def obyo(y, tag, nusdx, nus, mdbCO, mdbH2O, cdbH2H2, cdbH2He): #CO SijM_CO, ngammaLM_CO, nsigmaDl_CO = exomol(mdbCO, Tarr, Parr, R_CO, molmassCO) xsm_CO = xsmatrix(cnu_CO, indexnu_CO, R_CO, pmarray_CO, nsigmaDl_CO, ngammaLM_CO, SijM_CO, nus, dgm_ngammaL_CO) dtaumCO = dtauM(dParr, jnp.abs(xsm_CO), MMR_CO * ONEARR, molmassCO, g) #H2O SijM_H2O, ngammaLM_H2O, nsigmaDl_H2O = exomol(mdbH2O, Tarr, Parr, R_H2O, molmassH2O) xsm_H2O = xsmatrix(cnu_H2O, indexnu_H2O, R_H2O, pmarray_H2O, nsigmaDl_H2O, ngammaLM_H2O, SijM_H2O, nus, dgm_ngammaL_H2O) dtaumH2O = dtauM(dParr, jnp.abs(xsm_H2O), MMR_H2O * ONEARR, molmassH2O, g) #CIA dtaucH2H2=dtauCIA(nus,Tarr,Parr,dParr,vmrH2,vmrH2,\ mmw,g,cdbH2H2.nucia,cdbH2H2.tcia,cdbH2H2.logac) dtaucH2He=dtauCIA(nus,Tarr,Parr,dParr,vmrH2,vmrHe,\ mmw,g,cdbH2He.nucia,cdbH2He.tcia,cdbH2He.logac) dtau = dtaumCO + dtaumH2O + dtaucH2H2 + dtaucH2He sourcef = planck.piBarr(Tarr, nus) Ftoa = Fref / Rp**2 F0 = rtrun(dtau, sourcef) / baseline / Ftoa Frot = response.rigidrot(nus, F0, vsini, u1, u2) mu = response.ipgauss_sampling(nusdx, nus, Frot, beta, RV) errall = jnp.sqrt(e1**2 + sigma**2) numpyro.sample(tag, dist.Normal(mu, errall), obs=y)
def obyo(y, tag, nusdx, nus, mdbCO, mdbH2O, cdbH2H2, cdbH2He): #CO SijM_CO, ngammaLM_CO, nsigmaDl_CO = exomol(mdbCO, Tarr, Parr, R_CO, molmassCO) xsm_CO = xsmatrix(cnu_CO, indexnu_CO, R_CO, pmarray_CO, nsigmaDl_CO, ngammaLM_CO, SijM_CO, nus, dgm_ngammaL_CO) dtaumCO = dtauM(dParr, jnp.abs(xsm_CO), MMR_CO * ONEARR, molmassCO, g) #H2O SijM_H2O, ngammaLM_H2O, nsigmaDl_H2O = exomol(mdbH2O, Tarr, Parr, R_H2O, molmassH2O) xsm_H2O = xsmatrix(cnu_H2O, indexnu_H2O, R_H2O, pmarray_H2O, nsigmaDl_H2O, ngammaLM_H2O, SijM_H2O, nus, dgm_ngammaL_H2O) dtaumH2O = dtauM(dParr, jnp.abs(xsm_H2O), MMR_H2O * ONEARR, molmassH2O, g) #CIA dtaucH2H2=dtauCIA(nus,Tarr,Parr,dParr,vmrH2,vmrH2,\ mmw,g,cdbH2H2.nucia,cdbH2H2.tcia,cdbH2H2.logac) dtaucH2He=dtauCIA(nus,Tarr,Parr,dParr,vmrH2,vmrHe,\ mmw,g,cdbH2He.nucia,cdbH2He.tcia,cdbH2He.logac) dtau = dtaumCO + dtaumH2O + dtaucH2H2 + dtaucH2He sourcef = planck.piBarr(Tarr, nus) Ftoa = Fref / Rp**2 F0 = rtrun(dtau, sourcef) / baseline / Ftoa Frot = response.rigidrot(nus, F0, vsini, u1, u2) mu = response.ipgauss_sampling(nusdx, nus, Frot, beta, RV) if FP64 == True: np.savez("dtau_modit" + str(N) + "_64.npz", [nus, dtaumCO, dtaumH2O]) else: np.savez("dtau_modit" + str(N) + ".npz", [nus, dtaumCO, dtaumH2O]) return mu
