コード例 #1
0
def estimate_f0_B(filenames):
    ### ASSUME: all filenames are of the same instrument-string
    wav_filename = filenames[0]
    basename='-'.join(os.path.basename(wav_filename).split('-')[0:3])
    if basename.startswith("test-440f"):
        return 440.0, 0, 1, 1, 1, 1

    ### get initial f0 estimate
    base_frequency_estimate = expected_frequencies.get_freq_from_filename(
        wav_filename)
    ### get noise
    initial_noise_floor, initial_noise_freqs, _, _, _ = calc_noise.get_noise(wav_filename)
    noise_cutoff = stft.db2amplitude(
        stft.amplitude2db(initial_noise_floor)+defs.B_MINIMUM_HARMONIC_SNR)

    #### get FFT frames from audio files
    sample_rate = None
    freqs = None
    estimate_B_buffers_list = []
    for wav_i, wav_filename in enumerate(filenames):
        #print wav_filename
        #window_buffer, sample_rate = stft.get_long_buffer_from_file(wav_filename,
        window_buffers, sample_rate = stft.get_buffers_from_file(wav_filename,
            (defs.B_NUM_BUFFERS_ESTIMATE))
        if freqs is None:
            freqs = [ stft.bin2hertz(i, sample_rate)
                for i in range(stft.WINDOWSIZE/2+1) ]

        estimate_B_buffers_this_list = []
        #fft_amplitude = stft.fft_amplitude(window_buffer, sample_rate)
        #estimate_B_buffers_this_list.append(fft_amplitude)
        for window_number in range(defs.B_NUM_BUFFERS_ESTIMATE):
            window_buffer = window_buffers[window_number]
            fft_amplitude = stft.stft_amplitude(window_buffer)
            estimate_B_buffers_this_list.append(fft_amplitude)
        estimate_B_buffers_list.extend(estimate_B_buffers_this_list)

    estimate_B_buffers = numpy.array(estimate_B_buffers_list)
    
    ### radius of search area for peaks
    # used with STFT only
    bin_initial_estimate = stft.hertz2bin(base_frequency_estimate,
        sample_rate)
    #bin_initial_estimate = (base_frequency_estimate
    #    * fft_amplitude.shape[0] / (sample_rate/2)
    #    )
    #print bin_initial_estimate
    bin_spread_below = int(math.ceil(abs(
        stft.hertz2bin(
            (1.0-defs.B_PEAK_SPREAD_BELOW_HERTZ)*base_frequency_estimate,
            sample_rate) - bin_initial_estimate)))
    bin_spread_above = int(math.ceil(
        stft.hertz2bin(
            (1.0+defs.B_PEAK_SPREAD_ABOVE_HERTZ)*base_frequency_estimate,
            sample_rate) - bin_initial_estimate))
    #bin_spread_below = int(round(bin_initial_estimate *
    #    defs.B_PEAK_SPREAD_BELOW_HERTZ))
    #bin_spread_above = int(round(bin_initial_estimate *
    #    defs.B_PEAK_SPREAD_BELOW_HERTZ))
    #bin_spread_below_main = int(
    #    stft.hertz2bin(defs.STFT_PEAK_SPREAD_BELOW_HERTZ*base_frequency_estimate,
    #        sample_rate))
    #bin_spread_above_main = int(
    #    stft.hertz2bin(defs.STFT_PEAK_SPREAD_ABOVE_HERTZ*base_frequency_estimate,
    #        sample_rate))

    ### actual estimate
    bin_f0, B, rsquared, harmonics, limit = get_bin_f0_B(
        bin_initial_estimate,
        estimate_B_buffers, noise_cutoff,
        #estimate_B_buffers, numpy.zeros(defs.LONG_WINDOWSIZE+1),
        bin_spread_below, bin_spread_above, sample_rate)

    highest_harmonic = 0
    for h in harmonics:
        if highest_harmonic < h.n:
            highest_harmonic = h.n
    limit = min(limit, highest_harmonic)
    # HACK: remove limit
    #limit = defs.TOTAL_HARMONICS
    #print "limit to:", limit

