args.transform_right: tf_type = "left" if args.transform_left else "right" tf_path = args.transform_left if args.transform_left else args.transform_right t, xyz, quat = file_interface.load_transform_json(tf_path) logger.debug(SEP) if not lie.is_se3(t): logger.warning("Not a valid SE(3) transformation!") if args.invert_transform: t = lie.se3_inverse(t) logger.debug("Applying a {}-multiplicative transformation:\n{}".format( tf_type, t)) for name, traj in trajectories: traj.transform(t, right_mul=args.transform_right) if args.t_offset: logger.debug(SEP) for name, traj in trajectories: if type(traj) is trajectory.PosePath3D: logger.warning( "{} doesn't have timestamps - can't add time offset.". format(name)) else: logger.info("Adding time offset to {}: {} (s)".format( name, args.t_offset)) traj.timestamps += args.t_offset if args.align or args.correct_scale: if not args.ref: logger.debug(SEP) logger.warning("Can't align without a reference! (--ref) *grunt*") else: if args.subcommand == "kitti": traj_tmp, ref_traj_tmp = trajectories, [ ref_traj for n, t in trajectories ] else: traj_tmp, ref_traj_tmp = [], [] from evo.core import sync for name, traj in trajectories: logger.debug(SEP) ref_assoc, traj_assoc = sync.associate_trajectories( ref_traj, traj, max_diff=args.t_max_diff, first_name="ref", snd_name=name) ref_traj_tmp.append(ref_assoc) traj_tmp.append((name, traj_assoc)) trajectories = traj_tmp correct_only_scale = args.correct_scale and not args.align trajectories_new = [] for nt, ref_assoc in zip(trajectories, ref_traj_tmp): logger.debug(SEP) logger.debug("Aligning " + nt[0] + " to " + args.ref + "...") trajectories_new.append( (nt[0], trajectory.align_trajectory(nt[1], ref_assoc, args.correct_scale, correct_only_scale, args.n_to_align))) trajectories = trajectories_new for name, traj in trajectories: print_traj_info(name, traj, args.verbose, args.full_check) if args.ref: print_traj_info(args.ref, ref_traj, args.verbose, args.full_check) if args.plot or args.save_plot or args.serialize_plot: from evo.tools.plot import PlotMode plot_mode = PlotMode.xyz if not args.plot_mode else PlotMode[ args.plot_mode] import numpy as np from evo.tools import plot import matplotlib.pyplot as plt import matplotlib.cm as cm plot_collection = plot.PlotCollection("evo_traj - trajectory plot") fig_xyz, axarr_xyz = plt.subplots(3, sharex="col", figsize=tuple(SETTINGS.plot_figsize)) fig_rpy, axarr_rpy = plt.subplots(3, sharex="col", figsize=tuple(SETTINGS.plot_figsize)) fig_traj = plt.figure(figsize=tuple(SETTINGS.plot_figsize)) if (args.align or args.correct_scale) and not args.ref: plt.xkcd(scale=2, randomness=4) fig_traj.suptitle("what if --ref?") fig_xyz.suptitle("what if --ref?") ax_traj = plot.prepare_axis(fig_traj, plot_mode) if args.ref: short_traj_name = os.path.splitext(os.path.basename(args.ref))[0] if SETTINGS.plot_usetex: short_traj_name = short_traj_name.replace("_", "\\_") plot.traj(ax_traj, plot_mode, ref_traj, '--', 'grey', short_traj_name, alpha=0 if SETTINGS.plot_hideref else 1) plot.traj_xyz(axarr_xyz, ref_traj, '--', 'grey', short_traj_name, alpha=0 if SETTINGS.plot_hideref else 1) plot.traj_rpy(axarr_rpy, ref_traj, '--', 'grey', short_traj_name, alpha=0 if SETTINGS.plot_hideref else 1) cmap_colors = None if SETTINGS.plot_multi_cmap.lower() != "none": cmap = getattr(cm, SETTINGS.plot_multi_cmap) cmap_colors = iter(cmap(np.linspace(0, 1, len(trajectories)))) for name, traj in trajectories: if cmap_colors is None: color = next(ax_traj._get_lines.prop_cycler)['color'] else: color = next(cmap_colors) short_traj_name = os.path.splitext(os.path.basename(name))[0] if SETTINGS.plot_usetex: short_traj_name = short_traj_name.replace("_", "\\_") plot.traj(ax_traj, plot_mode, traj, '-', color, short_traj_name) if args.ref and