def frun(Tarr, MMR_H2O, MMR_CO, Mp, Rp, u1, u2, RV, vsini): g = 2478.57730044555 * Mp / Rp**2 SijM_H2O, ngammaLM_H2O, nsigmaDl_H2O = modit.exomol( mdbH2O, Tarr, Parr, R, molmassH2O) xsm_H2O = modit.xsmatrix(cnu_H2O, indexnu_H2O, R_H2O, pmarray_H2O, nsigmaDl_H2O, ngammaLM_H2O, SijM_H2O, nus, dgm_ngammaL_H2O) dtaumH2O = dtauM(dParr, jnp.abs(xsm_H2O), MMR_H2O * ONEARR, molmassH2O, g) SijM_CO, ngammaLM_CO, nsigmaDl_CO = modit.exomol(mdbCO, Tarr, Parr, R, molmassCO) xsm_CO = modit.xsmatrix(cnu_CO, indexnu_CO, R_CO, pmarray_CO, nsigmaDl_CO, ngammaLM_CO, SijM_CO, nus, dgm_ngammaL_CO) dtaumCO = dtauM(dParr, jnp.abs(xsm_CO), MMR_CO * ONEARR, molmassCO, g) # CIA dtaucH2H2 = dtauCIA(nus, Tarr, Parr, dParr, vmrH2, vmrH2, mmw, g, cdbH2H2.nucia, cdbH2H2.tcia, cdbH2H2.logac) dtau = dtaumH2O + dtaumCO + dtaucH2H2 sourcef = planck.piBarr(Tarr, nus) F0 = rtrun(dtau, sourcef) / norm Frot = response.rigidrot(nus, F0, vsini, u1, u2) mu = response.ipgauss_sampling(nusd, nus, Frot, beta_inst, RV) return mu
def frun(Tarr, MMR_CH4, Mp, Rp, u1, u2, RV, vsini): g = 2478.57730044555 * Mp / Rp**2 SijM_CH4, ngammaLM_CH4, nsigmaDl_CH4 = modit.exomol( mdbCH4, Tarr, Parr, R, molmassCH4) xsm_CH4 = modit.xsmatrix(cnu, indexnu, R, pmarray, nsigmaDl_CH4, ngammaLM_CH4, SijM_CH4, nus, dgm_ngammaL) # abs is used to remove negative values in xsv dtaumCH4 = dtauM(dParr, jnp.abs(xsm_CH4), MMR_CH4 * ONEARR, molmassCH4, g) # CIA dtaucH2H2 = dtauCIA(nus, Tarr, Parr, dParr, vmrH2, vmrH2, mmw, g, cdbH2H2.nucia, cdbH2H2.tcia, cdbH2H2.logac) dtau = dtaumCH4 + dtaucH2H2 sourcef = planck.piBarr(Tarr, nus) F0 = rtrun(dtau, sourcef) / norm Frot = response.rigidrot(nus, F0, vsini, u1, u2) mu = response.ipgauss_sampling(nusd, nus, Frot, beta_inst, RV) return mu
def test_VALD_MODIT(): #wavelength range wls, wll = 10395, 10405 #Set a model atmospheric layers, wavenumber range for the model, an instrument NP = 100 Parr, dParr, k = pressure_layer(NP=NP) Pref = 1.0 #bar ONEARR = np.ones_like(Parr) Nx = 2000 nus, wav, res = nugrid(wls - 5.0, wll + 5.0, Nx, unit="AA", xsmode="modit") Rinst = 100000. #instrumental spectral resolution beta_inst = R2STD( Rinst) #equivalent to beta=c/(2.0*np.sqrt(2.0*np.log(2.0))*R) #atoms and ions