    #harmonics_enable = [True]*defs.TOTAL_HARMONICS
    harmonics_enable = [True]*limit

    bins_estimate = [ partials.mode_B2freq(bin_f0, i, B) for
        i in range(1,len(harmonics_enable)+1) ]
    bins_naive = [ i*bin_f0 for
        i in range(1,len(harmonics_enable)+1) ]

    if defs.B_PLOT:
        pylab.figure()
        pylab.plot(initial_noise_freqs,
            stft.amplitude2db(initial_noise_floor), color='black')
        #pylab.plot(initial_noise_freqs,
        #   stft.amplitude2db(initial_noise_floor)+defs.B_MINIMUM_HARMONIC_SNR,
        #   color='black')
        pylab.xlabel("Frequency (seconds)")
        pylab.ylabel("Power (/ dB)")

        for i in range(estimate_B_buffers.shape[0]):
            #color = matplotlib.cm.spring(float(wav_i)/len(filenames))
            #color = matplotlib.cm.RdYlGn(
            #color = matplotlib.cm.spring(
            #    float(i)/len(estimate_B_buffers_this_list))
            pylab.plot(freqs,
                stft.amplitude2db(estimate_B_buffers[i,:]),
                #color=color,
                color="orange",
                alpha=0.5,
                label=basename,
                )


        for est in bins_estimate:
            low = stft.bin2hertz(est - bin_spread_below, sample_rate)
            high = stft.bin2hertz(est + bin_spread_above, sample_rate)
            if True:
                pylab.axvspan(low, high, color='c', alpha=0.3)
            else:
                pylab.axvline(stft.bin2hertz(est, sample_rate),
                    color='cyan', alpha=0.3,
                    #linewidth=2.0
                    )
        for naive in bins_naive:
            freq = stft.bin2hertz(naive, sample_rate)
            pylab.axvline(freq, color='grey', alpha=0.2,
                #linewidth=2.0
                )
        for j, harm in enumerate(harmonics):
            if harm.mag == 0:
                continue
            fn = stft.bin2hertz(harm.fft_bin, sample_rate)
            mag = stft.amplitude2db(harm.mag)
            #pylab.plot(fn, mag, 'o',
            #    color='green'
            #    )
        pylab.xlabel("Frequency")
        pylab.ylabel("Decibels")
    if defs.B_DUMP_HARMS:
        t_fns = []
        t_mags = []
        for j, harm in enumerate(harmonics):
            if harm.mag == 0:
                continue
            fn = stft.bin2hertz(harm.fft_bin, sample_rate)
            mag = stft.amplitude2db(harm.mag)
            t_fns.append(fn)
            t_mags.append(mag)
        data = numpy.vstack((t_fns, t_mags)).transpose()
        numpy.savetxt("B-harms.txt", data)


    if defs.B_PLOT:
        pylab.show()

    f0 = stft.bin2hertz(bin_f0, sample_rate)
    stiff_ideal_limit = stiff_ideal_conflict.find_limit(bin_f0, B,
        bin_spread_below, bin_spread_above)
    lim = min(stiff_ideal_limit, limit)
    detected_freqs = StringFreqsB(f0, B, lim)
    stats = StringFreqsB_stats()
    stats.num_files = len(filenames)
    stats.rsquared = rsquared
    stats.highest_mode_detected = limit
    stats.highest_mode_stiff_ideal = stiff_ideal_limit
    stats.basename = basename


    adjusted_B, delta_fn = adjust_B.adjust(basename, limit, f0, B)
    if adjusted_B is not None:
        stiff_ideal_lim_adjusted = stiff_ideal_conflict.find_limit(
            bin_f0, adjusted_B,
            bin_spread_below, bin_spread_above)
        lim = min(stiff_ideal_lim_adjusted, limit)

