コード例 #1
0
            continue
        else:
            score.append(False)

    return np.sum(score) / len(score), score


if __name__ == "__main__":

    header = ["word", "iteration", "rt", "freq", "cycles"]
    results = []
    random.seed(44)

    path = "../../corpora/lexicon_projects/elp-items.csv"

    words = np.array(list(read_elp_format(path, lengths=[4])))

    freqs = [x['frequency'] + 1 for x in words]
    freqs = np.log10(freqs)

    sampler = BinnedSampler(words, freqs)
    np.random.seed(44)

    n_cyc = 1000

    for idx in tqdm(range(100)):
        w = deepcopy(sampler.sample(1000))
        rt = np.array([x['rt'] for x in w])

        inputs = ('letters-features',)
コード例 #2
0
            continue
        else:
            score.append(False)

    return np.sum(score) / len(score), score


if __name__ == "__main__":

    header = ["word", "iteration", "rt", "freq", "cycles"]
    results = []
    random.seed(44)

    path = "../../corpora/lexicon_projects/elp-items.csv"

    w = read_elp_format(path, lengths=[4])
    np.random.seed(44)

    n_cyc = 1000

    rt = np.array([x['rt'] for x in w])

    inputs = ('letters-features',)

    w = process_data(w,
                     decomposable=('orthography',),
                     decomposable_names=('letters',),
                     feature_layers=('letters',),
                     feature_sets=('fourteen',),
                     negative_features=True,
                     length_adaptation=True)
コード例 #3
0
ファイル: experiment_3.py プロジェクト: clips/metameric
            score.append(True)
            continue
        else:
            score.append(False)

    return np.sum(score) / len(score), score


if __name__ == "__main__":

    header = ["word", "rt", "freq", "cycles"]
    results = []

    path = "../../corpora/lexicon_projects/elp-items.csv"

    words = read_elp_format(path, lengths=list(range(3, 11)))
    for x in words:
        x['frequency'] += 1
        x['log_frequency'] = np.log10(x['frequency'])

    n_cyc = 1000

    rt = np.array([x['rt'] for x in words])
    w = process_data(words,
                     decomposable=('orthography', ),
                     decomposable_names=('letters', ),
                     feature_layers=('letters', ),
                     feature_sets=('fourteen', ),
                     negative_features=True,
                     length_adaptation=True)
コード例 #4
0
            score.append(False)

    return np.sum(score), score


if __name__ == "__main__":

    header = ['word', 'iteration', 'rt', 'freq', 'cycles', 'le', 'ne', 'spa']
    results = []
    random.seed(44)

    threshold = .7

    path = "../../corpora/lexicon_projects/elp-items.csv"

    words = np.array(list(read_elp_format(path, lengths=list(range(3, 11)))))

    num_to_sample = len(words) // 4
    freqs = [x['frequency'] + 1 for x in words]
    freqs = np.log10(freqs)

    sampler = BinnedSampler(words, freqs)
    total = (2**3) * 100
    n_cyc = 350

    for idx, (le, ne, spa) in enumerate(
            product([True, False], [True, False], [True, False])):

        length_adaptation = le
        negative_evidence = ne
        space_character = spa