コード例 #1
0
def main():
    uniform_rooms = UniformDist(['room0', OTHER])
    #uniform_tables = UniformDist(['table0', 'table1'])
    #uniform_tables = UniformDist(['table0', OTHER])
    uniform_tables = UniformDist(['table0', 'table1', OTHER])

    #initial_belief = get_room_belief(uniform_rooms, uniform_tables, 1.0)
    initial_belief = get_room_belief(uniform_rooms, uniform_tables, 0.2)
    #initial_belief = get_table_belief(uniform_tables, 1.0)
    #initial_belief = get_table_belief(uniform_tables, 0.2)
    #initial_belief = get_item_belief()

    pddlstream_problem = pddlstream_from_belief(initial_belief)
    _, _, _, _, init, goal = pddlstream_problem
    print(sorted(init))
    print(goal)
    pr = cProfile.Profile()
    pr.enable()
    planner = 'max-astar'
    #solution = solve_incremental(pddlstream_problem, planner=planner, unit_costs=False)
    solution = solve_focused(pddlstream_problem,
                             planner=planner,
                             unit_costs=False)
    print_solution(solution)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
コード例 #2
0
ファイル: run.py プロジェクト: Khodeir/pddlstream
def main():
    parser = create_parser()
    args = parser.parse_args()
    print('Arguments:', args)

    uniform_rooms = UniformDist(['room0', OTHER])
    #uniform_tables = UniformDist(['table0', 'table1'])
    #uniform_tables = UniformDist(['table0', OTHER])
    uniform_tables = UniformDist(['table0', 'table1', OTHER])

    #initial_belief = get_room_belief(uniform_rooms, uniform_tables, 1.0)
    initial_belief = get_room_belief(uniform_rooms, uniform_tables, 0.2)
    #initial_belief = get_table_belief(uniform_tables, 1.0)
    #initial_belief = get_table_belief(uniform_tables, 0.2)
    #initial_belief = get_item_belief()

    pddlstream_problem = pddlstream_from_belief(initial_belief)
    _, _, _, _, init, goal = pddlstream_problem
    print('Init:', sorted(init))
    print('Goal:', goal)

    planner = 'max-astar'
    with Profiler(field='tottime', num=10):
        solution = solve(pddlstream_problem,
                         algorithm=args.algorithm,
                         unit_costs=args.unit,
                         planner=planner)
    print_solution(solution)
コード例 #3
0
def to_pddlstream(belief_problem, collisions=True):
    locations = {l for (_, l, _) in belief_problem.initial + belief_problem.goal} | \
                set(belief_problem.locations)
    observations = [True, False]
    uniform = UniformDist(locations)
    initial_bel = {o: MixtureDD(DeltaDist(l), uniform, p) for o, l, p in belief_problem.initial}
    max_p_collision = 0.25 if collisions else 1.0

    # TODO: separate pick and place for move
    init = [('Obs', obs) for obs in observations] + \
           [('Location', l) for l in locations]
    for o, d in initial_bel.items():
        init += [('Dist', o, d), ('BLoc', o, d)]
    for (o, l, p) in belief_problem.goal:
        init += [('Location', l), ('GoalProb', l, p)]
    goal_literals = [('BLocGE', o, l, p) for (o, l, p) in belief_problem.goal]
    goal = And(*goal_literals)

    directory = os.path.dirname(os.path.abspath(__file__))
    domain_pddl = read(os.path.join(directory, 'domain.pddl'))
    stream_pddl = read(os.path.join(directory, 'stream.pddl'))
    constant_map = {}
    stream_map = {
        'BCollision': get_collision_test(max_p_collision),
        'GE': from_test(ge_fn),
        'prob-after-move': from_fn(get_move_fn(belief_problem.p_move_s)),
        'MoveCost': move_cost_fn,
        'prob-after-look': from_fn(get_look_fn(belief_problem.p_look_fp, belief_problem.p_look_fn)),
        'LookCost': get_look_cost_fn(belief_problem.p_look_fp, belief_problem.p_look_fn),
        #'PCollision': from_fn(prob_occupied), # Then can use GE
    }

    return domain_pddl, constant_map, stream_pddl, stream_map, init, goal
コード例 #4
0
def cook_block(world, fixed=False, **kwargs):
    add_kinect(world)  # previously needed to be after set_all_static?
    if fixed:
        set_fixed_base(world)