        adjusted_freqs = StringFreqsB(f0, adjusted_B, lim)
        adjusted_freqs.delta_fn = delta_fn
        stats.highest_mode_stiff_ideal_adjusted = stiff_ideal_lim_adjusted
        stats.delta_fn = delta_fn
        final = StringFreqsB(f0, adjusted_B,
            min(stats.highest_mode_detected,
                stats.highest_mode_stiff_ideal,
                stiff_ideal_lim_adjusted))
    else:
        adjusted_freqs = None
        final = StringFreqsB(f0, B,
            min(stats.highest_mode_detected,
                stats.highest_mode_stiff_ideal))
    return detected_freqs, adjusted_freqs, stats, final
コード例 #2
0
def write_plot(base_filename):
    filenames = glob.glob(os.path.join(
        base_filename, "spectrum-*.txt"))
    basename = base_filename.split('/')[-2]
    wav_filename = os.path.split(
        os.path.dirname(base_filename)
        )[-1]
    base_freq = expected_frequencies.get_freq_from_filename(wav_filename)
    filenames.sort()
    Bs = numpy.loadtxt(os.path.join(base_filename, 'Bs.txt'))
    SAMPLE_RATE, base_freq, B, limit, below, above = Bs
    limit = int(limit)
    num_harms = None
    for i, filename in enumerate(filenames):
        seconds = i*HOPSIZE / float(SAMPLE_RATE)
        if seconds > MAX_SECONDS:
            print "Reached time cutoff of %.1f" % MAX_SECONDS
            return
        print i, filename
        fft = numpy.loadtxt(filename)
        harms = numpy.loadtxt(filename.replace("spectrum-", "harms-"))
        #noise = numpy.loadtxt(os.path.join(
        #    base_filename, "noise-floor.txt"))
        outfilename = filename.replace("spectrum-","").replace(".txt", ".png")
        freqs_estimate_int = [ i*base_freq for
            i in range(1,limit+1)]
        freqs_estimate_B = [ partials.mode_B2freq(base_freq, i, B) for
            i in range(1,limit+1)]

        # DEBUG for g string only
        for j, freq in enumerate(freqs_estimate_int):
            if j == 0:
                pylab.axvline(freq, color="y", label="ideal freq.")
            else:
                pylab.axvline(freq, color="y")
        for j, freq in enumerate(freqs_estimate_B):
            low = stft.bin2hertz( stft.hertz2bin(freq, SAMPLE_RATE)
                - below, SAMPLE_RATE)
            high = stft.bin2hertz( stft.hertz2bin(freq,
                SAMPLE_RATE) + above, SAMPLE_RATE)
            if j == 0:
                pylab.axvspan(low, high, color="c", alpha=0.3,
                    label="search range")
            else:
                pylab.axvspan(low, high, color="c", alpha=0.3)

        pylab.plot(fft[:,0], fft[:,1])
        pylab.plot(harms[:,0], harms[:,1], 'ro', label="peaks")
        #pylab.semilogy(noise[:,0], noise[:,1], 'g-')

        if num_harms is None:
            num_harms = len(harms[:,0])

