コード例 #1
0
for group in range(0,5):
    
    print("Test group " + str(group + 1))
    
    trainStationList = []
    testStationList = []
    for i in range(0,5):
        if i == group:
            testStationList.extend(groups[i])
        else:
            trainStationList.extend(groups[i])

    trainStations = set(float(station) for station in trainStationList)
    testStations = set(float(station) for station in testStationList)
    
    trainX, testX, trainY, testY = splitDataForXValidation(trainStations, testStations, "location", data, features_TW, "target")
    print("\tTW #train: " + str(len(trainY)) + ", #test:" + str(len(testY)))
    model = RandomForestRegressor(min_samples_leaf = 9, n_estimators = 59, n_jobs = -1, random_state=42)
    model.fit(trainX, trainY)
    prediction = model.predict(testX)
    rmse = rmseEval(testY, prediction)[1]
    print("\trmse: " + str(rmse))
    dataDict[str(group) + "_obs"] = testY
    ae = []
    for i in range(0, len(testY)):
        ae.append(abs(testY[i] - prediction[i]))
    dataDict[str(group) + "_ae_tw"] = ae
    rmseDict[str(group) + "_ae_tw"] = rmse
     
    trainX, testX, trainY, testY = splitDataForXValidation(trainStations, testStations, "location", data, features_TWA, "target")
    print("\tTWA #train: " + str(len(trainY)) + ", #test:" + str(len(testY)))
コード例 #2
0
    for i in range(0, 5):
        if i == group:
            testStationList.extend(groups[i])
        else:
            trainStationList.extend(groups[i])

    trainStations = set(float(station) for station in trainStationList)

    # reorder train stations
    log(output_log, "\ttrainStationList:" + str(trainStationList))
    trainStationList = [s for s in all_stations if float(s) in trainStations]
    log(output_log, "\ttrainStationList:" + str(trainStationList))

    testStations = set(float(station) for station in testStationList)

    trainX, testX, trainY, testY = splitDataForXValidation(
        trainStations, testStations, "location", data, features_TW, "target")
    log(output_log,
        "\tTW #train: " + str(len(trainY)) + ", #test:" + str(len(testY)))
    model = RandomForestRegressor(min_samples_leaf=9,
                                  n_estimators=59,
                                  n_jobs=-1,
                                  random_state=42)
    model.fit(trainX, trainY)
    prediction_TW = model.predict(testX)
    rmse = rmseEval(testY, prediction_TW)[1]
    log(output_log, "\trmse: " + str(rmse))
    obs.extend(testY)
    all_pred_TW.extend(prediction_TW)

    trainX, testX, trainY, testY, trainLocation, testLocation = splitDataForXValidationWithLocation(
        trainStations, testStations, "location", data, columns, "target")