コード例 #1
0
 def solve(self, strategy='lagrange'):
     N = len(self)
     if strategy == 'lagrange':
         ind = [k for k in range(N)]
         t = ''
         for k in range(N):
             t += '{{ydata[%d]}}\\frac{' % k
             tempind = ind.copy()
             tempind.pop(k)
             for l in tempind:
                 t += '(x-{{xdata[%d]}})' % l
             t += '}{' + str(
                 np.prod(
                     [self['xdata'][k] - self['xdata'][l]
                      for l in tempind])) + '}'
         template = '$L_n(x)=' + t + '$'
         self.solution = exam.Solution(template, self.parameter)
     else:
         import mymath.interpolate
         interp = mymath.interpolate.Interpolator1D(self['xdata'],
                                                    self['ydata'],
                                                    basis='newton')
         c = interp.getNewtonCoef()
         t = str(c[0]) + ' + '
         t += ' + '.join(
             str(c[k + 1]) + ''.join('(x-{{xdata[%d]}})' % l
                                     for l in range(k + 1))
             for k in range(N - 1))
         template = '牛顿多项式为$N_n(x)=' + t + '$'
         print(template)
         self.solution = exam.Solution(template, self.parameter)
コード例 #2
0
 def example():
     A = mymat.MyMat('1,6,5;6,37,23;5,23,75')
     p = CholeskyProblem(A)
     template = '分解过程为${{process}$.\n\n答案为$L={{L}}$.'
     cd = la.CholeskyDecompsition(A)
     p.solution = exam.Solution(template, parameter={'L': 'L'}, solver=cd)
     return p
コード例 #3
0
 def example(strategy='trapezoid'):
     function = '\sqrt{1-x^2}'
     func = lambda x: np.sqrt(1 - x**2)
     lb, ub = 0, 1
     if strategy == 'simpson':
         n = 4
         parameter = {
             'function': function,
             'strategy': 'simpson',
             'lb': lb,
             'ub': ub,
             'n': n
         }
         ip = IntegralProblem(parameter=parameter)
         template = '计算如下:$n={{n}},h={h}$,\n{{process}}\n函数${{function}}$的积分约为${{answer}}$.'
         parameter = {'function': function, 'n': n, 'h': (ub - lb) / n}
     else:
         n = 8
         parameter = {
             'function': function,
             'strategy': 'trapezoid',
             'lb': lb,
             'ub': ub,
             'n': n
         }
         ip = IntegralProblem(parameter=parameter)
         template = '计算如下:$n={{n}},h={h}$,\n{{process}}\n函数${{function}}$的积分约为${{answer}}$.'
         parameter = {'function': function, 'n': n, 'h': (ub - lb) / n}
     integral = mymath.numerical.Integration(func, lb, ub, n, strategy)
     ip.solution = exam.Solution(template, parameter, solver=integral)
     return ip
コード例 #4
0
    def example():
        matrix = mymat.MyMat('1,2;3,3')
        p = ChasingProblem(matrix)

        template = '分解过程为${{process}}$.'
        cd = la.ChasingDecompsition(A)
        p.solution = exam.Solution(template, parameter={}, solver=cd)
        return p
コード例 #5
0
 def random():
     matrix = mymat.MyMat.randint(3, 3, lb=-6, ub=6)
     parameter = {'matrix': mymat.MyMat(matrix)}
     pmp = PowerMethodProblem(parameter=parameter)
     template = '计算过程如下:\n{{process}}\n矩阵${{matrix}}$的主特征值约为${{answer}}$.'
     parameter = {'answer': 'l', 'matrix': 'A'}
     pm = mymath.eigenvalue.PowerMethod(matrix)
     pmp.solution = exam.Solution(template, parameter, solver=pm)
     return pmp
コード例 #6
0
 def example():
     matrix = np.array([[1, 1, 0.5], [1, 1, 0.25], [0.5, 0.25, 2]])
     parameter = {'matrix': mymat.MyMat(matrix)}
     pmp = PowerMethodProblem(parameter=parameter)
     template = '计算过程如下:\n{{process}}\n矩阵${{matrix}}$的主特征值约为${{answer}}$.'
     parameter = {'matrix': 'A', 'answer': ''}
     pm = mymath.eigenvalue.PowerMethod(matrix)
     pmp.solution = exam.Solution(template, parameter, solver=pm)
     return pmp
コード例 #7
0
 def makeup():
     matrix = mymat.MyMat.randint(3, 3, lb=-10, ub=10)
     L = matrix.itril()
     A = L * L.T
     p = CholeskyProblem(A)
     template = '分解过程为${{process}}$.\n\n答案为$L={{L}}$.'
     cd = la.CholeskyDecompsition(A)
     p.solution = exam.Solution(template, parameter={'L': L}, solver=cd)
     return p
コード例 #8
0
 def random():
     A = mymat.MyMat.randint(3, 3, lb=-3, ub=4)
     for k in range(1, 4):
         A[k, k] = np.random.randint(10, 20)
     b = mymat.MyMat.randint(3, 1, lb=-10, ub=10)
     eq = mymat.LinearEquation(A, b)
     parameter = {'equation': eq}
     lp = LinEqIterProblem(parameter=parameter)
     template = '雅克比迭代公式为:\n\[{{jacobi}}\]\n高斯-赛德尔迭代公式为:\n\[{{gauss}}\]\n系数矩阵是对角占优矩阵, 故迭代收敛.'
