コード例 #1
0
ファイル: run.py プロジェクト: ultrainren/pddlstream
def display_plan(tamp_problem,
                 plan,
                 display=True,
                 save=False,
                 time_step=0.025,
                 sec_per_step=1e-3):
    from examples.continuous_tamp.viewer import ContinuousTMPViewer
    from examples.discrete_tamp.viewer import COLORS

    example_name = os.path.basename(os.path.dirname(__file__))
    directory = os.path.join(VISUALIZATIONS_DIR, example_name + '/')
    safe_rm_dir(directory)
    ensure_dir(directory)

    colors = dict(zip(sorted(tamp_problem.initial.block_poses.keys()), COLORS))
    viewer = ContinuousTMPViewer(SUCTION_HEIGHT,
                                 tamp_problem.regions,
                                 title='Continuous TAMP')
    state = tamp_problem.initial
    print()
    print(state)
    duration = compute_duration(plan)
    real_time = None if sec_per_step is None else (duration * sec_per_step /
                                                   time_step)
    print('Duration: {} | Step size: {} | Real time: {}'.format(
        duration, time_step, real_time))

    draw_state(viewer, state, colors)
    if display:
        user_input('Start?')
    if plan is not None:
        for t in inclusive_range(0, duration, time_step):
            for action in plan:
                if action.start <= t <= get_end(action):
                    update_state(state, action, t - action.start)
            print('t={} | {}'.format(t, state))
            draw_state(viewer, state, colors)
            if save:
                viewer.save(os.path.join(directory, 't={}'.format(t)))
            if display:
                if sec_per_step is None:
                    user_input('Continue?')
                else:
                    time.sleep(sec_per_step)
    if display:
        user_input('Finish?')
    return state
コード例 #2
0
def step_plan(tamp_problem, plan):
    if plan is None:
        return
    # TODO: could also use the old version of this
    colors = dict(zip(sorted(tamp_problem.initial.block_poses.keys()), COLORS))
    viewer = ContinuousTMPViewer(SUCTION_HEIGHT, tamp_problem.regions, title='Continuous TAMP')
    state = tamp_problem.initial
    print()
    print(state)
    draw_state(viewer, state, colors)
    user_input('Start?')
    for i, action in enumerate(plan):
        name, args = action
        print(i, name, args)
        for state in apply_action(state, action):
            print(state)
            draw_state(viewer, state, colors)
            user_input('Continue?')
    user_input('Finish?')
コード例 #3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-a', '--algorithm', default='focused', help='Specifies the algorithm')
    parser.add_argument('-s', '--skeleton', action='store_true', help='Enforces skeleton plan constraints')

    tamp_problem, args = initialize(parser)

    colors = dict(zip(sorted(tamp_problem.initial.block_poses.keys()), COLORS))
    viewer = ContinuousTMPViewer(SUCTION_HEIGHT, tamp_problem.regions, title='Continuous TAMP')
    draw_state(viewer, tamp_problem.initial, colors)

    [robot] = tamp_problem.initial.robot_confs
    blocks = sorted(tamp_problem.initial.block_poses)
    regions = sorted(set(tamp_problem.regions) - {GROUND_NAME})
    print(robot)
    print(blocks)
    print(regions)
    print(tamp_problem)

    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    stream_pddl = read(get_file_path(__file__, 'stream.pddl'))
    constant_map = {}
    stream_map = DEBUG # TODO: reuse same streams

    stream_info = {
        't-region': StreamInfo(eager=False, p_success=0),  # bound_fn is None
    }

    streams_from_problem = {}
    for order in permutations(blocks):
        for region in regions: # Objects could also have separate goals
            print(SEPARATOR)
            print('Block order:', order)
            print('Goal region:', region)
            #tamp_problem = dual(n_blocks=args.number, goal_regions=[region])
            tamp_problem.goal_regions.update({block: region for block in order})

            init, goal = create_problem(tamp_problem)
            problem = PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map, init, goal)
            dump_pddlstream(problem)

            skeleton = create_skeleton(robot, order, home=tamp_problem.goal_conf is not None)
            print(skeleton)
            skeletons = [skeleton]
            #skeletons = None
            constraints = PlanConstraints(skeletons=skeletons, exact=True)

            solution = solve_focused(problem, constraints=constraints, stream_info=stream_info,
                                     planner='max-astar', max_planner_time=10, debug=False,
                                     max_time=args.max_time, verbose=True,
                                     unit_costs=True, unit_efforts=True, effort_weight=1)
            print_solution(solution)
            plan, cost, evaluations = solution
            assert plan is not None