        #pylab.xlim([0, (num_harms+3)*base_freq])
        if max_freq > 0:
            pylab.xlim([min_freq, max_freq])
        pylab.ylim([AXIS_Y_BOTTOM, AXIS_Y_TOP])
        pylab.xlabel("Frequency [Hz]")
        pylab.ylabel("Amplitude [dB]")
        pylab.title("Evolution of harmonics: %s\n%.3fs seconds" % (
            basename, seconds))
        #pylab.legend(bbox_to_anchor=(1.05, 1), loc=2)
        pylab.legend()
        pylab.savefig(outfilename)
        pylab.close()
コード例 #3
0
def write_plot(base_filename):
    filenames = glob.glob(os.path.join(base_filename, "spectrum-*.txt"))
    basename = base_filename.split('/')[-2]
    wav_filename = os.path.split(os.path.dirname(base_filename))[-1]
    base_freq = expected_frequencies.get_freq_from_filename(wav_filename)
    filenames.sort()
    Bs = numpy.loadtxt(os.path.join(base_filename, 'Bs.txt'))
    SAMPLE_RATE, base_freq, B, limit, below, above = Bs
    limit = int(limit)
    num_harms = None
    for i, filename in enumerate(filenames):
        seconds = i * HOPSIZE / float(SAMPLE_RATE)
        if seconds > MAX_SECONDS:
            print "Reached time cutoff of %.1f" % MAX_SECONDS
            return
        print i, filename
        fft = numpy.loadtxt(filename)
        harms = numpy.loadtxt(filename.replace("spectrum-", "harms-"))
        #noise = numpy.loadtxt(os.path.join(
        #    base_filename, "noise-floor.txt"))
        outfilename = filename.replace("spectrum-", "").replace(".txt", ".png")
        freqs_estimate_int = [i * base_freq for i in range(1, limit + 1)]
        freqs_estimate_B = [
            partials.mode_B2freq(base_freq, i, B) for i in range(1, limit + 1)
        ]

        # DEBUG for g string only
        for j, freq in enumerate(freqs_estimate_int):
            if j == 0:
                pylab.axvline(freq, color="y", label="ideal freq.")
            else:
                pylab.axvline(freq, color="y")
        for j, freq in enumerate(freqs_estimate_B):
            low = stft.bin2hertz(
                stft.hertz2bin(freq, SAMPLE_RATE) - below, SAMPLE_RATE)
            high = stft.bin2hertz(
                stft.hertz2bin(freq, SAMPLE_RATE) + above, SAMPLE_RATE)
            if j == 0:
                pylab.axvspan(low,
                              high,
                              color="c",
                              alpha=0.3,
                              label="search range")
            else:
                pylab.axvspan(low, high, color="c", alpha=0.3)

        pylab.plot(fft[:, 0], fft[:, 1])
        pylab.plot(harms[:, 0], harms[:, 1], 'ro', label="peaks")
        #pylab.semilogy(noise[:,0], noise[:,1], 'g-')

        if num_harms is None:
            num_harms = len(harms[:, 0])

        #pylab.xlim([0, (num_harms+3)*base_freq])
        if max_freq > 0:
            pylab.xlim([min_freq, max_freq])
        pylab.ylim([AXIS_Y_BOTTOM, AXIS_Y_TOP])
        pylab.xlabel("Frequency [Hz]")
        pylab.ylabel("Amplitude [dB]")
        pylab.title("Evolution of harmonics: %s\n%.3fs seconds" %
                    (basename, seconds))
        #pylab.legend(bbox_to_anchor=(1.05, 1), loc=2)
        pylab.legend()
        pylab.savefig(outfilename)
        pylab.close()
コード例 #4
0
def estimate_f0_B(filenames):
    ### ASSUME: all filenames are of the same instrument-string
    wav_filename = filenames[0]
    basename = '-'.join(os.path.basename(wav_filename).split('-')[0:3])
    if basename.startswith("test-440f"):
        return 440.0, 0, 1, 1, 1, 1

    ### get initial f0 estimate
    base_frequency_estimate = expected_frequencies.get_freq_from_filename(
        wav_filename)
    ### get noise
    initial_noise_floor, initial_noise_freqs, _, _, _ = calc_noise.get_noise(
        wav_filename)
    noise_cutoff = stft.db2amplitude(
        stft.amplitude2db(initial_noise_floor) + defs.B_MINIMUM_HARMONIC_SNR)

