コード例 #1
0
 def apply(self, state, **kwargs):
     print(self.visual_data)
     with LockRenderer():
         visual_id = visual_shape_from_data(self.visual_data[0])
         cone = create_body(visual_id=visual_id)
         #cone = create_mesh(mesh, color=(0, 1, 0, 0.5))
         set_pose(cone, self.pose)
     wait_for_duration(self._duration)
     with LockRenderer():
         remove_body(cone)
         wait_for_duration(1e-2)
     wait_for_duration(self._duration)
     # TODO: set to transparent before removing
     yield
コード例 #2
0
    def apply(self, state, **kwargs):
        # TODO: identify surface automatically
        with LockRenderer():
            cone = get_viewcone(color=(1, 0, 0, 0.5))
            set_pose(cone, get_link_pose(self.robot, self.link))
            wait_for_duration(1e-2)
        wait_for_duration(self._duration)  # TODO: don't sleep if no viewer?
        remove_body(cone)
        wait_for_duration(1e-2)

        if self.detect:
            # TODO: the collision geometries are being visualized
            # TODO: free the renderer
            detections = get_visual_detections(self.robot,
                                               camera_link=self.camera_frame)
            print('Detections:', detections)
            for body, dist in state.b_on.items():
                obs = (body in detections) and (is_center_stable(
                    body, self.surface))
                if obs or (self.surface not in state.task.rooms):
                    # TODO: make a command for scanning a room instead?
                    dist.obsUpdate(get_observation_fn(self.surface), obs)
            #state.localized.update(detections)
        # TODO: pose for each object that can be real or fake
        yield
コード例 #3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-viewer', action='store_true', help='enable the viewer while planning')
    args = parser.parse_args()
    print(args)

    connect(use_gui=True)
    with LockRenderer():
        draw_pose(unit_pose(), length=1)
        floor = create_floor()
        with HideOutput():
            robot = load_pybullet(get_model_path(ROOMBA_URDF), fixed_base=True, scale=2.0)
            for link in get_all_links(robot):
                set_color(robot, link=link, color=ORANGE)
            robot_z = stable_z(robot, floor)
            set_point(robot, Point(z=robot_z))
        #set_base_conf(robot, rover_confs[i])

        data_path = add_data_path()
        shelf, = load_model(os.path.join(data_path, KIVA_SHELF_SDF), fixed_base=True) # TODO: returns a tuple
        dump_body(shelf)
        #draw_aabb(get_aabb(shelf))

    wait_for_user()
    disconnect()
コード例 #4
0
ファイル: primitives.py プロジェクト: aiyi2099/pddlstream
 def apply(self, state, **kwargs):
     cone = self.attach.cone
     detach = Detach(self.attach.robot, self.attach.group, cone)
     for _ in detach.apply(state, **kwargs):
         yield
     del state.poses[cone]
     with LockRenderer():
         remove_body(cone)
         wait_for_duration(1e-2)
コード例 #5
0
ファイル: primitives.py プロジェクト: aiyi2099/pddlstream
 def apply(self, state, **kwargs):
     with LockRenderer():
         self.cone = get_viewcone(color=(1, 0, 0, 0.5))
         state.poses[self.cone] = None
         cone_pose = Pose(self.cone, unit_pose())
         attach = Attach(self.robot, self.group, cone_pose, self.cone)
         attach.assign()
         wait_for_duration(1e-2)
     for _ in attach.apply(state, **kwargs):
         yield
コード例 #6
0
def main():
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    args = parser.parse_args()

    connect(use_gui=True)
    #ycb_path = os.path.join(DRAKE_PATH, DRAKE_YCB)
    #ycb_path = os.path.join(YCB_PATH, YCB_TEMPLATE.format('003_cracker_box'))
    #print(ycb_path)
    #load_pybullet(ycb_path)

    with LockRenderer():
        draw_pose(unit_pose(), length=1, width=1)
        floor = create_floor()
        set_point(floor, Point(z=-EPSILON))
        table = create_table(width=TABLE_WIDTH, length=TABLE_WIDTH/2, height=TABLE_WIDTH/2, top_color=TAN, cylinder=False)
        #set_euler(table, Euler(yaw=np.pi/2))
        with HideOutput(False):
            # data_path = add_data_path()
            # robot_path = os.path.join(data_path, WSG_GRIPPER)
            robot_path = get_model_path(WSG_50_URDF)  # WSG_50_URDF | PANDA_HAND_URDF
            #robot_path = get_file_path(__file__, 'mit_arch_suction_gripper/mit_arch_suction_gripper.urdf')
            robot = load_pybullet(robot_path, fixed_base=True)
            #dump_body(robot)
            #robot = create_cylinder(radius=0.5*BLOCK_SIDE, height=4*BLOCK_SIDE) # vacuum gripper

        block1 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=RED)
        block_z = stable_z(block1, table)
        set_point(block1, Point(z=block_z))

        block2 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=GREEN)
        set_point(block2, Point(x=+0.25, z=block_z))

        block3 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=BLUE)
        set_point(block3, Point(x=-0.15, z=block_z))

        blocks = [block1, block2, block3]

        add_line(Point(x=-TABLE_WIDTH/2, z=block_z - BLOCK_SIDE/2 + EPSILON),
                 Point(x=+TABLE_WIDTH/2, z=block_z - BLOCK_SIDE/2 + EPSILON), color=RED)
        set_camera_pose(camera_point=Point(y=-1, z=block_z+1), target_point=Point(z=block_z))

    wait_for_user()
    block_pose = get_pose(block1)
    open_gripper(robot)
    tool_link = link_from_name(robot, 'tool_link')
    base_from_tool = get_relative_pose(robot, tool_link)
    #draw_pose(unit_pose(), parent=robot, parent_link=tool_link)

    y_grasp, x_grasp = get_top_grasps(block1, tool_pose=unit_pose(), grasp_length=0.03, under=False)
    grasp = y_grasp # fingers won't collide
    gripper_pose = multiply(block_pose, invert(grasp))
    set_pose(robot, multiply(gripper_pose, invert(base_from_tool)))
    wait_for_user('Finish?')
    disconnect()
コード例 #7
0
ファイル: primitives.py プロジェクト: aiyi2099/pddlstream
 def apply(self, state, **kwargs):
     mesh, _ = get_detection_cone(self.robot,
                                  self.body,
                                  camera_link=self.camera_frame,
                                  depth=self.max_depth)
     if mesh is None:
         wait_for_user()
     assert (mesh is not None)
     with LockRenderer():
         cone = create_mesh(mesh, color=(0, 1, 0, 0.5))
         set_pose(cone, get_link_pose(self.robot, self.link))
         wait_for_duration(1e-2)
     wait_for_duration(self._duration)
     # time.sleep(1.0)
     with LockRenderer():
         # TODO: set as transparent before removing
         remove_body(cone)
         wait_for_duration(1e-2)
     state.registered.add(self.body)
     yield
コード例 #8
0
ファイル: run.py プロジェクト: Khodeir/pddlstream
def pddlstream_from_problem(problem):
    # TODO: push and attach to movable objects