isinstance(ref_traj, trajectory.PoseTrajectory3D): start_time = ref_traj.timestamps[0] else: start_time = None plot.traj_xyz(axarr_xyz, traj, '-', color, short_traj_name, start_timestamp=start_time) plot.traj_rpy(axarr_rpy, traj, '-', color, short_traj_name, start_timestamp=start_time) plt.tight_layout() plot_collection.add_figure("trajectories", fig_traj) plot_collection.add_figure("xyz_view", fig_xyz) plot_collection.add_figure("rpy_view", fig_rpy) if args.plot: plot_collection.show() if args.save_plot: logger.info(SEP) plot_collection.export(args.save_plot, confirm_overwrite=not args.no_warnings) if args.serialize_plot: logger.info(SEP) plot_collection.serialize(args.serialize_plot, confirm_overwrite=not args.no_warnings) if args.save_as_tum: logger.info(SEP) for name, traj in trajectories: dest = os.path.splitext(os.path.basename(name))[0] + ".tum" file_interface.write_tum_trajectory_file( dest, traj, confirm_overwrite=not args.no_warnings) if args.ref: dest = os.path.splitext(os.path.basename(args.ref))[0] + ".tum" file_interface.write_tum_trajectory_file( dest, ref_traj, confirm_overwrite=not args.no_warnings) if args.save_as_kitti: logger.info(SEP) for name, traj in trajectories: dest = os.path.splitext(os.path.basename(name))[0] + ".kitti" file_interface.write_kitti_poses_file( dest, traj, confirm_overwrite=not args.no_warnings) if args.ref: dest = os.path.splitext(os.path.basename(args.ref))[0] + ".kitti" file_interface.write_kitti_poses_file( dest, ref_traj, confirm_overwrite=not args.no_warnings) if args.save_as_bag: logger.info(SEP) import datetime import rosbag dest_bag_path = str( datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S.%f')) + ".bag" logger.info("Saving trajectories to " + dest_bag_path + "...") bag = rosbag.Bag(dest_bag_path, 'w') try: for name, traj in trajectories: dest_topic = os.path.splitext(os.path.basename(name))[0] frame_id = traj.meta[ "frame_id"] if "frame_id" in traj.meta else "" file_interface.write_bag_trajectory(bag, traj, dest_topic, frame_id) if args.ref: dest_topic = os.path.splitext(os.path.basename(args.ref))[0] frame_id = ref_traj.meta[ "frame_id"] if "frame_id" in ref_traj.meta else "" file_interface.write_bag_trajectory(bag, ref_traj, dest_topic, frame_id) finally: bag.close()
# %% # Convert the gt relative-pose DataFrame to a trajectory object. traj_ref_complete = pandas_bridge.df_to_trajectory(gt_df) # Use the backend poses as trajectory. traj_est_unaligned = pandas_bridge.df_to_trajectory(output_poses_df) discard_n_start_poses = 0 discard_n_end_poses = 0 # Associate the data. traj_est = copy.deepcopy(traj_est_unaligned) traj_ref, traj_est = sync.associate_trajectories(traj_ref_complete, traj_est) traj_est = trajectory.align_trajectory( traj_est, traj_ref, correct_scale=False, discard_n_start_poses=int(discard_n_start_poses), discard_n_end_poses=int(discard_n_end_poses), ) print("traj_ref: ", traj_ref) print("traj_est: ", traj_est) # %% # plot ground truth trajectory with pose plot_mode = plot.PlotMode.xy fig = plt.figure() ax = plot.prepare_axis(fig, plot_mode) draw_coordinate_axes(ax, traj_ref_complete, marker_scale=2,
vanilla_traj = trajectory.PoseTrajectory3D(poses_se3=vanilla_poses, timestamps=timestamps) vision_only_traj = trajectory.PoseTrajectory3D(poses_se3=vision_only_poses, timestamps=timestamps) vins_mono_traj = read_tum(vins_mono_poses) gt_traj_synced_vanilla, vanilla_traj_synced = sync.associate_trajectories( gt_traj, vanilla_traj, max_diff=0.01) gt_traj_synced_vision_only, vision_only_traj_synced = sync.associate_trajectories( gt_traj, vision_only_traj, max_diff=0.01) gt_traj_synced_vins_mono, vins_mono_traj_synced = sync.associate_trajectories( gt_traj, vins_mono_traj, max_diff=0.01) vanilla_traj_aligned = trajectory.align_trajectory(vanilla_traj_synced, gt_traj_synced_vanilla, correct_scale=False, correct_only_scale=False) vision_only_traj_aligned = trajectory.align_trajectory( vision_only_traj_synced, gt_traj_synced_vision_only, correct_scale=False, correct_only_scale=False) vins_mono_traj_aligned = trajectory.align_trajectory(vins_mono_traj_synced, gt_traj_synced_vins_mono, correct_scale=False, correct_only_scale=False) plotter = Plotter(os.path.join(base_dir, "KITTI_figures")) def plot_callback(fig, ax):
