コード例 #1
0
ファイル: tools.py プロジェクト: arpankbasak/dimspy
def align_samples(source, ppm, filelist=None, block_size=5000, ncpus=None):

    filenames = check_paths(filelist, source)
    peaklists = load_peaklists(source)

    if filelist is not None:
        fl = check_metadata(filelist)
        peaklists = [pl for pl in peaklists if pl.ID in [os.path.basename(fn) for fn in filenames]]
        peaklists = update_metadata_and_labels(peaklists, fl)

    return align_peaks(peaklists, ppm=ppm, block_size=block_size, ncpus=ncpus)
コード例 #2
0
def merge_peaklists(source, filelist=None):

    if not isinstance(source, list):
        raise IOError(
            "Incorrect input: list of lists of peaklists, list of peak matrix objects or list of HDF5 files expected."
        )

    pls_merged = []
    for s in source:
        if isinstance(s, list) or isinstance(s, tuple):
            if isinstance(s[0], PeakList):
                pls_merged.extend(s)
            else:
                raise IOError(
                    "Incorrect Object in list. Peaklist Object expected.")
        elif isinstance(s, PeakMatrix):
            pls = s.extract_peaklists()
            pls_merged.extend(pls)
        elif h5py.is_hdf5(s):
            f = h5py.File(s, 'r')
            if "mz" in f:
                pm = txt_portal.load_peak_matrix_from_txt(s)
                pls = pm.extract_peaklists()
            else:
                pls = hdf5_portal.load_peaklists_from_hdf5(s)
            f.close()
            pls_merged.extend(pls)
        else:
            raise IOError(
                "Incorrect input: list of lists of peaklists, list of peak matrix objects or list of HDF5 files expected."
            )

    if filelist is not None:
        fl = check_metadata(filelist)
        pls_merged = update_metadata_and_labels(pls_merged, fl)

        if 'multilist' in fl.keys():
            # make sure the peaklists are in the correct order (need to be sorted ascending)
            order_indx = np.argsort(
                [i.metadata['multilist'] for i in pls_merged])
            nlists = [fl['multilist'][i] for i in order_indx]
            pls_merged = [pls_merged[i] for i in order_indx]

            # get the break points of the different lists to join together
            bp = list(np.cumsum(np.unique(nlists, return_counts=True)[1]))
            bp = bp[:-1]

            # break up the list into a list of lists
            pls_merged = partition(pls_merged, bp)

    return pls_merged
コード例 #3
0
ファイル: tools.py プロジェクト: arpankbasak/dimspy
def process_scans(source, function_noise, snr_thres, ppm, min_fraction=None, rsd_thres=None, min_scans=1, filelist=None,
                  skip_stitching=False, remove_mz_range=None, ringing_thres=None, filter_scan_events=None, report=None, block_size=5000, ncpus=None):

    if filter_scan_events is None:
        filter_scan_events = {}
    if remove_mz_range is None:
        remove_mz_range = []

    filenames = check_paths(filelist, source)

    if len([fn for fn in filenames if not fn.lower().endswith(".mzml") or not fn.lower().endswith(".raw")]) == 0:
        raise IOError("Incorrect file format. Provide .mzML and .raw files")

    if filelist is not None:
        fl = check_metadata(filelist)
    else:
        fl = collections.OrderedDict()

    if report is not None:
        out = open(report, "w")
        out.write("filename\tevent\tscans\tpeaks\tmedian_rsd\n")

    pls = []
    for i in range(len(filenames)):

        print
        print os.path.basename(filenames[i])

        if type(source) is not str:
            source = ""

        print "Reading scans...."
        pls_scans = read_scans(filenames[i], source, function_noise, min_scans, filter_scan_events)

        if type(remove_mz_range) == list and len(remove_mz_range) > 0:
            print "Removing m/z ranges....."
            for h in pls_scans:
                pls_scans[h] = [filter_mz_ranges(pl, remove_mz_range) if len(pl.mz) > 0 else pl
                                for pl in pls_scans[h]]

        if not skip_stitching:
            mz_ranges = [mz_range_from_header(h) for h in pls_scans]
            exp = interpret_experiment(mz_ranges)
            if exp == "overlapping":
                print "Removing 'edges' from SIM windows....."
                pls_scans = remove_edges(pls_scans)