    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    stream_pddl = read(get_file_path(__file__, 'stream.pddl'))
    constant_map = {}

    # TODO: action to generically connect to the roadmap
    # TODO: could check individual vertices first
    # TODO: dynamically generate the roadmap in interesting parts of the space
    # TODO: visibility graphs for sparse roadmaps
    # TODO: approximate robot with isotropic geometry
    # TODO: make the effort finite if applied to the roadmap vertex

    samples = []
    init = []
    for robot, conf in problem.initial_confs.items():
        samples.append(conf)
        init += [('Robot', robot), ('Conf', robot, conf),
                 ('AtConf', robot, conf), ('Free', robot)]
    for body, pose in problem.initial_poses.items():
        init += [('Body', body), ('Pose', body, pose), ('AtPose', body, pose)]

    goal_literals = []
    goal_literals += [('Holding', robot, body)
                      for robot, body in problem.goal_holding.items()]
    for robot, base_values in problem.goal_confs.items():
        q_goal = Conf(robot, get_base_joints(robot), base_values)
        samples.append(q_goal)
        init += [('Conf', robot, q_goal)]
        goal_literals += [('AtConf', robot, q_goal)]
    goal_formula = And(*goal_literals)

    # TODO: assuming holonomic for now
    [body] = problem.robots

    with LockRenderer():
        init += create_vertices(problem, body, samples)
        #init += create_edges(problem, body, samples)

    stream_map = {
        'test-cfree-conf-pose': from_test(get_test_cfree_conf_pose(problem)),
        'test-cfree-traj-pose': from_test(get_test_cfree_traj_pose(problem)),
        # TODO: sample pushes rather than picks/places
        'sample-grasp': from_gen_fn(get_grasp_generator(problem)),
        'compute-ik': from_fn(get_ik_fn(problem)),
        'compute-motion': from_fn(get_motion_fn(problem)),
        'test-reachable': from_test(lambda *args: False),
        'Cost': get_cost_fn(problem),
    }
    #stream_map = 'debug'

    return PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map,
                       init, goal_formula)
コード例 #9
0
def problem_fn(n_robots=2, collisions=True):
    base_extent = 2.0
    base_limits = (-base_extent / 2. * np.ones(2),
                   base_extent / 2. * np.ones(2))
    mound_height = 0.1

    floor, walls = create_environment(base_extent, mound_height)
    width = base_extent / 2. - 4 * mound_height
    wall5 = create_box(mound_height, width, mound_height, color=GREY)
    set_point(wall5,
              Point(y=-(base_extent / 2 - width / 2.), z=mound_height / 2.))
    wall6 = create_box(mound_height, width, mound_height, color=GREY)
    set_point(wall6,
              Point(y=+(base_extent / 2 - width / 2.), z=mound_height / 2.))

    distance = 0.5
    #initial_confs = [(-distance, -distance, 0),
    #                 (-distance, +distance, 0)]
    initial_confs = [(-distance, -distance, 0), (+distance, +distance, 0)]
    assert n_robots <= len(initial_confs)

    body_from_name = {}
    #robots = ['green']
    robots = ['green', 'blue']
    with LockRenderer():
        for i, name in enumerate(robots):
            with HideOutput():
                body = load_model(
                    TURTLEBOT_URDF)  # TURTLEBOT_URDF | ROOMBA_URDF
            body_from_name[name] = body
            robot_z = stable_z(body, floor)
            set_point(body, Point(z=robot_z))
            set_base_conf(body, initial_confs[i])
            set_body_color(body, COLOR_FROM_NAME[name])

    goals = [(+distance, -distance, 0), (+distance, +distance, 0)]
    #goals = goals[::-1]
    goals = initial_confs[::-1]
    goal_confs = dict(zip(robots, goals))

    return NAMOProblem(body_from_name,
                       robots,
                       base_limits,
                       collisions=collisions,
                       goal_confs=goal_confs)
コード例 #10
0
 def apply(self, state, **kwargs):
     # TODO: check if actually can register
     mesh, _ = get_detection_cone(self.robot,
                                  self.body,
                                  camera_link=self.camera_frame,
                                  depth=self.max_depth)
     if mesh is None:
         wait_for_user()
     assert (mesh is not None)
     with LockRenderer():
         cone = create_mesh(mesh, color=apply_alpha(GREEN, 0.5))
         set_pose(cone, get_link_pose(self.robot, self.link))
         wait_for_duration(1e-2)
     wait_for_duration(self._duration)
     remove_body(cone)
     wait_for_duration(1e-2)
     state.registered.add(self.body)
     yield
コード例 #11
0
def main():
    parser = create_parser()
    parser.add_argument('-enable', action='store_true', help='Enables rendering during planning')
    parser.add_argument('-teleport', action='store_true', help='Teleports between configurations')
    parser.add_argument('-simulate', action='store_true', help='Simulates the system')
    parser.add_argument('-viewer', action='store_true', help='Enable the viewer and visualizes the plan')
    args = parser.parse_args()
    print('Arguments:', args)

    connect(use_gui=args.viewer)
    robot, names, movable = load_world()
    print('Objects:', names)
    saver = WorldSaver()

    problem = pddlstream_from_problem(robot, movable=movable, teleport=args.teleport)
    _, _, _, stream_map, init, goal = problem
    print('Init:', init)
    print('Goal:', goal)
    print('Streams:', str_from_object(set(stream_map)))

    with Profiler():
        with LockRenderer(lock=not args.enable):
            solution = solve(problem, algorithm=args.algorithm, unit_costs=args.unit, success_cost=INF)
            saver.restore()
    print_solution(solution)
    plan, cost, evaluations = solution
    if (plan is None) or not has_gui():
        disconnect()
        return