    #### get FFT frames from audio files
    sample_rate = None
    freqs = None
    estimate_B_buffers_list = []
    for wav_i, wav_filename in enumerate(filenames):
        #print wav_filename
        #window_buffer, sample_rate = stft.get_long_buffer_from_file(wav_filename,
        window_buffers, sample_rate = stft.get_buffers_from_file(
            wav_filename, (defs.B_NUM_BUFFERS_ESTIMATE))
        if freqs is None:
            freqs = [
                stft.bin2hertz(i, sample_rate)
                for i in range(stft.WINDOWSIZE / 2 + 1)
            ]

        estimate_B_buffers_this_list = []
        #fft_amplitude = stft.fft_amplitude(window_buffer, sample_rate)
        #estimate_B_buffers_this_list.append(fft_amplitude)
        for window_number in range(defs.B_NUM_BUFFERS_ESTIMATE):
            window_buffer = window_buffers[window_number]
            fft_amplitude = stft.stft_amplitude(window_buffer)
            estimate_B_buffers_this_list.append(fft_amplitude)
        estimate_B_buffers_list.extend(estimate_B_buffers_this_list)

    estimate_B_buffers = numpy.array(estimate_B_buffers_list)

    ### radius of search area for peaks
    # used with STFT only
    bin_initial_estimate = stft.hertz2bin(base_frequency_estimate, sample_rate)
    #bin_initial_estimate = (base_frequency_estimate
    #    * fft_amplitude.shape[0] / (sample_rate/2)
    #    )
    #print bin_initial_estimate
    bin_spread_below = int(
        math.ceil(
            abs(
                stft.hertz2bin((1.0 - defs.B_PEAK_SPREAD_BELOW_HERTZ) *
                               base_frequency_estimate, sample_rate) -
                bin_initial_estimate)))
    bin_spread_above = int(
        math.ceil(
            stft.hertz2bin((1.0 + defs.B_PEAK_SPREAD_ABOVE_HERTZ) *
                           base_frequency_estimate, sample_rate) -
            bin_initial_estimate))
    #bin_spread_below = int(round(bin_initial_estimate *
    #    defs.B_PEAK_SPREAD_BELOW_HERTZ))
    #bin_spread_above = int(round(bin_initial_estimate *
    #    defs.B_PEAK_SPREAD_BELOW_HERTZ))
    #bin_spread_below_main = int(
    #    stft.hertz2bin(defs.STFT_PEAK_SPREAD_BELOW_HERTZ*base_frequency_estimate,
    #        sample_rate))
    #bin_spread_above_main = int(
    #    stft.hertz2bin(defs.STFT_PEAK_SPREAD_ABOVE_HERTZ*base_frequency_estimate,
    #        sample_rate))

    ### actual estimate
    bin_f0, B, rsquared, harmonics, limit = get_bin_f0_B(
        bin_initial_estimate,
        estimate_B_buffers,
        noise_cutoff,
        #estimate_B_buffers, numpy.zeros(defs.LONG_WINDOWSIZE+1),
        bin_spread_below,
        bin_spread_above,
        sample_rate)

    highest_harmonic = 0
    for h in harmonics:
        if highest_harmonic < h.n:
            highest_harmonic = h.n
    limit = min(limit, highest_harmonic)
    # HACK: remove limit
    #limit = defs.TOTAL_HARMONICS
    #print "limit to:", limit

    #harmonics_enable = [True]*defs.TOTAL_HARMONICS
    harmonics_enable = [True] * limit

    bins_estimate = [
        partials.mode_B2freq(bin_f0, i, B)
        for i in range(1,
                       len(harmonics_enable) + 1)
    ]
    bins_naive = [i * bin_f0 for i in range(1, len(harmonics_enable) + 1)]

    if defs.B_PLOT:
        pylab.figure()
        pylab.plot(initial_noise_freqs,
                   stft.amplitude2db(initial_noise_floor),
                   color='black')
        #pylab.plot(initial_noise_freqs,
        #   stft.amplitude2db(initial_noise_floor)+defs.B_MINIMUM_HARMONIC_SNR,
        #   color='black')
        pylab.xlabel("Frequency (seconds)")
        pylab.ylabel("Power (/ dB)")