     parameter = {'jacobi': eq.jacobiIter(), 'gauss': eq.jacobiIter()}
     lp.solution = exam.Solution(template, parameter)
     return lp
コード例 #9
0
 def example():
     A = mymat.MyMat('1, 2, 3;2, 5, 8;3, 8, 14').tofrac()
     p = LUDecompsitionProblem(A)
     template = '分解过程为${{process}}$.\n\n答案为$L={{L}},U={{U}}$.'
     lu = la.LUDecompsition(A)
     p.solution = exam.Solution(template,
                                parameter={
                                    'L': 'L',
                                    'U': 'U'
                                },
                                solver=lu)
     return p
コード例 #10
0
 def example(xdata=np.array([-2, -1, 0, 1, 2]),
             ydata=np.array([0, 0.2, 0.5, 0.8, 1])):
     basis = [1, lambda x: x]
     A = np.array([[b(x) if hasattr(b, '__call__') else b for b in basis]
                   for x in xdata])
     lsp = LeastSquareProblem(xdata, ydata, basis='1,x,x^3')
     G = A.T @ A
     b = A.T @ ydata
     a = np.linalg.solve(G, b)
     neq = mymat.MyMat(G) | (mymat.MyMat(b)).T
     neq = neq.tolineq()
     template = '法方程为\n\[{{normeq}}\]\n系数为{{coef}}, 拟合函数为${{function}}$.'
     parameter = {'normeq': neq, 'coef': a, 'function': np.poly1d(a)}
     lsp.solution = exam.Solution(template, parameter)
     return lsp
コード例 #11
0
 def makeup():
     matrix = mymat.MyMat.randint(3, 3, lb=-10, ub=10)
     L = matrix.itril()
     U = matrix.triu()
     for k in range(3):
         if U[k, k] == 0:
             U[k, k] = np.random.randint(1, 10)
     A = (L * U).tofrac()
     p = LUDecompsitionProblem(A)
     template = '分解过程为${{process}}$.\n\n答案为$L={{L}},U={{U}}$.'
     lu = la.LUDecompsition(A)
     p.solution = exam.Solution(template,
                                parameter={
                                    'L': L,
                                    'U': U
                                },
                                solver=lu)
     return p
コード例 #12
0
    def example(c=np.array([1, 0, 0, 0, 0]), a=-1, b=1):
        poly = np.poly1d(c)
        G = np.array([[b - a, (b**2 - a**2) / 2, (b**3 - a**3) / 3],
                      [(b**2 - a**2) / 2, (b**3 - a**3) / 3,
                       (b**4 - a**4) / 4],
                      [(b**3 - a**3) / 3, (b**4 - a**4) / 4,
                       (b**5 - a**5) / 5]])
        ap = ApproximationProblem(poly)
        eq = mymat.LinearEquation(
            G,
            np.array([(b**5 - a**5) / 5, (b**6 - a**6) / 6,
                      (b**7 - a**7) / 7]))
        d = eq.solve()

        template = '法方程为\[{{normeq}}\]系数为{{coef}}, 最佳逼近多项式为${{poly}}$.'
        parameter = {'normeq': eq, 'coef': d, 'poly': np.poly1d(d)}
        ap.solution = exam.Solution(template, parameter)
        return ap
コード例 #13
0
 def example(strategy='牛顿迭代法'):
     if strategy == '二分法':
         function = 'sin x -\\frac{1}{2}'
         func = lambda x: np.sin(x) - 1 / 2
         lb, ub, tol = 0, 1, 0.01
         template = '用{{strategy}}计算方程${{function}}=0$在$[{{lb}}, {{ub}}]$上的解. (至少迭代5次或误差小于{{tol}})'
         parameter = {
             'function': function,
             'strategy': '二分法',
             'lb': lb,
             'ub': ub,
             'tol': tol
         }
         ep = EquationProblem(template, parameter)
         template = '过程如下:\n{{process}}\n方程${function}=0$的解约为${{answer}}$.'
         parameter = {'function': function}
         b = mymath.equation.Bisection(func, lb, ub, tol)
     else:
         func = lambda x: x * np.tan(x) - 1
         dfunc = lambda x: np.tan(x) + x / np.cos(x)**2
         tol = 0.0001
         x0 = 1
         equation = 'x\\tan x=1'
         template = '用{{strategy}}计算方程${{equation}}$在${{x0}}$附近的解. (至少迭代5次或误差小于{{tol}})'
         parameter = {
             'equation': equation,
             'strategy': strategy,
             'x0': x0,
             'tol': tol
         }
         ep = EquationProblem(template, parameter)
         template = '不动点迭代格式是${{iteration}}$, 过程如下:\n{{process}}\n方程${{equation}}$的解约为${{answer}}$.'
         parameter = {'iteration': 'x-f(x)/f\'(x)', 'equation': equation}
         b = mymath.equation.NewtonIter(func, dfunc, x0, tol)
     ep.solution = exam.Solution(template, parameter, solver=b)
     return ep