    command = postprocess_plan(plan)
    if args.simulate:
        wait_for_user('Simulate?')
        command.control()
    else:
        wait_for_user('Execute?')
        #command.step()
        command.refine(num_steps=10).execute(time_step=0.001)
    wait_for_user('Finish?')
    disconnect()
コード例 #12
0
def main(partial=False, defer=False, verbose=True):
    parser = create_parser()
    parser.add_argument('-enable',
                        action='store_true',
                        help='Enables rendering during planning')
    parser.add_argument('-teleport',
                        action='store_true',
                        help='Teleports between configurations')
    parser.add_argument('-simulate',
                        action='store_true',
                        help='Simulates the system')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='Enable the viewer and visualizes the plan')
    args = parser.parse_args()
    print('Arguments:', args)

    connect(use_gui=args.viewer)
    problem_fn = cooking_problem
    # holding_problem | stacking_problem | cleaning_problem | cooking_problem
    # cleaning_button_problem | cooking_button_problem
    with HideOutput():
        problem = problem_fn()
    #state_id = save_state()
    saver = WorldSaver()
    #dump_world()

    pddlstream_problem = pddlstream_from_problem(problem,
                                                 teleport=args.teleport)

    stream_info = {
        # 'test-cfree-pose-pose': StreamInfo(p_success=1e-3, verbose=verbose),
        # 'test-cfree-approach-pose': StreamInfo(p_success=1e-2, verbose=verbose),
        # 'test-cfree-traj-pose': StreamInfo(p_success=1e-1, verbose=verbose),
        'MoveCost': FunctionInfo(opt_move_cost_fn),
    }
    stream_info.update({
        'sample-pose':
        StreamInfo(PartialInputs('?r')),
        'inverse-kinematics':
        StreamInfo(PartialInputs('?p')),
        'plan-base-motion':
        StreamInfo(PartialInputs('?q1 ?q2'),
                   defer_fn=defer_shared if defer else never_defer),
    } if partial else {
        'sample-pose': StreamInfo(from_fn(opt_pose_fn)),
        'inverse-kinematics': StreamInfo(from_fn(opt_ik_fn)),
        'plan-base-motion': StreamInfo(from_fn(opt_motion_fn)),
    })
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)
    print('Streams:', str_from_object(set(stream_map)))
    print(SEPARATOR)

    with Profiler():
        with LockRenderer(lock=not args.enable):
            solution = solve(pddlstream_problem,
                             algorithm=args.algorithm,
                             unit_costs=args.unit,
                             stream_info=stream_info,
                             success_cost=INF,
                             verbose=True,
                             debug=False)
            saver.restore()

    print_solution(solution)
    plan, cost, evaluations = solution
    if (plan is None) or not has_gui():
        disconnect()
        return

    print(SEPARATOR)
    with LockRenderer(lock=not args.enable):
        commands = post_process(problem, plan)
        problem.remove_gripper()
        saver.restore()

    #restore_state(state_id)
    saver.restore()
    wait_if_gui('Execute?')
    if args.simulate:
        control_commands(commands)
    else:
        apply_commands(State(), commands, time_step=0.01)
    wait_if_gui('Finish?')
    disconnect()
コード例 #13
0
def main():
    parser = create_parser()
    parser.add_argument('-problem',
                        default='rovers1',
                        help='The name of the problem to solve')
    parser.add_argument('-cfree',
                        action='store_true',
                        help='Disables collisions')
    parser.add_argument('-deterministic',
                        action='store_true',
                        help='Uses a deterministic sampler')
    parser.add_argument('-optimal',
                        action='store_true',
                        help='Runs in an anytime mode')
    parser.add_argument('-t',
                        '--max_time',
                        default=120,
                        type=int,
                        help='The max time')
    parser.add_argument('-enable',
                        action='store_true',
                        help='Enables rendering during planning')
    parser.add_argument('-teleport',
                        action='store_true',
                        help='Teleports between configurations')
    parser.add_argument('-simulate',
                        action='store_true',
                        help='Simulates the system')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='Enable the viewer and visualizes the plan')
    args = parser.parse_args()
    print('Arguments:', args)

    problem_fn_from_name = {fn.__name__: fn for fn in PROBLEMS}
    if args.problem not in problem_fn_from_name:
        raise ValueError(args.problem)
    problem_fn = problem_fn_from_name[args.problem]
    connect(use_gui=args.viewer)
    with HideOutput():
        rovers_problem = problem_fn()
    saver = WorldSaver()
    draw_base_limits(rovers_problem.limits, color=RED)

    pddlstream_problem = pddlstream_from_problem(rovers_problem,
                                                 collisions=not args.cfree,
                                                 teleport=args.teleport,
                                                 holonomic=False,
                                                 reversible=True,
                                                 use_aabb=True)
    stream_info = {
        'test-cfree-ray-conf': StreamInfo(),
        'test-reachable': StreamInfo(p_success=1e-1),
        'obj-inv-visible': StreamInfo(),
        'com-inv-visible': StreamInfo(),
        'sample-above': StreamInfo(),
        'sample-motion': StreamInfo(overhead=10),
    }
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)
    #print('Streams:', stream_map.keys())

    success_cost = 0 if args.optimal else INF
    planner = 'ff-wastar3'
    search_sample_ratio = 2
    max_planner_time = 10

    # TODO: need to accelerate samples here because of the failed test reachable
    with Profiler(field='tottime', num=25):
        with LockRenderer(lock=not args.enable):
            # TODO: option to only consider costs during local optimization
            solution = solve(pddlstream_problem,
                             algorithm=args.algorithm,
                             stream_info=stream_info,
                             planner=planner,
                             max_planner_time=max_planner_time,
                             debug=False,
                             unit_costs=args.unit,
                             success_cost=success_cost,
                             max_time=args.max_time,
                             verbose=True,
                             unit_efforts=True,
                             effort_weight=1,
                             search_sample_ratio=search_sample_ratio)
            for body in get_bodies():
                if body not in saver.bodies:
                    remove_body(body)
            saver.restore()

    print_solution(solution)
    plan, cost, evaluations = solution
    if (plan is None) or not has_gui():
        disconnect()
        return