    entity_name = add_block(world, idx=0, pose2d=BOX_POSE2D)
    set_all_static()

    initial_surface = 'indigo_tmp'
    sample_placement(world, entity_name, initial_surface, learned=True)

    prior = {
        entity_name: UniformDist([initial_surface]),
    }
    return Task(
        world,
        prior=prior,
        movable_base=not fixed,
        grasp_types=[TOP_GRASP],
        #goal_detected=[entity_name],
        #goal_holding=entity_name,
        goal_cooked=[entity_name],
        #goal_on={entity_name: goal_surface},
        return_init_bq=True,
        return_init_aq=True,
        #goal_open=[joint_name],
        #goal_closed=ALL_JOINTS,
    )
コード例 #5
0
def regrasp_block(world, fixed=False, **kwargs):
    add_kinect(world)
    if fixed:
        set_fixed_base(world)
    entity_name = add_block(world, idx=0)
    set_all_static()
    #world.open_door(joint_from_name(world.kitchen, JOINT_TEMPLATE.format(LEFT_DOOR)))

    #drawer = random.choice(ZED_DRAWERS)
    drawer = 'indigo_tmp'
    sample_placement(world, entity_name, drawer, learned=True)
    prior = {
        entity_name: UniformDist(drawer),
    }
    return Task(
        world,
        prior=prior,
        movable_base=not fixed,
        #grasp_types=[SIDE_GRASP], #, TOP_GRASP],
        #goal_holding=entity_name,
        goal_on={entity_name: LEFT_DOOR},
        #return_init_bq=True, return_init_aq=True,
        #goal_open=[JOINT_TEMPLATE.format(LEFT_DOOR)]
        #goal_closed=ALL_JOINTS,
    )
コード例 #6
0
 def resample(self, n=NUM_PARTICLES):
     if len(self.dist.support()) <= 1:
         return self
     with LockRenderer():
         poses = [self.sample() for _ in range(n)]
     new_dist = UniformDist(poses)
     return self.__class__(self.world, self.name, new_dist)
コード例 #7
0
def detect_block(world, fixed=False, **kwargs):
    add_kinect(world)
    #for side in CAMERAS[:1]:
    #    add_kinect(world, side)
    #add_kinects(world)
    if fixed:
        set_fixed_base(world)
    #plane = create_plane([1, 0, 0])
    #set_point(plane, [MIN_PLACEMENT_X, 0, 0])
    #wait_for_user()

    block_poses = [(0.1, 1.05, 0.), (0.1, 1.3, 0.)]
    entity_name = add_block(world, idx=0, pose2d=random.choice(block_poses))
    sugar_name = add_sugar_box(world, idx=0, pose2d=(0.2, 1.35, np.pi / 4))
    cracker_name = add_cracker_box(world, idx=1, pose2d=(0.2, 1.1, np.pi / 4))
    #other_name = add_box(world, idx=1)
    set_all_static()

    #goal_surface = 'indigo_drawer_top'
    #initial_distribution = UniformDist([goal_surface]) # indigo_tmp
    #initial_surface = initial_distribution.sample()
    #if random.random() < 0.0:
    #    # TODO: sometimes base/arm failure causes the planner to freeze
    #    # Freezing is because the planner is struggling to find new samples
    #    sample_placement(world, entity_name, initial_surface, learned=True)
    #sample_placement(world, other_name, 'hitman_tmp', learned=True)

    prior = {
        entity_name:
        UniformDist(['indigo_tmp']),  # 'indigo_tmp', 'indigo_drawer_top'
        sugar_name: DeltaDist('indigo_tmp'),
        cracker_name: DeltaDist('indigo_tmp'),
    }
    return Task(
        world,
        prior=prior,
        movable_base=not fixed,
        grasp_types=[TOP_GRASP],
        return_init_bq=True,
        return_init_aq=True,
        #goal_detected=[entity_name],
        goal_holding=cracker_name,
        #goal_on={entity_name: random.choice(ZED_DRAWERS)},
        goal_cooked=[entity_name],
        goal_closed=ALL_JOINTS,
    )
コード例 #8
0
def swap_drawers(world, fixed=False, **kwargs):
    # Starts in the incorrect drawer
    add_kinect(world)  # previously needed to be after set_all_static?
    if fixed:
        set_fixed_base(world)
    entity_name = add_block(world, idx=0, pose2d=BOX_POSE2D)
    set_all_static()
    #open_all_doors(world)

