コード例 #1
0
ファイル: test_mutator.py プロジェクト: byohay/LearningModels
    def setUp(self):
        self.neighborhood = Mock()
        self.performance = Mock()
        self.tolerance = Mock()
        self.mutation_probability = Mock()
        self.mutation_probability.get_relational_probability.return_value = 0.2
        epsilon = 1
        self.selection_size = 1

        self.mutator = Mutator(self.neighborhood, self.performance, self.tolerance, self.mutation_probability, epsilon)

        self.tolerance.get_tolerance.return_value = 2**-5
コード例 #2
0
ファイル: test_mutator.py プロジェクト: byohay/LearningModels
class TestMutator(unittest.TestCase):
    def setUp(self):
        self.neighborhood = Mock()
        self.performance = Mock()
        self.tolerance = Mock()
        self.mutation_probability = Mock()
        self.mutation_probability.get_relational_probability.return_value = 0.2
        epsilon = 1
        self.selection_size = 1

        self.mutator = Mutator(self.neighborhood, self.performance, self.tolerance, self.mutation_probability, epsilon)

        self.tolerance.get_tolerance.return_value = 2**-5
    def set_neighborhood(self):
        neighborhood = set()

        neighborhood.add(self.expected_rep)
        neighborhood.add((1, 1, 0, 0))
        neighborhood.add((1, 0, 0, 1))

        self.neighborhood.get_neighborhood_of_representation.return_value = neighborhood

    def test_mutator__one_in_bene(self):
        representation = (1, 1, 0, 1)
        perf_of_representation = 0.2
        self.expected_rep = (1, 1, 1, 1)
        perf_of_expected_representation = 0.2 + self.tolerance.get_tolerance.return_value

        def perf_returns(rep):
            if rep == representation:
                return perf_of_representation
            if rep == self.expected_rep:
                return perf_of_expected_representation

            return 0

        self.set_neighborhood()
        self.performance.get_estimated_performance.side_effect = perf_returns

        self.assertEqual(self.expected_rep, self.mutator.evolutionary_step(representation))

    def test_mutator__two_in_neut(self):
        representation = (1, 1, 0, 1)
        self.expected_rep = set()
        self.expected_rep.add((1, 1, 1, 1))
        self.expected_rep.add((0, 0, 0, 0))

        self.performance.get_estimated_performance.return_value = 0
        self.neighborhood.get_neighborhood_of_representation.return_value = self.expected_rep

        self.assertIn(self.mutator.evolutionary_step(representation), self.expected_rep)
コード例 #3
0
def learn_single_time__classic_model(common_classes):
    length, epsilon, mutation_neighborhood, tolerance = common_classes.get_common_classes(
    )
    mutation_probability = common_classes.get_mutation_probability()

    concept_class = MonotoneConjunction(length)
    performance = common_classes.get_perf_without_precomp(concept_class)
    mutator = Mutator(mutation_neighborhood, performance, tolerance,
                      mutation_probability, epsilon)
    algorithm = ConjunctionEvolvabilityAlgorithm(mutator, length, epsilon,
                                                 performance)

    return algorithm.learn_ideal_function_until_match()
コード例 #4
0
def main():
    common_classes = CommonClassesCreator(False)

    length, epsilon, mutation_neighborhood, tolerance = common_classes.get_common_classes()

    concept_class = MonotoneConjunction(length)
    performance = common_classes.get_perf_without_precomp(concept_class)
    mutation_probability = common_classes.get_mutation_probability()

    mutator = Mutator(mutation_neighborhood, performance, tolerance, mutation_probability, epsilon)
    algorithm = ConjunctionEvolvabilityAlgorithm(mutator, length, epsilon, performance)

    hypo = algorithm.learn_ideal_function(epsilon)

    print "HYPO IS: " + str(hypo)
コード例 #5
0
def learn_DNF__basic_model():
    dnf = DNF()
    length = 58
    epsilon = (2**-53)
    tau = (epsilon / length)**3 * log(1 / epsilon)

    tolerance = ConjunctionTolerance(length, epsilon)
    conjunction_performance_oracle = OneSidedPerformanceOracleWithTolerance(
        dnf, tau)
    performance_oracle = DNFOneSidePerformanceOracleWithTolerance(
        dnf, tau, epsilon, conjunction_performance_oracle)
    mutation_neighborhood = MonotoneConjunctionNeighborhood()
    mutation_probability = ConjunctionMutationProbability(
        mutation_neighborhood)

    mutator = Mutator(mutation_neighborhood, performance_oracle, tolerance,
                      mutation_probability, epsilon)
    algorithm = ConjunctionEvolvabilityAlgorithm(mutator, length, epsilon,
                                                 performance_oracle)

    print algorithm.learn_ideal_function_until_match()