        for i in range(estimate_B_buffers.shape[0]):
            #color = matplotlib.cm.spring(float(wav_i)/len(filenames))
            #color = matplotlib.cm.RdYlGn(
            #color = matplotlib.cm.spring(
            #    float(i)/len(estimate_B_buffers_this_list))
            pylab.plot(
                freqs,
                stft.amplitude2db(estimate_B_buffers[i, :]),
                #color=color,
                color="orange",
                alpha=0.5,
                label=basename,
            )

        for est in bins_estimate:
            low = stft.bin2hertz(est - bin_spread_below, sample_rate)
            high = stft.bin2hertz(est + bin_spread_above, sample_rate)
            if True:
                pylab.axvspan(low, high, color='c', alpha=0.3)
            else:
                pylab.axvline(
                    stft.bin2hertz(est, sample_rate),
                    color='cyan',
                    alpha=0.3,
                    #linewidth=2.0
                )
        for naive in bins_naive:
            freq = stft.bin2hertz(naive, sample_rate)
            pylab.axvline(
                freq,
                color='grey',
                alpha=0.2,
                #linewidth=2.0
            )
        for j, harm in enumerate(harmonics):
            if harm.mag == 0:
                continue
            fn = stft.bin2hertz(harm.fft_bin, sample_rate)
            mag = stft.amplitude2db(harm.mag)
            #pylab.plot(fn, mag, 'o',
            #    color='green'
            #    )
        pylab.xlabel("Frequency")
        pylab.ylabel("Decibels")
    if defs.B_DUMP_HARMS:
        t_fns = []
        t_mags = []
        for j, harm in enumerate(harmonics):
            if harm.mag == 0:
                continue
            fn = stft.bin2hertz(harm.fft_bin, sample_rate)
            mag = stft.amplitude2db(harm.mag)
            t_fns.append(fn)
            t_mags.append(mag)
        data = numpy.vstack((t_fns, t_mags)).transpose()
        numpy.savetxt("B-harms.txt", data)

    if defs.B_PLOT:
        pylab.show()

    f0 = stft.bin2hertz(bin_f0, sample_rate)
    stiff_ideal_limit = stiff_ideal_conflict.find_limit(
        bin_f0, B, bin_spread_below, bin_spread_above)
    lim = min(stiff_ideal_limit, limit)
    detected_freqs = StringFreqsB(f0, B, lim)
    stats = StringFreqsB_stats()
    stats.num_files = len(filenames)
    stats.rsquared = rsquared
    stats.highest_mode_detected = limit
    stats.highest_mode_stiff_ideal = stiff_ideal_limit
    stats.basename = basename

    adjusted_B, delta_fn = adjust_B.adjust(basename, limit, f0, B)
    if adjusted_B is not None:
        stiff_ideal_lim_adjusted = stiff_ideal_conflict.find_limit(
            bin_f0, adjusted_B, bin_spread_below, bin_spread_above)
        lim = min(stiff_ideal_lim_adjusted, limit)

        adjusted_freqs = StringFreqsB(f0, adjusted_B, lim)
        adjusted_freqs.delta_fn = delta_fn
        stats.highest_mode_stiff_ideal_adjusted = stiff_ideal_lim_adjusted
        stats.delta_fn = delta_fn
        final = StringFreqsB(
            f0, adjusted_B,
            min(stats.highest_mode_detected, stats.highest_mode_stiff_ideal,
                stiff_ideal_lim_adjusted))
    else:
        adjusted_freqs = None
        final = StringFreqsB(
            f0, B,
            min(stats.highest_mode_detected, stats.highest_mode_stiff_ideal))
    return detected_freqs, adjusted_freqs, stats, final