    # Maybe OpenRAVE didn't actually sample any joints...
    # http://openrave.org/docs/0.8.2/openravepy/examples.tutorial_iksolutions/
    with LockRenderer():
        commands = post_process(rovers_problem, plan)
        saver.restore()

    wait_for_user('Begin?')
    if args.simulate:
        control_commands(commands)
    else:
        time_step = None if args.teleport else 0.01
        apply_commands(BeliefState(rovers_problem), commands, time_step)
    wait_for_user('Finish?')
    disconnect()
コード例 #14
0
def main():
    parser = create_parser()
    parser.add_argument('-problem', default='problem1', help='The name of the problem to solve')
    parser.add_argument('-cfree', action='store_true', help='Disables collisions')
    parser.add_argument('-deterministic', action='store_true', help='Uses a deterministic sampler')
    parser.add_argument('-optimal', action='store_true', help='Runs in an anytime mode')
    parser.add_argument('-t', '--max_time', default=120, type=int, help='The max time')
    parser.add_argument('-enable', action='store_true', help='Enables rendering during planning')
    parser.add_argument('-teleport', action='store_true', help='Teleports between configurations')
    parser.add_argument('-simulate', action='store_true', help='Simulates the system')
    parser.add_argument('-viewer', action='store_true', help='Enable the viewer and visualizes the plan')
    args = parser.parse_args()
    print('Arguments:', args)

    problem_fn_from_name = {fn.__name__: fn for fn in PROBLEMS}
    if args.problem not in problem_fn_from_name:
        raise ValueError(args.problem)
    problem_fn = problem_fn_from_name[args.problem]
    connect(use_gui=args.viewer)
    with HideOutput():
        problem = problem_fn()
    saver = WorldSaver()
    draw_base_limits(problem.limits, color=RED)

    pddlstream_problem = pddlstream_from_problem(problem, collisions=not args.cfree, teleport=args.teleport)
    stream_info = {
        'inverse-kinematics': StreamInfo(),
        'plan-base-motion': StreamInfo(overhead=1e1),
    }
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)
    #print('Streams:', stream_map.keys())

    success_cost = 0 if args.optimal else INF
    planner = 'ff-astar'
    search_sample_ratio = 1
    max_planner_time = 10

    with Profiler(field='cumtime', num=25): # cumtime | tottime
        with LockRenderer(lock=not args.enable):
            solution = solve(pddlstream_problem, stream_info=stream_info,
                                     planner=planner, max_planner_time=max_planner_time,
                                     unit_costs=args.unit, success_cost=success_cost,
                                     max_time=args.max_time, verbose=True, debug=False,
                                     unit_efforts=True, effort_weight=1,
                                     search_sample_ratio=search_sample_ratio)
            saver.restore()
    print_solution(solution)
    plan, cost, evaluations = solution
    if (plan is None) or not has_gui():
        disconnect()
        return

    # Maybe openrave didn't actually sample any joints...
    # http://openrave.org/docs/0.8.2/openravepy/examples.tutorial_iksolutions/
    with LockRenderer(lock=not args.enable):
        commands = post_process(problem, plan, teleport=args.teleport)
        saver.restore()

    if args.simulate:
        control_commands(commands)
    else:
        time_step = None if args.teleport else 0.01
        apply_commands(BeliefState(problem), commands, time_step)
    wait_for_user()
    disconnect()
コード例 #15
0
ファイル: run.py プロジェクト: Khodeir/pddlstream
def main():
    parser = create_parser(default_algorithm='binding')
    parser.add_argument('-cfree',
                        action='store_true',
                        help='Disables collisions')
    parser.add_argument('-deterministic',
                        action='store_true',
                        help='Uses a deterministic sampler')
    parser.add_argument('-optimal',
                        action='store_true',
                        help='Runs in an anytime mode')
    parser.add_argument('-t',
                        '--max_time',
                        default=120,
                        type=int,
                        help='The max time')
    parser.add_argument('-enable',
                        action='store_true',
                        help='Enables rendering during planning')
    parser.add_argument('-simulate',
                        action='store_true',
                        help='Simulates the system')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='Enable the viewer and visualizes the plan')
    args = parser.parse_args()
    print('Arguments:', args)

    connect(use_gui=args.viewer)
    with HideOutput():
        problem = problem_fn(collisions=not args.cfree)
    saver = WorldSaver()
    draw_base_limits(problem.limits, color=RED)

    pddlstream_problem = pddlstream_from_problem(problem)
    stream_info = {
        'test-cfree-conf-pose': StreamInfo(p_success=1e-2),
        'test-cfree-traj-pose': StreamInfo(p_success=1e-1),
        'compute-motion': StreamInfo(eager=True, p_success=0),
        'test-reachable': StreamInfo(eager=True),
        'Distance': FunctionInfo(eager=True),
    }
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)

    success_cost = 0 if args.optimal else INF
    planner = 'ff-wastar1'
    search_sample_ratio = 0
    max_planner_time = 10

    with Profiler(field='tottime', num=25):  # cumtime | tottime
        with LockRenderer(lock=not args.enable):
            solution = solve(pddlstream_problem,
                             algorithm=args.algorithm,
                             stream_info=stream_info,
                             planner=planner,
                             max_planner_time=max_planner_time,
                             debug=False,
                             unit_costs=args.unit,
                             success_cost=success_cost,
                             max_time=args.max_time,
                             verbose=True,
                             unit_efforts=True,
                             effort_weight=1,
                             search_sample_ratio=search_sample_ratio)
            saver.restore()

    print_solution(solution)
    plan, cost, evaluations = solution
    if (plan is None) or not has_gui():
        disconnect()
        return

    with LockRenderer():
        commands = post_process(problem, plan)
        saver.restore()  # Assumes bodies are ordered the same way

    wait_for_user()
    if args.simulate:
        control_commands(commands)
    else:
        apply_commands(BeliefState(problem), commands,
                       time_step=1e-2)  # 1e-2 | None
    wait_for_user()
    disconnect()
コード例 #16
0
ファイル: run.py プロジェクト: yqj13777866390/pddlstream
def main(display=True, teleport=False, partial=False, defer=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('-simulate',
                        action='store_true',
                        help='Simulates the system')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='enable the viewer while planning')
    #parser.add_argument('-display', action='store_true', help='displays the solution')
    args = parser.parse_args()

    connect(use_gui=args.viewer)
    problem_fn = cooking_problem
    # holding_problem | stacking_problem | cleaning_problem | cooking_problem
    # cleaning_button_problem | cooking_button_problem
    with HideOutput():
        problem = problem_fn()
    state_id = save_state()
    #saved_world = WorldSaver()
    #dump_world()

    pddlstream_problem = pddlstream_from_problem(problem, teleport=teleport)