        if ringing_thres is not None and float(ringing_thres) > 0.0:
            print "Removing ringing artifacts....."
            for h in pls_scans:
                pls_scans[h] = [filter_ringing(pl, threshold=ringing_thres, bin_size=1.0) if len(pl.mz) > 0 else pl
                                for pl in pls_scans[h]]

        print "Removing noise....."
        for h in pls_scans:
            pls_scans[h] = [filter_attr(pl, "snr", min_threshold=snr_thres) if len(pl.mz) > 0 else pl
                            for pl in pls_scans[h]]

        print "Aligning, averaging and filtering peaks....."
        pls_avg = []

        for h in pls_scans:

            nscans, n_peaks, median_rsd = len(pls_scans[h]), 0, "NA"
            #pls_scans[h] = [pl for pl in pls_scans[h] if len(pl.mz) > 0]

            if len(pls_scans[h]) >= 1:
                if sum(pl.shape[0] for pl in pls_scans[h]) == 0:
                    logging.warning("No scan data available for {}".format(h))
                else:
                    pl_avg = average_replicate_scans(h, pls_scans[h], ppm, min_fraction, rsd_thres, "intensity", block_size, ncpus)
                    pls_avg.append(pl_avg)
                    n_peaks, median_rsd = pl_avg.shape[0], np.nanmedian(pl_avg.rsd)
            else:
                logging.warning("No scan data available for {}".format(h))

            if report is not None:
                out.write("{}\t{}\t{}\t{}\t{}\n".format(os.path.basename(filenames[i]), h, nscans, n_peaks, median_rsd))

        if len(pls_avg) == 0:
            raise IOError("No peaks remaining after filtering. Remove file from Study (filelist).")

        if not skip_stitching or len(pls_scans.keys()) == 1:
            pl = join_peaklists(os.path.basename(filenames[i]), pls_avg)
            pl = update_metadata_and_labels([pl], fl)
            pls.extend(pl)
            if len(pls_scans.keys()) > 1 and report is not None:
                out.write("{}\t{}\t{}\t{}\t{}\n".format(os.path.basename(filenames[i]), "SIM-Stitch", "NA", pl[0].shape[0], np.nanmedian(pl[0].rsd)))
        else:
            for pl in pls_avg:
                pl = update_metadata_and_labels([pl], fl)
                pl = join_peaklists("{}#{}".format(os.path.basename(filenames[i]), pl[0].metadata["header"][0]), pl)
                pls.append(pl)

    return pls
コード例 #4
0
ファイル: tools.py プロジェクト: arpankbasak/dimspy
def replicate_filter(source, ppm, replicates, min_peaks, rsd_thres=None, filelist=None, report=None, block_size=5000, ncpus=None):

    if replicates < min_peaks:
        raise IOError("Provide realistic values for the number of replicates and minimum number of peaks present (min_peaks)")

    filenames = check_paths(filelist, source)
    if len(filenames) == 0:
        raise IOError("Provide a filelist that list all the text files (columnname:filename) and assign replicate numbers to each filename/sample (columnname:replicate)")
    peaklists = load_peaklists(source)

    if filelist is not None:
        fl = check_metadata(filelist)
        peaklists = [pl for pl in peaklists if pl.ID in [os.path.basename(fn) for fn in filenames]]
        peaklists = update_metadata_and_labels(peaklists, fl)

    if not hasattr(peaklists[0].metadata, "replicate"):
        raise IOError("Provide a filelist and assign replicate numbers (columnname:replicate) to each filename/sample")

    if report is not None:
        out = open(report, "w")

    idxs_peaklists = idxs_reps_from_filelist([pl.metadata.replicate for pl in peaklists])
    unique, counts = np.unique([pl.metadata.replicate for pl in peaklists], return_counts=True)

    if len(counts) <= 1:
        raise ValueError("No technical replicates available (single) - Skip 'replicate filter'")
    if max(unique) < replicates:
        raise ValueError("Replicates incorrectly labeled")
    if sum(counts) != len(peaklists):
        raise ValueError("Replicates incorrectly labeled")

    reps_each_sample = [len(idxs_pls) for idxs_pls in idxs_peaklists]
    if min(reps_each_sample) < replicates:
        raise ValueError("Not enough (technical) replicates available for each sample.")