    #initial_surface, goal_surface = 'indigo_tmp', 'indigo_drawer_top'
    #initial_surface, goal_surface = 'indigo_drawer_top', 'indigo_drawer_top'
    #initial_surface, goal_surface = 'indigo_drawer_bottom', 'indigo_drawer_bottom'
    #initial_surface, goal_surface = ZED_DRAWERS
    #initial_surface, goal_surface = reversed(ZED_DRAWERS)
    initial_surface, goal_surface = randomize(ZED_DRAWERS)
    if initial_surface != 'indigo_tmp':
        sample_placement(world, entity_name, initial_surface, learned=True)

    #joint_name = JOINT_TEMPLATE.format(goal_surface)
    #world.open_door(joint_from_name(world.kitchen, JOINT_TEMPLATE.format(goal_surface)))

    # TODO: declare success if already believe it's in the drawer or require detection?
    prior = {
        #entity_name: UniformDist([initial_surface]),
        entity_name: UniformDist(ZED_DRAWERS),
        #entity_name: UniformDist(['indigo_tmp', 'indigo_drawer_top', 'indigo_drawer_bottom']),
    }
    return Task(
        world,
        prior=prior,
        movable_base=not fixed,
        grasp_types=[TOP_GRASP],
        #goal_detected=[entity_name],
        #goal_holding=entity_name,
        #goal_cooked=[entity_name],
        goal_on={entity_name: goal_surface},
        return_init_bq=True,
        return_init_aq=True,
        #goal_open=[joint_name],
        #goal_closed=[JOINT_TEMPLATE.format(initial_surface)],
        #goal_closed=[JOINT_TEMPLATE.format(goal_surface)], # TODO: this caused non-fixed base planning to fail due to cost
        goal_closed=ALL_JOINTS,
    )
コード例 #9
0
def create_surface_pose_dist(world, obj_name, surface_dist, n=NUM_PARTICLES):
    # TODO: likely easier to just make a null surface below ground
    placement_gen = get_stable_gen(world,
                                   max_attempts=100,
                                   learned=True,
                                   pos_scale=1e-3,
                                   rot_scale=1e-2)
    poses = []
    with LockRenderer():
        with BodySaver(world.get_body(obj_name)):
            while len(poses) < n:
                surface_name = surface_dist.sample()
                assert surface_name is not ELSEWHERE
                result = next(placement_gen(obj_name, surface_name), None)
                if result is None:
                    surface_dist = surface_dist.condition(
                        lambda s: s != surface_name)
                else:
                    (rel_pose, ) = result
                    rel_pose.init = True
                    poses.append(rel_pose)
    return PoseDist(world, obj_name, UniformDist(poses))
コード例 #10
0
def inspect_drawer(world, fixed=False, **kwargs):
    # Starts in the correct drawer
    add_kinect(world)
    if fixed:
        set_fixed_base(world)
    entity_name = add_block(world, idx=0)
    set_all_static()

    drawer = random.choice(ZED_DRAWERS)
    sample_placement(world, entity_name, drawer, learned=True)

    prior = {
        entity_name: UniformDist(ZED_DRAWERS),
    }
    return Task(
        world,
        prior=prior,
        movable_base=not fixed,
        grasp_types=[TOP_GRASP],
        goal_on={entity_name: drawer},
        return_init_bq=True,
        return_init_aq=True,
        goal_closed=ALL_JOINTS,
    )
コード例 #11
0
def set_uniform_belief(task, b_on, body, p_other=0.5):
    # TODO: option to bias towards particular bottom
    other = DeltaDist(OTHER)
    uniform = UniformDist(task.get_supports(body))
    b_on[body] = MixtureDD(other, uniform, p_other)
コード例 #12
0
def delocalize_belief(belief, o, rp):
    dist = UniformDist([rp, copy.copy(rp)])
    belief.pose_dists[o] = PoseDist(belief.world, o, dist)
    return dist
コード例 #13
0
ファイル: problems.py プロジェクト: yqj13777866390/pddlstream
def set_uniform_belief(task, b_on, body, p_other=0.):
    # p_other is the probability that it doesn't actually exist
    # TODO: option to bias towards particular bottom
    other = DeltaDist(OTHER)
    uniform = UniformDist(task.get_supports(body))
    b_on[body] = MixtureDD(other, uniform, p_other)