def train_bin(config, compression_ctrl, model, criterion, is_inception, optimizer_scheduler, model_name, optimizer, train_loader, train_sampler, val_loader, kd_loss_calculator, batch_multiplier, best_acc1=0): for epoch in range(config.start_epoch, config.epochs): config.cur_epoch = epoch if config.distributed: train_sampler.set_epoch(epoch) # train for one epoch train_epoch_bin(train_loader, batch_multiplier, model, criterion, optimizer, optimizer_scheduler, kd_loss_calculator, compression_ctrl, epoch, config, is_inception) # compute compression algo statistics stats = compression_ctrl.statistics() acc1 = best_acc1 if epoch % config.test_every_n_epochs == 0: # evaluate on validation set acc1, _ = validate(val_loader, model, criterion, config) # remember best acc@1 and save checkpoint is_best = acc1 > best_acc1 best_acc1 = max(acc1, best_acc1) # update compression scheduler state at the end of the epoch compression_ctrl.scheduler.epoch_step() optimizer_scheduler.epoch_step() if is_main_process(): print_statistics(stats) checkpoint_path = osp.join(config.checkpoint_save_dir, get_name(config) + '_last.pth') checkpoint = { 'epoch': epoch + 1, 'arch': model_name, 'state_dict': model.state_dict(), 'original_model_state_dict': kd_loss_calculator.original_model.state_dict(), 'best_acc1': best_acc1, 'optimizer': optimizer.state_dict(), 'compression_scheduler': compression_ctrl.scheduler.state_dict(), 'optimizer_scheduler': optimizer_scheduler.state_dict() } torch.save(checkpoint, checkpoint_path) make_additional_checkpoints(checkpoint_path, is_best, epoch + 1, config) for key, value in stats.items(): if isinstance(value, (int, float)): config.tb.add_scalar("compression/statistics/{0}".format(key), value, len(train_loader) * epoch)
def main_worker_binarization(current_gpu, config): config.current_gpu = current_gpu config.distributed = config.execution_mode in (ExecutionMode.DISTRIBUTED, ExecutionMode.MULTIPROCESSING_DISTRIBUTED) if config.distributed: configure_distributed(config) config.device = get_device(config) if is_main_process(): configure_logging(logger, config) print_args(config) if config.seed is not None: manual_seed(config.seed) cudnn.deterministic = True cudnn.benchmark = False # create model model_name = config['model'] weights = config.get('weights') model = load_model(model_name, pretrained=config.get('pretrained', True) if weights is None else False, num_classes=config.get('num_classes', 1000), model_params=config.get('model_params')) original_model = copy.deepcopy(model) compression_ctrl, model = create_compressed_model(model, config) if not isinstance(compression_ctrl, BinarizationController): raise RuntimeError("The binarization sample worker may only be run with the binarization algorithm!") if weights: load_state(model, torch.load(weights, map_location='cpu')) model, _ = prepare_model_for_execution(model, config) original_model.to(config.device) if config.distributed: compression_ctrl.distributed() is_inception = 'inception' in model_name # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss() criterion = criterion.to(config.device) params_to_optimize = model.parameters() compression_config = config['compression'] binarization_config = compression_config if isinstance(compression_config, dict) else compression_config[0] optimizer = get_binarization_optimizer(params_to_optimize, binarization_config) optimizer_scheduler = BinarizationOptimizerScheduler(optimizer, binarization_config) kd_loss_calculator = KDLossCalculator(original_model) resuming_checkpoint = config.resuming_checkpoint best_acc1 = 0 # optionally resume from a checkpoint if resuming_checkpoint is not None: model, config, optimizer, optimizer_scheduler, kd_loss_calculator, compression_ctrl, best_acc1 = \ resume_from_checkpoint(resuming_checkpoint, model, config, optimizer, optimizer_scheduler, kd_loss_calculator, compression_ctrl) if config.to_onnx is not None: compression_ctrl.export_model(config.to_onnx) logger.info("Saved to {}".format(config.to_onnx)) return if config.execution_mode != ExecutionMode.CPU_ONLY: cudnn.benchmark = True # Data loading code train_dataset, val_dataset = create_datasets(config) train_loader, train_sampler, val_loader = create_data_loaders(config, train_dataset, val_dataset) if config.mode.lower() == 'test': print_statistics(compression_ctrl.statistics()) validate(val_loader, model, criterion, config) if config.mode.lower() == 'train': if not resuming_checkpoint: compression_ctrl.initialize(data_loader=train_loader, criterion=criterion) batch_multiplier = (binarization_config.get("params", {})).get("batch_multiplier", 1) train_bin(config, compression_ctrl, model, criterion, is_inception, optimizer_scheduler, model_name, optimizer, train_loader, train_sampler, val_loader, kd_loss_calculator, batch_multiplier, best_acc1)
def staged_quantization_main_worker(current_gpu, config): config.current_gpu = current_gpu config.distributed = config.execution_mode in ( ExecutionMode.DISTRIBUTED, ExecutionMode.MULTIPROCESSING_DISTRIBUTED) if config.distributed: configure_distributed(config) config.device = get_device(config) if is_main_process(): configure_logging(logger, config) print_args(config) if config.seed is not None: manual_seed(config.seed) cudnn.deterministic = True cudnn.benchmark = False # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss() criterion = criterion.to(config.device) train_loader = train_sampler = val_loader = None resuming_checkpoint_path = config.resuming_checkpoint_path nncf_config = config.nncf_config pretrained = is_pretrained_model_requested(config) if config.to_onnx is not None: assert pretrained or (resuming_checkpoint_path is not None) else: # Data loading code train_dataset, val_dataset = create_datasets(config) train_loader, train_sampler, val_loader = create_data_loaders( config, train_dataset, val_dataset) nncf_config = register_default_init_args(nncf_config, criterion, train_loader) # create model model_name = config['model'] model = load_model(model_name, pretrained=pretrained, num_classes=config.get('num_classes', 1000), model_params=config.get('model_params'), weights_path=config.get('weights')) original_model = copy.deepcopy(model) model.to(config.device) resuming_model_sd = None resuming_checkpoint = None if resuming_checkpoint_path is not None: resuming_checkpoint = load_resuming_checkpoint( resuming_checkpoint_path) resuming_model_sd = resuming_checkpoint['state_dict'] compression_ctrl, model = create_compressed_model(model, nncf_config, resuming_model_sd) if not isinstance(compression_ctrl, (BinarizationController, QuantizationController)): raise RuntimeError( "The stage quantization sample worker may only be run with the binarization and quantization algorithms!" ) model, _ = prepare_model_for_execution(model, config) original_model.to(config.device) if config.distributed: compression_ctrl.distributed() is_inception = 'inception' in model_name params_to_optimize = model.parameters() compression_config = config['compression'] quantization_config = compression_config if isinstance( compression_config, dict) else compression_config[0] optimizer = get_quantization_optimizer(params_to_optimize, quantization_config) optimizer_scheduler = PolyLRDropScheduler(optimizer, quantization_config) kd_loss_calculator = KDLossCalculator(original_model) best_acc1 = 0 # optionally resume from a checkpoint if resuming_checkpoint is not None and config.to_onnx is None: config.start_epoch = resuming_checkpoint['epoch'] best_acc1 = resuming_checkpoint['best_acc1'] kd_loss_calculator.original_model.load_state_dict( resuming_checkpoint['original_model_state_dict']) compression_ctrl.scheduler.load_state_dict( resuming_checkpoint['compression_scheduler']) optimizer.load_state_dict(resuming_checkpoint['optimizer']) optimizer_scheduler.load_state_dict( resuming_checkpoint['optimizer_scheduler']) if config.mode.lower() == 'train': logger.info( "=> loaded checkpoint '{}' (epoch: {}, best_acc1: {:.3f})". format(resuming_checkpoint_path, resuming_checkpoint['epoch'], best_acc1)) else: logger.info( "=> loaded checkpoint '{}'".format(resuming_checkpoint_path)) if config.to_onnx: compression_ctrl.export_model(config.to_onnx) logger.info("Saved to {}".format(config.to_onnx)) return if config.execution_mode != ExecutionMode.CPU_ONLY: cudnn.benchmark = True if config.mode.lower() == 'test': print_statistics(compression_ctrl.statistics()) validate(val_loader, model, criterion, config) if config.mode.lower() == 'train': batch_multiplier = (quantization_config.get("params", {})).get( "batch_multiplier", 1) train_staged(config, compression_ctrl, model, criterion, is_inception, optimizer_scheduler, model_name, optimizer, train_loader, train_sampler, val_loader, kd_loss_calculator, batch_multiplier, best_acc1)
def train_staged(config, compression_ctrl, model, criterion, is_inception, optimizer_scheduler, model_name, optimizer, train_loader, train_sampler, val_loader, kd_loss_calculator, batch_multiplier, best_acc1=0): best_compression_level = CompressionLevel.NONE for epoch in range(config.start_epoch, config.epochs): config.cur_epoch = epoch if config.distributed: train_sampler.set_epoch(epoch) # train for one epoch train_epoch_staged(train_loader, batch_multiplier, model, criterion, optimizer, optimizer_scheduler, kd_loss_calculator, compression_ctrl, epoch, config, is_inception) # compute compression algo statistics stats = compression_ctrl.statistics() acc1 = best_acc1 if epoch % config.test_every_n_epochs == 0: # evaluate on validation set acc1, _ = validate(val_loader, model, criterion, config) compression_level = compression_ctrl.compression_level() # remember best acc@1, considering compression level. If current acc@1 less then the best acc@1, checkpoint # still can be best if current compression level is bigger then best one. Compression levels in ascending # order: NONE, PARTIAL, FULL. is_best_by_accuracy = acc1 > best_acc1 and compression_level == best_compression_level is_best = is_best_by_accuracy or compression_level > best_compression_level best_acc1 = max(acc1, best_acc1) best_compression_level = max(compression_level, best_compression_level) # statistics (e.g. portion of the enabled quantizers) is related to the finished epoch, # hence printing should happen before epoch_step, which may inform about state of the next epoch (e.g. next # portion of enabled quantizers) if is_main_process(): print_statistics(stats) # update compression scheduler state at the end of the epoch compression_ctrl.scheduler.epoch_step() optimizer_scheduler.epoch_step() if is_main_process(): checkpoint_path = osp.join(config.checkpoint_save_dir, get_name(config) + '_last.pth') checkpoint = { 'epoch': epoch + 1, 'arch': model_name, 'state_dict': model.state_dict(), 'original_model_state_dict': kd_loss_calculator.original_model.state_dict(), 'best_acc1': best_acc1, 'compression_level': compression_level, 'optimizer': optimizer.state_dict(), 'compression_scheduler': compression_ctrl.scheduler.state_dict(), 'optimizer_scheduler': optimizer_scheduler.state_dict() } torch.save(checkpoint, checkpoint_path) make_additional_checkpoints(checkpoint_path, is_best, epoch + 1, config) for key, value in stats.items(): if isinstance(value, (int, float)): config.tb.add_scalar( "compression/statistics/{0}".format(key), value, len(train_loader) * epoch)
def autoq_eval_fn(model, eval_loader): _, top5 = validate(eval_loader, model, criterion, config) return top5