    stream_info = {
        'sample-pose':
        StreamInfo(PartialInputs('?r')),
        'inverse-kinematics':
        StreamInfo(PartialInputs('?p')),
        'plan-base-motion':
        StreamInfo(PartialInputs('?q1 ?q2'),
                   defer_fn=defer_shared if defer else never_defer),
        'MoveCost':
        FunctionInfo(opt_move_cost_fn),
    } if partial else {
        'sample-pose': StreamInfo(from_fn(opt_pose_fn)),
        'inverse-kinematics': StreamInfo(from_fn(opt_ik_fn)),
        'plan-base-motion': StreamInfo(from_fn(opt_motion_fn)),
        'MoveCost': FunctionInfo(opt_move_cost_fn),
    }
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)
    print('Streams:', stream_map.keys())

    pr = cProfile.Profile()
    pr.enable()
    with LockRenderer():
        #solution = solve_incremental(pddlstream_problem, debug=True)
        solution = solve_focused(pddlstream_problem,
                                 stream_info=stream_info,
                                 success_cost=INF,
                                 debug=False)
    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)
    if plan is None:
        return
    if (not display) or (plan is None):
        disconnect()
        return

    with LockRenderer():
        commands = post_process(problem, plan)
    if args.viewer:
        restore_state(state_id)
    else:
        disconnect()
        connect(use_gui=True)
        with HideOutput():
            problem_fn()  # TODO: way of doing this without reloading?

    if args.simulate:
        control_commands(commands)
    else:
        apply_commands(State(), commands, time_step=0.01)
    user_input('Finish?')
    disconnect()
コード例 #17
0
ファイル: run.py プロジェクト: Khodeir/pddlstream
def main(teleport=False):
    #parser = create_parser()
    parser = argparse.ArgumentParser()
    parser.add_argument('-algorithm', default='incremental', help='Specifies the algorithm')
    parser.add_argument('-cfree', action='store_true', help='Disables collisions')
    parser.add_argument('-deterministic', action='store_true', help='Uses a deterministic sampler')
    parser.add_argument('-optimal', action='store_true', help='Runs in an anytime mode')
    parser.add_argument('-t', '--max_time', default=5*60, type=int, help='The max time')
    parser.add_argument('-enable', action='store_true', help='Enables rendering during planning')
    parser.add_argument('-viewer', action='store_true', help='Enable the viewer and visualizes the plan')
    args = parser.parse_args()
    print('Arguments:', args)

    connect(use_gui=args.viewer)
    with HideOutput():
        namo_problem = problem_fn(collisions=not args.cfree)
    saver = WorldSaver()
    draw_base_limits(namo_problem.limits, color=RED)

    pddlstream_problem, edges = pddlstream_from_problem(namo_problem, teleport=teleport)
    _, constant_map, _, stream_map, init, goal = pddlstream_problem
    print('Constants:', constant_map)
    print('Init:', init)
    print('Goal:', goal)

    stream_info = {
        'compute-motion': StreamInfo(eager=True, p_success=0),
        'ConfConfCollision': PredicateInfo(p_success=1, overhead=0.1),
        'TrajConfCollision': PredicateInfo(p_success=1, overhead=1),
        'TrajTrajCollision': PredicateInfo(p_success=1, overhead=10),
        'TrajDistance': FunctionInfo(eager=True), # Need to eagerly evaluate otherwise 0 duration (failure)
    }

    success_cost = 0 if args.optimal else INF
    max_planner_time = 10
    with Profiler(field='tottime', num=25): # cumtime | tottime
        with LockRenderer(lock=not args.enable):
            # TODO: solution = solve_incremental(pddlstream_problem
            if args.algorithm == 'incremental':
                solution = solve_incremental(pddlstream_problem,
                                             max_planner_time=max_planner_time,
                                             success_cost=success_cost, max_time=args.max_time,
                                             start_complexity=INF,
                                             verbose=True, debug=True)
            elif args.algorithm == 'focused':
                solution = solve_focused(pddlstream_problem, stream_info=stream_info,
                                         max_planner_time=max_planner_time,
                                         success_cost=success_cost, max_time=args.max_time,
                                         max_skeletons=None, bind=True, max_failures=INF,
                                         verbose=True, debug=True)
            else:
                raise ValueError(args.algorithm)

    print_solution(solution)
    plan, cost, evaluations = solution
    if (plan is None) or not has_gui():
        disconnect()
        return

    saver.restore()
    draw_edges(edges)
    state = BeliefState(namo_problem)

    wait_for_user('Begin?')
    #time_step = None if teleport else 0.01
    #with VideoSaver('video.mp4'):
    display_plan(namo_problem, state, plan)
    wait_for_user('Finish?')
    disconnect()
コード例 #18
0
ファイル: run.py プロジェクト: Khodeir/pddlstream
def pddlstream_from_problem(problem, teleport=False):
    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    stream_pddl = read(get_file_path(__file__, 'stream.pddl'))
    constant_map = {'{}'.format(name).lower(): name
                    for name in problem.initial_confs.keys()}

    edges = set()
    init = [
    ]
    for name, conf in problem.initial_confs.items():
        init += [
            ('Safe',),
            ('Robot', name),
            ('Conf', conf),
            ('AtConf', name, conf),
            Equal(('Speed', name), DIST_PER_TIME),
            Equal(('BatteryCapacity', name), MAX_ENERGY),
            Equal(('RechargeRate', name), CHARGE_PER_TIME),
            Equal(('ConsumptionRate', name), BURN_PER_TIME),
            Equal(('Energy', name), INITIAL_ENERGY),
        ]

    goal_literals = [
        #('Safe',),
        #('Unachievable',),
    ]

    for name, base_values in problem.goal_confs.items():
        body = problem.get_body(name)
        joints = get_base_joints(body)
        #extend_fn = get_extend_fn(body, joints, resolutions=5*BASE_RESOLUTIONS)
        #q_init = problem.initial_confs[name]
        #path = [q_init] + [Conf(body, joints, q) for q in extend_fn(q_init.values, base_values)]
        #edges.update(zip(path, path[1:]))
        #q_goal = path[-1]
        q_goal = Conf(body, joints, base_values)
        init += [('Conf', q_goal)]
        goal_literals += [('AtConf', name, q_goal)]
    goal_formula = And(*goal_literals)

    robot = list(map(problem.get_body, problem.initial_confs))[0]
    with LockRenderer():
        init += [('Conf', q) for _, n, q in create_vertices(problem, robot, [], samples_per_ft2=6)]

    #vertices = {v for edge in edges for v in edge}
    #handles = []
    #for vertex in vertices:
    #    handles.extend(draw_point(point_from_conf(vertex.values), size=0.05))