from __future__ import print_function print("loading required evo modules") from evo.core import trajectory, sync, metrics from evo.tools import file_interface print("loading trajectories") traj_ref = file_interface.read_tum_trajectory_file( "../../test/data/fr2_desk_groundtruth.txt") traj_est = file_interface.read_tum_trajectory_file( "../../test/data/fr2_desk_ORB.txt") print("registering and aligning trajectories") traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est) traj_est = trajectory.align_trajectory(traj_est, traj_ref, correct_scale=False) print("calculating APE") data = (traj_ref, traj_est) ape_metric = metrics.APE(metrics.PoseRelation.translation_part) ape_metric.process_data(data) ape_statistics = ape_metric.get_all_statistics() print("mean:", ape_statistics["mean"]) print("loading plot modules") from evo.tools import plot import matplotlib.pyplot as plt print("plotting") plot_collection = plot.PlotCollection("Example") # metric values
def run(args): import os import sys import numpy as np import evo.core.lie_algebra as lie from evo.core import trajectory from evo.core.trajectory import PoseTrajectory3D from evo.tools import file_interface, log from evo.tools.settings import SETTINGS log.configure_logging(verbose=args.verbose, silent=args.silent, debug=args.debug, local_logfile=args.logfile) if args.debug: import pprint logger.debug( "main_parser config:\n" + pprint.pformat({arg: getattr(args, arg) for arg in vars(args)}) + "\n") logger.debug(SEP) trajectories, ref_traj = load_trajectories(args) if args.merge: if args.subcommand == "kitti": die("Can't merge KITTI files.") if len(trajectories) == 0: die("No trajectories to merge (excluding --ref).") trajectories = { "merged_trajectory": trajectory.merge(trajectories.values()) } if args.transform_left or args.transform_right: tf_type = "left" if args.transform_left else "right" tf_path = args.transform_left \ if args.transform_left else args.transform_right transform = file_interface.load_transform_json(tf_path) logger.debug(SEP) if not lie.is_se3(transform): logger.warning("Not a valid SE(3) transformation!") if args.invert_transform: transform = lie.se3_inverse(transform) logger.debug("Applying a {}-multiplicative transformation:\n{}".format( tf_type, transform)) for traj in trajectories.values(): traj.transform(transform, right_mul=args.transform_right, propagate=args.propagate_transform) if args.t_offset: logger.debug(SEP) for name, traj in trajectories.items(): if type(traj) is trajectory.PosePath3D: die("{} doesn't have timestamps - can't add time offset.". format(name)) logger.info("Adding time offset to {}: {} (s)".format( name, args.t_offset)) traj.timestamps += args.t_offset if args.n_to_align != -1 and not (args.align or args.correct_scale): die("--n_to_align is useless without --align or/and --correct_scale") if args.sync or args.align or args.correct_scale or args.align_origin: from evo.core import sync if not args.ref: logger.debug(SEP) die("Can't align or sync without a reference! (--ref) *grunt*") for name, traj in trajectories.items(): if args.subcommand == "kitti": ref_traj_tmp = ref_traj else: logger.debug(SEP) ref_traj_tmp, trajectories[name] = sync.associate_trajectories( ref_traj, traj, max_diff=args.t_max_diff, first_name="reference", snd_name=name) if args.align or args.correct_scale: logger.debug(SEP) logger.debug("Aligning {} to reference.".format(name)) trajectories[name] = trajectory.align_trajectory( trajectories[name], ref_traj_tmp, correct_scale=args.correct_scale, correct_only_scale=args.correct_scale and not args.align, n=args.n_to_align) if args.align_origin: logger.debug(SEP) logger.debug("Aligning {}'s origin to reference.".format(name)) trajectories[name] = trajectory.align_trajectory_origin( trajectories[name], ref_traj_tmp) print_compact_name = not args.subcommand == "bag" for name, traj in trajectories.items(): print_traj_info(name, traj, args.verbose, args.full_check, print_compact_name) if args.ref: print_traj_info(args.ref, ref_traj, args.verbose, args.full_check, print_compact_name) if args.plot or args.save_plot or args.serialize_plot: import numpy as np from evo.tools import plot import matplotlib.pyplot as plt import matplotlib.cm as cm plot_collection = plot.PlotCollection("evo_traj - trajectory plot") fig_xyz, axarr_xyz = plt.subplots(3, sharex="col", figsize=tuple(SETTINGS.plot_figsize)) fig_rpy, axarr_rpy = plt.subplots(3, sharex="col", figsize=tuple(SETTINGS.plot_figsize)) fig_traj = plt.figure(figsize=tuple(SETTINGS.plot_figsize)) plot_mode = plot.PlotMode[args.plot_mode] ax_traj = plot.prepare_axis(fig_traj, plot_mode) if args.ref: short_traj_name = os.path.splitext(os.path.basename(args.ref))[0] if SETTINGS.plot_usetex: short_traj_name = short_traj_name.replace("_", "\\_") plot.traj(ax_traj, plot_mode, ref_traj, style=SETTINGS.plot_reference_linestyle, color=SETTINGS.plot_reference_color, label=short_traj_name, alpha=SETTINGS.plot_reference_alpha) plot.draw_coordinate_axes(ax_traj, ref_traj, plot_mode, SETTINGS.plot_axis_marker_scale) plot.traj_xyz(axarr_xyz, ref_traj, style=SETTINGS.plot_reference_linestyle, color=SETTINGS.plot_reference_color, label=short_traj_name, alpha=SETTINGS.plot_reference_alpha) plot.traj_rpy(axarr_rpy, ref_traj, style=SETTINGS.plot_reference_linestyle, color=SETTINGS.plot_reference_color, label=short_traj_name, alpha=SETTINGS.plot_reference_alpha) if args.ros_map_yaml: plot.ros_map(ax_traj, args.ros_map_yaml, plot_mode) cmap_colors = None if SETTINGS.plot_multi_cmap.lower() != "none": cmap = getattr(cm, SETTINGS.plot_multi_cmap) cmap_colors = iter(cmap(np.linspace(0, 1, len(trajectories)))) for name, traj in trajectories.items(): if cmap_colors is None: color = next(ax_traj._get_lines.prop_cycler)['color'] else: color = next(cmap_colors) if print_compact_name: short_traj_name = os.path.splitext(os.path.basename(name))[0] else: short_traj_name = name if SETTINGS.plot_usetex: short_traj_name = short_traj_name.replace("_", "\\_") plot.traj(ax_traj, plot_mode, traj, SETTINGS.plot_trajectory_linestyle, color, short_traj_name, alpha=SETTINGS.plot_trajectory_alpha) plot.draw_coordinate_axes(ax_traj, traj, plot_mode, SETTINGS.plot_axis_marker_scale) if args.ref and isinstance(ref_traj, trajectory.PoseTrajectory3D): start_time = ref_traj.timestamps[0] else: start_time = None plot.traj_xyz(axarr_xyz, traj, SETTINGS.plot_trajectory_linestyle, color, short_traj_name, alpha=SETTINGS.plot_trajectory_alpha, start_timestamp=start_time) plot.traj_rpy(axarr_rpy, traj, SETTINGS.plot_trajectory_linestyle, color, short_traj_name, alpha=SETTINGS.plot_trajectory_alpha, start_timestamp=start_time) if not SETTINGS.plot_usetex: fig_rpy.text(0., 0.005, "euler_angle_sequence: {}".format( SETTINGS.euler_angle_sequence), fontsize=6) plot_collection.add_figure("trajectories", fig_traj) plot_collection.add_figure("xyz_view", fig_xyz) plot_collection.add_figure("rpy_view", fig_rpy) if args.plot: plot_collection.show() if args.save_plot: logger.info(SEP) plot_collection.export(args.save_plot, confirm_overwrite=not args.no_warnings) if args.serialize_plot: logger.info(SEP) plot_collection.serialize(args.serialize_plot, confirm_overwrite=not args.no_warnings) if args.save_as_tum: logger.info(SEP) for name, traj in trajectories.items(): dest = os.path.splitext(os.path.basename(name))[0] + ".tum" file_interface.write_tum_trajectory_file( dest, traj, confirm_overwrite=not args.no_warnings) if args.ref: dest = os.path.splitext(os.path.basename(args.ref))[0] + ".tum" file_interface.write_tum_trajectory_file( dest, ref_traj, confirm_overwrite=not args.no_warnings) if args.save_as_kitti: logger.info(SEP) for name, traj in trajectories.items(): dest = os.path.splitext(os.path.basename(name))[0] + ".kitti" file_interface.write_kitti_poses_file( dest, traj, confirm_overwrite=not args.no_warnings) if args.ref: dest = os.path.splitext(os.path.basename(args.ref))[0] + ".kitti" file_interface.write_kitti_poses_file( dest, ref_traj, confirm_overwrite=not args.no_warnings) if args.save_as_bag: import datetime import rosbag dest_bag_path = str( datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")) + ".bag" logger.info(SEP) logger.info("Saving trajectories to " + dest_bag_path + "...") bag = rosbag.Bag(dest_bag_path, 'w') try: for name, traj in trajectories.items(): dest_topic = os.path.splitext(os.path.basename(name))[0] frame_id = traj.meta[ "frame_id"] if "frame_id" in traj.meta else "" file_interface.write_bag_trajectory(bag, traj, dest_topic, frame_id) if args.ref: dest_topic = os.path.splitext(os.path.basename(args.ref))[0] frame_id = ref_traj.meta[ "frame_id"] if "frame_id" in ref_traj.meta else "" file_interface.write_bag_trajectory(bag, ref_traj, dest_topic, frame_id) finally: bag.close()
def associate_segments(traj, tracks): """Associate segments of an object trajectory as given by a DATMO system with the object's reference trajectory :traj: Reference trajectory :tracks: All the tracks that got produced by the DATMO system :localization: The trajectory of the self-localization :returns: segments: The tracks that match to the reference trajectory :returns: traj_ref: The part of the reference trajectory that matches with tracks """ matches = [] for tr in tracks: # Find the best matching tracks to the object trajectory traj_ref, traj_est = sync.associate_trajectories(traj, tr, max_diff=0.01) traj_est, rot, tra, _ = trajectory.align_trajectory( traj_est, traj_ref, correct_scale=False, return_parameters=True) # print("calculating APE for track of length", len(tr.timestamps)) data = (traj_ref, traj_est) ape_metric = metrics.APE(metrics.PoseRelation.translation_part) ape_metric.process_data(data) ape_statistics = ape_metric.get_all_statistics() tra_dif = (tra - loc_tra) # print(tra) abs_tra_dif = abs((tra - loc_tra)[0]) + abs((tra - loc_tra)[1]) translation = abs(tra[0]) + abs(tra[1]) rot_dif = (rot - loc_rot) abs_rot_dif = 0 for i in range(0, len(rot_dif)): abs_rot_dif += abs(rot_dif[i][0])+ abs(rot_dif[i][1]) +\ abs(rot_dif[i][2]) # print(abs_tra_dif,abs_rot_dif) mismatch = abs_tra_dif + abs_rot_dif tuple = [traj_est, mismatch, traj_est.get_infos()['t_start (s)']] matches.append(tuple) matches.sort(key=lambda x: x[2]) segments = [] #The parts of the trajectory are added to this list for m in matches: # print(m[1]) if m[1] < 0.1: # if the mismatch is smaller than 1 # print(m[0].get_statistics()['v_avg (m/s)']) segments.append(m[0]) # print(m[0].get_infos()['t_start (s)'],m[0].get_infos()["path length (m)"]) # print(m[0].get_statistics()['v_avg (m/s)']) if len(segments) == 0: print("No matching segments") whole = trajectory.merge(segments) traj_ref, traj_est = sync.associate_trajectories(traj, whole, max_diff=0.01) traj_est, rot, tra, _ = trajectory.align_trajectory(traj_est, traj_ref, correct_scale=False, return_parameters=True) # print(traj_est.get_infos()) return segments, traj_ref, translation