    if max(reps_each_sample) > replicates:
        print "NOTE: All combinations (n={}) for each each set of replicates are " \
              "processed to calculate the most reproducible set.".format(replicates)
        if report is not None:
            out.write("set\trank\tname\tpeaks\tpeaks_{}oo{}\tmedian_rsd_{}oo{}\tscore\n".format(replicates, replicates, replicates, replicates))
    else:
        if report is not None:
            out.write("name\tpeaks\tpeaks_{}oo{}\tmedian_rsd_{}oo{}\n".format(replicates, replicates, replicates, replicates))

    pls_rep_filt = []
    for idxs_pls in range(len(idxs_peaklists)):

        temp = []
        max_peak_count, max_peak_count_present = 0, 0

        for pls_comb in combinations(peaklists[idxs_peaklists[idxs_pls][0]:idxs_peaklists[idxs_pls][-1] + 1], replicates):

            pl = average_replicate_peaklists(pls_comb, ppm, min_peaks, rsd_thres, block_size=block_size, ncpus=None)

            if hasattr(pls_comb[0].metadata, "injectionOrder"):
                pl.metadata["injectionOrder"] = int(pls_comb[0].metadata["injectionOrder"])
                pl.tags.add_tag(int(pls_comb[0].metadata["injectionOrder"]), "injectionOrder")

            reps = [_pl.metadata["replicate"] for _pl in pls_comb]
            pl.metadata["replicates"] = reps
            pl.tags.add_tag("_".join(map(str, reps)), "replicates")

            for t in pls_comb[0].tags.tags:
                if t.ttype != "replicate":
                    if not pl.tags.has_tag_type(t.ttype):
                        pl.tags.add_tag(t)

            pl_filt = filter_attr(pl.copy(), attr_name="present", min_threshold=replicates, flag_name="pres_rsd")
            median_rsd = np.median(pl_filt.get_attribute("rsd", flagged_only=True))

            temp.append([pl, pl.shape[0], pl_filt.shape[0], median_rsd])

            if pl_filt.shape[0] > max_peak_count_present:
                max_peak_count_present = pl_filt.shape[0]

        # find the RSD category for the median RDS
        bins = np.array(range(0, 55, 5))
        rsd_scores = [0.1 * b for b in reversed(range(len(bins)))]
        for i, comb in enumerate(temp):

            if np.isnan(comb[3]):
                rsd_score = 0.0
            else:
                inds = np.digitize([comb[3]], bins)
                rsd_score = rsd_scores[inds[0]-1]

            # score 1: peak count / peak count present in n-out-n (e.g. 3-out-of-3)
            # score 2: peak count present in n-out-n (e.g. 3-out-of-3) / MAX peak count present in n-out-n across replicates
            # score 3: RSD categories (0-5 (score=1.0), 5-10 (score=0.9), 10-15 (score=0.8), etc)
            scores = [comb[2]/float(comb[1]), comb[2]/float(max_peak_count_present), rsd_score]
            if np.isnan(sum(scores)):
                scores.append(0)
            else:
                scores.append(sum(scores) / 3.0)
            temp[i].extend(scores)

        if sum([comb[-1] for comb in temp]) == 0.0:
            logging.warning("insufficient data available to calculate scores for {}".format(str([comb[0].ID for comb in temp])))

        # sort the scores from high to low
        temp.sort(key=operator.itemgetter(-1), reverse=True)
        # select the replicate filtered peaklist that is ranked first
        pls_rep_filt.append(temp[0][0])

        if report is not None:
            for p in range(0, len(temp)):
                if max(reps_each_sample) > replicates:
                    out.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(idxs_pls+1, p+1, temp[p][0].ID, temp[p][1], temp[p][2], temp[p][3], temp[p][-1]))
                else:
                    out.write("{}\t{}\t{}\t{}\n".format(temp[p][0].ID, temp[p][1], temp[p][2], temp[p][3]))

    return pls_rep_filt