    #for conf1, conf2 in edges:
    #    traj = linear_trajectory(conf1, conf2)
    #    init += [
    #        ('Conf', conf1),
    #        ('Traj', traj),
    #        ('Conf', conf2),
    #        ('Motion', conf1, traj, conf2),
    #    ]
    #draw_edges(edges)

    cfree_traj_traj_test = get_test_cfree_traj_traj(problem)
    cfree_traj_traj_list_gen_fn = from_test(cfree_traj_traj_test)
    traj_traj_collision_test = negate_test(cfree_traj_traj_test)
    stream_map = {
        'test-cfree-conf-conf': cfree_traj_traj_list_gen_fn,
        'test-cfree-traj-conf': cfree_traj_traj_list_gen_fn,
        'test-cfree-traj-traj': cfree_traj_traj_list_gen_fn,
        'ConfConfCollision': traj_traj_collision_test,
        'TrajConfCollision': traj_traj_collision_test,
        'TrajTrajCollision': traj_traj_collision_test,
        'compute-motion': from_fn(get_motion_fn2(problem)),
        'TrajDistance': get_distance_fn(),
    }
    #stream_map = 'debug'

    problem = PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map, init, goal_formula)

    return problem, edges
コード例 #19
0
def main():
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    args = parser.parse_args()

    connect(use_gui=True)

    with LockRenderer():
        draw_pose(unit_pose(), length=1, width=1)
        floor = create_floor()
        set_point(floor, Point(z=-EPSILON))

        table1 = create_table(width=TABLE_WIDTH,
                              length=TABLE_WIDTH / 2,
                              height=TABLE_WIDTH / 2,
                              top_color=TAN,
                              cylinder=False)
        set_point(table1, Point(y=+0.5))

        table2 = create_table(width=TABLE_WIDTH,
                              length=TABLE_WIDTH / 2,
                              height=TABLE_WIDTH / 2,
                              top_color=TAN,
                              cylinder=False)
        set_point(table2, Point(y=-0.5))

        tables = [table1, table2]

        #set_euler(table1, Euler(yaw=np.pi/2))
        with HideOutput():
            # data_path = add_data_path()
            # robot_path = os.path.join(data_path, WSG_GRIPPER)
            robot_path = get_model_path(
                WSG_50_URDF)  # WSG_50_URDF | PANDA_HAND_URDF
            robot = load_pybullet(robot_path, fixed_base=True)
            #dump_body(robot)

        block1 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=RED)
        block_z = stable_z(block1, table1)
        set_point(block1, Point(y=-0.5, z=block_z))

        block2 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=GREEN)
        set_point(block2, Point(x=-0.25, y=-0.5, z=block_z))

        block3 = create_box(w=BLOCK_SIDE,
                            l=BLOCK_SIDE,
                            h=BLOCK_SIDE,
                            color=BLUE)
        set_point(block3, Point(x=-0.15, y=+0.5, z=block_z))

        blocks = [block1, block2, block3]

        set_camera_pose(camera_point=Point(x=-1, z=block_z + 1),
                        target_point=Point(z=block_z))

    block_pose = get_pose(block1)
    open_gripper(robot)
    tool_link = link_from_name(robot, 'tool_link')
    base_from_tool = get_relative_pose(robot, tool_link)
    #draw_pose(unit_pose(), parent=robot, parent_link=tool_link)
    grasps = get_side_grasps(block1,
                             tool_pose=Pose(euler=Euler(yaw=np.pi / 2)),
                             top_offset=0.02,
                             grasp_length=0.03,
                             under=False)[1:2]
    for grasp in grasps:
        gripper_pose = multiply(block_pose, invert(grasp))
        set_pose(robot, multiply(gripper_pose, invert(base_from_tool)))
        wait_for_user()

    wait_for_user('Finish?')
    disconnect()
コード例 #20
0
def main(display=True, teleport=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('-problem',
                        default='rovers1',
                        help='The name of the problem to solve')
    parser.add_argument('-algorithm',
                        default='focused',
                        help='Specifies the algorithm')
    parser.add_argument('-cfree',
                        action='store_true',
                        help='Disables collisions')
    parser.add_argument('-deterministic',
                        action='store_true',
                        help='Uses a deterministic sampler')
    parser.add_argument('-optimal',
                        action='store_true',
                        help='Runs in an anytime mode')
    parser.add_argument('-t',
                        '--max_time',
                        default=120,
                        type=int,
                        help='The max time')
    parser.add_argument('-unit', action='store_true', help='Uses unit costs')
    parser.add_argument('-simulate',
                        action='store_true',
                        help='Simulates the system')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='enable the viewer while planning')
    args = parser.parse_args()
    print(args)

    problem_fn_from_name = {fn.__name__: fn for fn in PROBLEMS}
    if args.problem not in problem_fn_from_name:
        raise ValueError(args.problem)
    problem_fn = problem_fn_from_name[args.problem]
    connect(use_gui=args.viewer)
    with HideOutput():
        problem = problem_fn()
    saver = WorldSaver()
    draw_base_limits(problem.limits, color=(1, 0, 0))

    pddlstream_problem = pddlstream_from_problem(problem,
                                                 collisions=not args.cfree,
                                                 teleport=teleport)
    stream_info = {
        'test-cfree-ray-conf': StreamInfo(negate=True),
        'test-reachable': StreamInfo(p_success=1e-1),
        'obj-inv-visible': StreamInfo(),
        'com-inv-visible': StreamInfo(),
        'sample-above': StreamInfo(),
        'sample-motion': StreamInfo(overhead=10),
    }
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)
    #print('Streams:', stream_map.keys())

    success_cost = 0 if args.optimal else INF
    planner = 'ff-wastar3'
    search_sample_ratio = 2
    max_planner_time = 10

    # TODO: need to accelerate samples here because of the failed test reachable

    pr = cProfile.Profile()
    pr.enable()
    with LockRenderer(False):
        if args.algorithm == 'focused':
            # TODO: option to only consider costs during local optimization
            solution = solve_focused(
                pddlstream_problem,
                stream_info=stream_info,
                planner=planner,
                max_planner_time=max_planner_time,
                debug=False,
                unit_costs=args.unit,
                success_cost=success_cost,
                max_time=args.max_time,
                verbose=True,
                unit_efforts=True,
                effort_weight=1,
                #bind=True, max_skeletons=None,
                search_sample_ratio=search_sample_ratio)
        elif args.algorithm == 'incremental':
            solution = solve_incremental(pddlstream_problem,
                                         planner=planner,
                                         max_planner_time=max_planner_time,
                                         unit_costs=args.unit,
                                         success_cost=success_cost,
                                         max_time=args.max_time,
                                         verbose=True)
        else:
            raise ValueError(args.algorithm)