            # TODO: params not sufficient if no output stream or output not in plan
            streams = set()
            for name, params in plan:
                for param in params:
                    value = get_stream_value(param)
                    if isinstance(value, StreamValue):
                        # TODO: propagate recursively
                        streams.add((value.stream, value.inputs))
            streams_from_problem[order, region] = streams
            #print(streams)
            #user_input()

    print(SEPARATOR)
    dump_statistics()

    print(SEPARATOR)
    best_problems, best_p = None, -INF
    for problems in combinations(streams_from_problem, r=2): # Make r a parameter
        stream_plans = [streams_from_problem[problem] for problem in problems]
        intersection = set.intersection(*stream_plans)
        p = p_disjunction(stream_plans, STATS_PER_STREAM)
        assert 0 <= p <= 1
        print('Problems: {} | Intersection: {} | p={:.3f}'.format(problems, len(intersection), p)) #, intersection)
        if p > best_p:
            best_problems, best_p = problems, p

    print('\nBest: {} (p={:.3f})'.format(best_problems, best_p))
コード例 #4
0
ファイル: run.py プロジェクト: m1sk/pddlstream
def main(focused=True, deterministic=False, unit_costs=False):
    np.set_printoptions(precision=2)
    if deterministic:
        seed = 0
        np.random.seed(seed)
    print('Seed:', get_random_seed())

    problem_fn = get_blocked_problem  # get_tight_problem | get_blocked_problem
    tamp_problem = problem_fn()
    print(tamp_problem)

    action_info = {
        #'move': ActionInfo(terminal=True),
        #'pick': ActionInfo(terminal=True),
        #'place': ActionInfo(terminal=True),
    }
    stream_info = {
        #'test-region': StreamInfo(eager=True, p_success=0), # bound_fn is None
        #'plan-motion': StreamInfo(p_success=1),  # bound_fn is None
        #'trajcollision': StreamInfo(p_success=1),  # bound_fn is None
        #'cfree': StreamInfo(eager=True),
    }

    dynamic = [
        StreamSynthesizer('cfree-motion', {
            'plan-motion': 1,
            'trajcollision': 0
        },
                          gen_fn=from_fn(cfree_motion_fn)),
        #StreamSynthesizer('optimize', {'sample-pose': 1, 'inverse-kinematics': 1,
        #                           'posecollision': 0, 'distance': 0},
        #                  gen_fn=from_fn(get_optimize_fn(tamp_problem.regions))),
    ]

    pddlstream_problem = pddlstream_from_tamp(tamp_problem)
    pr = cProfile.Profile()
    pr.enable()
    if focused:
        solution = solve_focused(pddlstream_problem,
                                 action_info=action_info,
                                 stream_info=stream_info,
                                 synthesizers=dynamic,
                                 max_time=10,
                                 max_cost=INF,
                                 debug=False,
                                 effort_weight=None,
                                 unit_costs=unit_costs,
                                 postprocess=False,
                                 visualize=False)
    else:
        solution = solve_incremental(pddlstream_problem,
                                     layers=1,
                                     unit_costs=unit_costs)
    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    if plan is None:
        return

    colors = dict(zip(sorted(tamp_problem.initial.block_poses.keys()), COLORS))
    viewer = ContinuousTMPViewer(tamp_problem.regions, title='Continuous TAMP')
    state = tamp_problem.initial
    print()
    print(state)
    draw_state(viewer, state, colors)
    for i, action in enumerate(plan):
        user_input('Continue?')
        print(i, *action)
        state = apply_action(state, action)
        print(state)
        draw_state(viewer, state, colors)
    user_input('Finish?')