from VALD adbV = moldb.AdbVald( path_ValdLineList, nus, crit=1e-100 ) #The crit is defined just in case some weak lines may cause an error that results in a gamma of 0... (220219) asdb = moldb.AdbSepVald(adbV) #molecules from exomol mdbH2O = moldb.MdbExomol('.database/H2O/1H2-16O/POKAZATEL', nus, crit=1e-50) #,crit = 1e-40) mdbTiO = moldb.MdbExomol('.database/TiO/48Ti-16O/Toto', nus, crit=1e-50) #,crit = 1e-50) mdbOH = moldb.MdbExomol('.database/OH/16O-1H/MoLLIST', nus) mdbFeH = moldb.MdbExomol('.database/FeH/56Fe-1H/MoLLIST', nus) #CIA cdbH2H2 = contdb.CdbCIA('.database/H2-H2_2011.cia', nus) #molecular mass molmassH2O = molinfo.molmass("H2O") molmassTiO = molinfo.molmass("TiO") molmassOH = molinfo.molmass("OH") molmassFeH = molinfo.molmass("FeH") molmassH = molinfo.molmass("H") molmassH2 = molinfo.molmass("H2") #Initialization of MODIT (for separate VALD species, and exomol molecules(e.g., FeH)) cnuS, indexnuS, R, pmarray = initspec.init_modit_vald( asdb.nu_lines, nus, asdb.N_usp) cnu_FeH, indexnu_FeH, R, pmarray = initspec.init_modit( mdbFeH.nu_lines, nus) cnu_H2O, indexnu_H2O, R, pmarray = initspec.init_modit( mdbH2O.nu_lines, nus) cnu_OH, indexnu_OH, R, pmarray = initspec.init_modit(mdbOH.nu_lines, nus) cnu_TiO, indexnu_TiO, R, pmarray = initspec.init_modit( mdbTiO.nu_lines, nus) #sampling the max/min of temperature profiles fT = lambda T0, alpha: T0[:, None] * (Parr[None, :] / Pref)**alpha[:, None] T0_test = np.array([1500.0, 4000.0, 1500.0, 4000.0]) alpha_test = np.array([0.2, 0.2, 0.05, 0.05]) res = 0.2 #Assume typical atmosphere H_He_HH_VMR_ref = [0.1, 0.15, 0.75] PH_ref = Parr * H_He_HH_VMR_ref[0] PHe_ref = Parr * H_He_HH_VMR_ref[1] PHH_ref = Parr * H_He_HH_VMR_ref[2] #Precomputing dgm_ngammaL dgm_ngammaL_VALD = setdgm_vald_all(asdb, PH_ref, PHe_ref, PHH_ref, R, fT, res, T0_test, alpha_test) dgm_ngammaL_FeH = setdgm_exomol(mdbFeH, fT, Parr, R, molmassFeH, res, T0_test, alpha_test) dgm_ngammaL_H2O = setdgm_exomol(mdbH2O, fT, Parr, R, molmassH2O, res, T0_test, alpha_test) dgm_ngammaL_OH = setdgm_exomol(mdbOH, fT, Parr, R, molmassOH, res, T0_test, alpha_test) dgm_ngammaL_TiO = setdgm_exomol(mdbTiO, fT, Parr, R, molmassTiO, res, T0_test, alpha_test) T0 = 3000. alpha = 0.07 Mp = 0.155 * 1.99e33 / 1.90e30 Rp = 0.186 * 6.96e10 / 6.99e9 u1 = 0.0 u2 = 0.0 RV = 0.00 vsini = 2.0 mmw = 2.33 * ONEARR #mean molecular weight log_e_H = -4.2 VMR_H = 0.09 VMR_H2 = 0.77 VMR_FeH = 10**-8 VMR_H2O = 10**-4 VMR_OH = 10**-4 VMR_TiO = 10**-8 A_Fe = 1.5 A_Ti = 1.2 adjust_continuum = 0.99 ga = 2478.57730044555 * Mp / Rp**2 Tarr = T0 * (Parr / Pref)**alpha PH = Parr * VMR_H PHe = Parr * (1 - VMR_H - VMR_H2) PHH = Parr * VMR_H2 VMR_e = VMR_H * 10**log_e_H #VMR of atoms and ions (+Abundance modification) mods_ID = jnp.array([[26, 1], [22, 1]]) mods = jnp.array([A_Fe, A_Ti]) VMR_uspecies = atomll.get_VMR_uspecies(asdb.uspecies, mods_ID, mods) VMR_uspecies = VMR_uspecies[:, None] * ONEARR #Compute delta tau #Atom & ions (VALD) SijMS, ngammaLMS, nsigmaDlS = vald_all(asdb, Tarr, PH, PHe, PHH, R) xsmS = xsmatrix_vald(cnuS, indexnuS, R, pmarray, nsigmaDlS, ngammaLMS, SijMS, nus, dgm_ngammaL_VALD) dtauatom = dtauVALD(dParr, xsmS, VMR_uspecies, mmw, ga) #FeH SijM_FeH, ngammaLM_FeH, nsigmaDl_FeH = exomol(mdbFeH, Tarr, Parr, R, molmassFeH) xsm_FeH = xsmatrix(cnu_FeH, indexnu_FeH, R, pmarray, nsigmaDl_FeH, ngammaLM_FeH, SijM_FeH, nus, dgm_ngammaL_FeH) dtaum_FeH = dtauM_mmwl(dParr, jnp.abs(xsm_FeH), VMR_FeH * ONEARR, mmw, ga) #H2O SijM_H2O, ngammaLM_H2O, nsigmaDl_H2O = exomol(mdbH2O, Tarr, Parr, R, molmassH2O) xsm_H2O = xsmatrix(cnu_H2O, indexnu_H2O, R, pmarray, nsigmaDl_H2O, ngammaLM_H2O, SijM_H2O, nus, dgm_ngammaL_H2O) dtaum_H2O = dtauM_mmwl(dParr, jnp.abs(xsm_H2O), VMR_H2O * ONEARR, mmw, ga) #OH SijM_OH, ngammaLM_OH, nsigmaDl_OH = exomol(mdbOH, Tarr, Parr, R, molmassOH) xsm_OH = xsmatrix(cnu_OH, indexnu_OH, R, pmarray, nsigmaDl_OH, ngammaLM_OH, SijM_OH, nus, dgm_ngammaL_OH) dtaum_OH = dtauM_mmwl(dParr, jnp.abs(xsm_OH), VMR_OH * ONEARR, mmw, ga) #TiO SijM_TiO, ngammaLM_TiO, nsigmaDl_TiO = exomol(mdbTiO, Tarr, Parr, R, molmassTiO) xsm_TiO = xsmatrix(cnu_TiO, indexnu_TiO, R, pmarray, nsigmaDl_TiO, ngammaLM_TiO, SijM_TiO, nus, dgm_ngammaL_TiO) dtaum_TiO = dtauM_mmwl(dParr, jnp.abs(xsm_TiO), VMR_TiO * ONEARR, mmw, ga) #Hminus dtau_Hm = dtauHminus_mmwl(nus, Tarr, Parr, dParr, VMR_e * ONEARR, VMR_H * ONEARR, mmw, ga) #CIA dtauc_H2H2 = dtauCIA_mmwl(nus, Tarr, Parr, dParr, VMR_H2 * ONEARR, VMR_H2 * ONEARR, mmw, ga, cdbH2H2.nucia, cdbH2H2.tcia, cdbH2H2.logac) #Summations dtau = dtauatom + dtaum_FeH + dtaum_H2O + dtaum_OH + dtaum_TiO + dtau_Hm + dtauc_H2H2 sourcef = planck.piBarr(Tarr, nus) F0 = rtrun(dtau, sourcef) Frot = response.rigidrot(nus, F0, vsini, u1, u2) wavd = jnp.linspace(wls, wll, 500) nusd = jnp.array(1.e8 / wavd[::-1]) mu = response.ipgauss_sampling(nusd, nus, Frot, beta_inst, RV) mu = mu / jnp.nanmax(mu) * adjust_continuum assert (np.all(~np.isnan(mu)) * \ np.all(mu != 0) * \ np.all(abs(mu) != np.inf))
return T0[:, None] * (Parr[None, :] / Pref)**alpha[:, None] T0_test = np.array([1100.0, 1500.0, 1100.0, 1500.0]) alpha_test = np.array([0.2, 0.2, 0.05, 0.05]) res = 0.2 dgm_ngammaL_H2O = setdgm_exomol(mdbH2O, fT, Parr, R_H2O, molmassH2O, res, T0_test, alpha_test) dgm_ngammaL_CO = setdgm_exomol(mdbCO, fT, Parr, R_CO, molmassCO, res, T0_test, alpha_test) # check dgm if False: from exojax.plot.ditplot import plot_dgmn Tarr = 1300. * (Parr / Pref)**0.1 SijM_H2O, ngammaLM_H2O, nsigmaDl_H2O = modit.exomol( mdbH2O, Tarr, Parr, R_H2O, molmassH2O) SijM_CO, ngammaLM_CO, nsigmaDl_CO = modit.exomol(mdbCO, Tarr, Parr, R_CO, molmassCO) plot_dgmn(Parr, dgm_ngammaL, ngammaLM_H2O, 0, 6) plt.show() # a core driver def frun(Tarr, MMR_H2O, MMR_CO, Mp, Rp, u1, u2, RV, vsini): g = 2478.57730044555 * Mp / Rp**2 SijM_H2O, ngammaLM_H2O, nsigmaDl_H2O = modit.exomol( mdbH2O, Tarr, Parr, R, molmassH2O) xsm_H2O = modit.xsmatrix(cnu_H2O, indexnu_H2O, R_H2O, pmarray_H2O, nsigmaDl_H2O, ngammaLM_H2O, SijM_H2O, nus, dgm_ngammaL_H2O)
def fT(T0, alpha): return T0[:, None] * (Parr[None, :] / Pref)**alpha[:, None] T0_test = np.array([1100.0, 1500.0, 1100.0, 1500.0]) alpha_test = np.array([0.2, 0.2, 0.05, 0.05]) res = 0.2 dgm_ngammaL = setdgm_exomol(mdbCH4, fT, Parr, R, molmassCH4, res, T0_test, alpha_test) # check dgm if False: from exojax.plot.ditplot import plot_dgmn Tarr = 1300. * (Parr / Pref)**0.1 SijM_CH4, ngammaLM_CH4, nsigmaDl_CH4 = modit.exomol( mdbCH4, Tarr, Parr, R, molmassCH4) plot_dgmn(Parr, dgm_ngammaL, ngammaLM_CH4, 0, 6) plt.show() # a core driver def frun(Tarr, MMR_CH4, Mp, Rp, u1, u2, RV, vsini): g = 2478.57730044555 * Mp / Rp**2 SijM_CH4, ngammaLM_CH4, nsigmaDl_CH4 = modit.exomol( mdbCH4, Tarr, Parr, R, molmassCH4) xsm_CH4 = modit.xsmatrix(cnu, indexnu, R, pmarray, nsigmaDl_CH4, ngammaLM_CH4, SijM_CH4, nus, dgm_ngammaL) # abs is used to remove negative values in xsv dtaumCH4 = dtauM(dParr, jnp.abs(xsm_CH4), MMR_CH4 * ONEARR, molmassCH4, g) # CIA