import itertools import numpy as np import exp_util import sys sys.path.append('../') import util ratio_step = 5 rounds = 5 # for the main program iterations = list(itertools.product(*[[0], [1], range(rounds)])) model_name = sys.argv[2] features = exp_util.get_features_ctgs(sys.argv[3:]) dataframe = util.load_wild_df() if features == 'all' or ['all'] == features: res_dir = '{}/exp-noPackedBenign-noDll/{}/all'.format( exp_util.RES_ROOT, model_name) else: res_dir = '{}/exp-noPackedBenign-noDll/{}/{}'.format( exp_util.RES_ROOT, model_name, '-'.join(sorted(features))) util.make_dir(res_dir) database = '{}/exp.db'.format(res_dir) n_workers = 5 cores_per_worker = -1 def process_dataset(df, seed):
import itertools import exp_util import sys sys.path.append('../') import util rounds = 5 # for the main program iterations = list(itertools.product(*[[1.0], [1.0], range(rounds)])) model_name = sys.argv[2] features = sys.argv[5:] features = exp_util.get_features_ctgs(features) train_packer = sys.argv[3].split("-") test_packer = sys.argv[4].split("-") packers = [] packers.extend(train_packer) packers.extend(test_packer) dataframe = util.load_wildlab_df() if features == 'all' or ['all'] == features: res_dir = '{}/exp-packervspacker/{}/{}-vs-{}/all'.format( exp_util.RES_ROOT, model_name, sys.argv[2], sys.argv[3]) else: res_dir = '{}/exp-packervspacker/{}/{}-vs-{}/{}'.format( exp_util.RES_ROOT, model_name, sys.argv[2], sys.argv[3], '-'.join(sorted(features))) util.make_dir(res_dir) database = '{}/exp.db'.format(res_dir)