    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(25)  # cumtime | tottime
    if plan is None:
        return
    if (not display) or (plan is None):
        disconnect()
        return

    # Maybe openrave didn't actually sample any joints...
    # http://openrave.org/docs/0.8.2/openravepy/examples.tutorial_iksolutions/
    with LockRenderer():
        commands = post_process(problem, plan, teleport=teleport)
        saver.restore()  # Assumes bodies are ordered the same way
    if not args.viewer:
        disconnect()
        connect(use_gui=True)
        with LockRenderer():
            with HideOutput():
                problem_fn()  # TODO: way of doing this without reloading?
            saver.restore()  # Assumes bodies are ordered the same way

    if args.simulate:
        control_commands(commands)
    else:
        time_step = None if teleport else 0.01
        apply_commands(BeliefState(problem), commands, time_step)
    wait_for_user()
    disconnect()
コード例 #21
0
ファイル: run.py プロジェクト: Jonekee/pddlstream
def main(display=True, teleport=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('-algorithm', default='incremental', help='Specifies the algorithm')
    parser.add_argument('-cfree', action='store_true', help='Disables collisions')
    parser.add_argument('-deterministic', action='store_true', help='Uses a deterministic sampler')
    parser.add_argument('-optimal', action='store_true', help='Runs in an anytime mode')
    parser.add_argument('-t', '--max_time', default=5*60, type=int, help='The max time')
    parser.add_argument('-viewer', action='store_true', help='enable the viewer while planning')
    args = parser.parse_args()
    print(args)

    #problem_fn_from_name = {fn.__name__: fn for fn in PROBLEMS}
    #if args.problem not in problem_fn_from_name:
    #    raise ValueError(args.problem)
    #problem_fn = problem_fn_from_name[args.problem]
    connect(use_gui=args.viewer)
    with HideOutput():
        problem = problem_fn(collisions=not args.cfree)
    saver = WorldSaver()
    draw_base_limits(problem.limits, color=RED)

    pddlstream, edges = pddlstream_from_problem(problem, teleport=teleport)
    _, constant_map, _, stream_map, init, goal = pddlstream
    print('Constants:', constant_map)
    print('Init:', init)
    print('Goal:', goal)

    success_cost = 0 if args.optimal else INF
    max_planner_time = 10

    stream_info = {
        'compute-motion': StreamInfo(eager=True, p_success=0),
        'ConfConfCollision': FunctionInfo(p_success=1, overhead=0.1),
        'TrajConfCollision': FunctionInfo(p_success=1, overhead=1),
        'TrajTrajCollision': FunctionInfo(p_success=1, overhead=10),
        'TrajDistance': FunctionInfo(eager=True), # Need to eagerly evaluate otherwise 0 duration (failure)
    }

    pr = cProfile.Profile()
    pr.enable()
    with LockRenderer(False):
        if args.algorithm == 'incremental':
            solution = solve_incremental(pddlstream,
                                         max_planner_time=max_planner_time,
                                         success_cost=success_cost, max_time=args.max_time,
                                         start_complexity=INF,
                                         verbose=True, debug=True)
        elif args.algorithm == 'focused':
            solution = solve_focused(pddlstream, stream_info=stream_info,
                                      max_planner_time=max_planner_time,
                                      success_cost=success_cost, max_time=args.max_time,
                                      max_skeletons=None, bind=True, max_failures=INF,
                                      verbose=True, debug=True)
        else:
            raise ValueError(args.algorithm)

    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(25) # cumtime | tottime
    if plan is None:
        wait_for_user()
        return
    if (not display) or (plan is None):
        disconnect()
        return

    if not args.viewer:
        disconnect()
        connect(use_gui=True)
        with LockRenderer():
            with HideOutput():
                problem_fn() # TODO: way of doing this without reloading?
    saver.restore() # Assumes bodies are ordered the same way
    draw_edges(edges)

    state = BeliefState(problem)
    wait_for_user()
    #time_step = None if teleport else 0.01
    #with VideoSaver('video.mp4'):
    display_plan(problem, state, plan)
    wait_for_user()
    disconnect()
コード例 #22
0
ファイル: run.py プロジェクト: Khodeir/pddlstream
def main(verbose=True):
    # TODO: could work just on postprocessing
    # TODO: try the other reachability database
    # TODO: option to only consider costs during local optimization

    parser = create_parser()
    parser.add_argument('-problem',
                        default='packed',
                        help='The name of the problem to solve')
    parser.add_argument('-n',
                        '--number',
                        default=5,
                        type=int,
                        help='The number of objects')
    parser.add_argument('-cfree',
                        action='store_true',
                        help='Disables collisions')
    parser.add_argument('-deterministic',
                        action='store_true',
                        help='Uses a deterministic sampler')
    parser.add_argument('-optimal',
                        action='store_true',
                        help='Runs in an anytime mode')
    parser.add_argument('-t',
                        '--max_time',
                        default=120,
                        type=int,
                        help='The max time')
    parser.add_argument('-teleport',
                        action='store_true',
                        help='Teleports between configurations')
    parser.add_argument('-enable',
                        action='store_true',
                        help='Enables rendering during planning')
    parser.add_argument('-simulate',
                        action='store_true',
                        help='Simulates the system')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='Enable the viewer and visualizes the plan')
    args = parser.parse_args()
    print('Arguments:', args)

    problem_fn_from_name = {fn.__name__: fn for fn in PROBLEMS}
    if args.problem not in problem_fn_from_name:
        raise ValueError(args.problem)
    problem_fn = problem_fn_from_name[args.problem]

    connect(use_gui=args.viewer)
    with HideOutput():
        problem = problem_fn(num=args.number)
    draw_base_limits(problem.base_limits, color=(1, 0, 0))
    saver = WorldSaver()

    #handles = []
    #for link in get_group_joints(problem.robot, 'left_arm'):
    #    handles.append(draw_link_name(problem.robot, link))
    #wait_for_user()

    pddlstream_problem = pddlstream_from_problem(problem,
                                                 collisions=not args.cfree,
                                                 teleport=args.teleport)
    stream_info = {
        'inverse-kinematics':
        StreamInfo(),
        'plan-base-motion':
        StreamInfo(overhead=1e1),
        'test-cfree-pose-pose':
        StreamInfo(p_success=1e-3, verbose=verbose),
        'test-cfree-approach-pose':
        StreamInfo(p_success=1e-2, verbose=verbose),
        'test-cfree-traj-pose':
        StreamInfo(p_success=1e-1,
                   verbose=verbose),  # TODO: apply to arm and base trajs
        #'test-cfree-traj-grasp-pose': StreamInfo(verbose=verbose),
        'Distance':
        FunctionInfo(p_success=0.99, opt_fn=lambda q1, q2: BASE_CONSTANT),
        #'MoveCost': FunctionInfo(lambda t: BASE_CONSTANT),
    }
    #stream_info = {}

    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)
    print('Streams:', str_from_object(set(stream_map)))

    success_cost = 0 if args.optimal else INF
    planner = 'ff-astar' if args.optimal else 'ff-wastar3'
    search_sample_ratio = 2
    max_planner_time = 10
    # effort_weight = 0 if args.optimal else 1
    effort_weight = 1e-3 if args.optimal else 1

    with Profiler(field='tottime', num=25):  # cumtime | tottime
        with LockRenderer(lock=not args.enable):
            solution = solve(pddlstream_problem,
                             algorithm=args.algorithm,
                             stream_info=stream_info,
                             planner=planner,
                             max_planner_time=max_planner_time,
                             unit_costs=args.unit,
                             success_cost=success_cost,
                             max_time=args.max_time,
                             verbose=True,
                             debug=False,
                             unit_efforts=True,
                             effort_weight=effort_weight,
                             search_sample_ratio=search_sample_ratio)
            saver.restore()

    cost_over_time = [(s.cost, s.time) for s in SOLUTIONS]
    for i, (cost, runtime) in enumerate(cost_over_time):
        print('Plan: {} | Cost: {:.3f} | Time: {:.3f}'.format(
            i, cost, runtime))
    #print(SOLUTIONS)
    print_solution(solution)
    plan, cost, evaluations = solution
    if (plan is None) or not has_gui():
        disconnect()
        return

    with LockRenderer(lock=not args.enable):
        commands = post_process(problem, plan, teleport=args.teleport)
        saver.restore()

    draw_base_limits(problem.base_limits, color=(1, 0, 0))
    wait_for_user()
    if args.simulate:
        control_commands(commands)
    else:
        time_step = None if args.teleport else 0.01
        apply_commands(State(), commands, time_step)
    wait_for_user()
    disconnect()
コード例 #23
0
ファイル: run.py プロジェクト: yqj13777866390/pddlstream
def main(display=True, teleport=False):
    parser = argparse.ArgumentParser()
    #parser.add_argument('-problem', default='rovers1', help='The name of the problem to solve')
    parser.add_argument('-algorithm',
                        default='focused',
                        help='Specifies the algorithm')
    parser.add_argument('-cfree',
                        action='store_true',
                        help='Disables collisions')
    parser.add_argument('-deterministic',
                        action='store_true',
                        help='Uses a deterministic sampler')
    parser.add_argument('-optimal',
                        action='store_true',
                        help='Runs in an anytime mode')
    parser.add_argument('-t',
                        '--max_time',
                        default=120,
                        type=int,
                        help='The max time')
    parser.add_argument('-unit', action='store_true', help='Uses unit costs')
    parser.add_argument('-simulate',
                        action='store_true',
                        help='Simulates the system')
    parser.add_argument('-viewer',
                        action='store_true',
                        help='enable the viewer while planning')
    args = parser.parse_args()
    print(args)

    #problem_fn_from_name = {fn.__name__: fn for fn in PROBLEMS}
    #if args.problem not in problem_fn_from_name:
    #    raise ValueError(args.problem)
    #problem_fn = problem_fn_from_name[args.problem]
    connect(use_gui=args.viewer)
    with HideOutput():
        problem = problem_fn(collisions=not args.cfree)
    saver = WorldSaver()
    draw_base_limits(problem.limits, color=RED)

    pddlstream_problem = pddlstream_from_problem(problem, teleport=teleport)
    stream_info = {
        'test-cfree-conf-pose': StreamInfo(negate=True, p_success=1e-2),
        'test-cfree-traj-pose': StreamInfo(negate=True, p_success=1e-1),
        'compute-motion': StreamInfo(eager=True, p_success=0),
        'test-reachable': StreamInfo(eager=True),
        'Distance': FunctionInfo(eager=True),
    }
    _, _, _, stream_map, init, goal = pddlstream_problem
    print('Init:', init)
    print('Goal:', goal)

    success_cost = 0 if args.optimal else INF
    planner = 'ff-wastar1'
    search_sample_ratio = 0
    max_planner_time = 10

    pr = cProfile.Profile()
    pr.enable()
    with LockRenderer(True):
        if args.algorithm == 'focused':
            solution = solve_focused(pddlstream_problem,
                                     stream_info=stream_info,
                                     planner=planner,
                                     max_planner_time=max_planner_time,
                                     debug=False,
                                     unit_costs=args.unit,
                                     success_cost=success_cost,
                                     max_time=args.max_time,
                                     verbose=True,
                                     unit_efforts=True,
                                     effort_weight=1,
                                     bind=True,
                                     max_skeletons=None,
                                     search_sample_ratio=search_sample_ratio)
        elif args.algorithm == 'incremental':
            solution = solve_incremental(pddlstream_problem,
                                         planner=planner,
                                         max_planner_time=max_planner_time,
                                         unit_costs=args.unit,
                                         success_cost=success_cost,
                                         max_time=args.max_time,
                                         verbose=True)
        else:
            raise ValueError(args.algorithm)
        saver.restore()

    print_solution(solution)
    plan, cost, evaluations = solution
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(25)  # cumtime | tottime
    if plan is None:
        wait_for_user()
        return
    if (not display) or (plan is None):
        disconnect()
        return

    with LockRenderer():
        commands = post_process(problem, plan, teleport=teleport)
        saver.restore()  # Assumes bodies are ordered the same way
    if not args.viewer:
        disconnect()
        connect(use_gui=True)
        with LockRenderer():
            with HideOutput():
                problem_fn()  # TODO: way of doing this without reloading?
            saver.restore()  # Assumes bodies are ordered the same way

    wait_for_user()
    if args.simulate:
        control_commands(commands)
    else:
        time_step = None if teleport else 0.01
        apply_commands(BeliefState(problem), commands, time_step=time_step)
    wait_for_user()
    disconnect()