コード例 #1
0
    def __init__(self, args, in_channels, out_channels, stride=1):
        super(ResBlockDiscriminator, self).__init__()

        #self.conv1 = nn.Conv2d(in_channels, out_channels, 3, 1, padding=1)
        self.conv1 = my.NormConv(in_channels,
                                 out_channels,
                                 3,
                                 1,
                                 padding=1,
                                 adjustScale=False,
                                 NScale=1,
                                 T=args.T)
        #self.conv2 = nn.Conv2d(out_channels, out_channels, 3, 1, padding=1)
        self.conv2 = my.NormConv(out_channels,
                                 out_channels,
                                 3,
                                 1,
                                 padding=1,
                                 adjustScale=False,
                                 NScale=1,
                                 T=args.T)
        nn.init.xavier_uniform_(self.conv1.weight.data, 1.)
        nn.init.xavier_uniform_(self.conv2.weight.data, 1.)

        if stride == 1:
            self.model = nn.Sequential(
                nn.ReLU(),
                # SpectralNorm(self.conv1),
                self.conv1,
                nn.ReLU(),
                # SpectralNorm(self.conv2)
                self.conv2)
        else:
            self.model = nn.Sequential(
                nn.ReLU(),
                # SpectralNorm(self.conv1),
                self.conv1,
                nn.ReLU(),
                #SpectralNorm(self.conv2),
                self.conv2,
                nn.AvgPool2d(2, stride=stride, padding=0))
        self.bypass = nn.Sequential()
        if stride != 1:

            #self.bypass_conv = nn.Conv2d(in_channels,out_channels, 1, 1, padding=0)
            self.bypass_conv = my.NormConv(in_channels,
                                           out_channels,
                                           1,
                                           1,
                                           padding=0,
                                           adjustScale=False,
                                           NScale=1,
                                           T=args.T)
            nn.init.xavier_uniform_(self.bypass_conv.weight.data, np.sqrt(2))

            self.bypass = nn.Sequential(
                # SpectralNorm(self.bypass_conv),
                self.bypass_conv,
                nn.AvgPool2d(2, stride=stride, padding=0))
コード例 #2
0
ファイル: resnetDebug.py プロジェクト: lj-sandjakoska/ONI
 def __init__(self, inplanes, planes, stride=1, downsample=None):
     super(BasicBlock, self).__init__()
     #self.conv1 = conv3x3(inplanes, planes, stride)
     self.conv1 = my.NormConv(inplanes, planes, 3, stride, padding=1, bias=False)
     #self.bn1 = nn.BatchNorm2d(planes)
     self.bn1 = my.Norm(planes)
     self.relu = nn.ReLU(inplace=True)
     #self.conv2 = conv3x3(planes, planes)
     #self.conv2 = Conv2d_ONI(planes, planes, 3, stride=1, padding=1, bias=False, T=7)
     self.conv2 = my.NormConv(planes, planes, 3, stride=1, padding=1, bias=False)
     #self.bn2 = nn.BatchNorm2d(planes)
     self.bn2 = my.Norm(planes)
     self.downsample = downsample
     self.stride = stride
コード例 #3
0
    def __init__(self, block, layers, num_classes=1000, **kwargs):
        self.inplanes = 64
        super(ResNet_var_ONI, self).__init__()
        #self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.conv1 = my.NormConv(3,
                                 64,
                                 kernel_size=7,
                                 stride=2,
                                 padding=3,
                                 bias=False)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.bn1 = nn.BatchNorm2d(512 * block.expansion)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
コード例 #4
0
    def __init__(self, args, in_channels, out_channels, stride=1):
        super(FirstResBlockDiscriminator, self).__init__()

        #self.conv1 = nn.Conv2d(in_channels, out_channels, 3, 1, padding=1)
        self.conv1 = my.NormConv(in_channels,
                                 out_channels,
                                 3,
                                 1,
                                 padding=1,
                                 adjustScale=False,
                                 NScale=1,
                                 T=args.T)
        #self.conv2 = nn.Conv2d(out_channels, out_channels, 3, 1, padding=1)
        self.conv2 = my.NormConv(out_channels,
                                 out_channels,
                                 3,
                                 1,
                                 padding=1,
                                 adjustScale=False,
                                 NScale=1,
                                 T=args.T)
        #self.bypass_conv = nn.Conv2d(in_channels, out_channels, 1, 1, padding=0)
        self.bypass_conv = my.NormConv(in_channels,
                                       out_channels,
                                       1,
                                       1,
                                       padding=0,
                                       adjustScale=False,
                                       NScale=1,
                                       T=args.T)
        nn.init.xavier_uniform_(self.conv1.weight.data, 1.)
        nn.init.xavier_uniform_(self.conv2.weight.data, 1.)
        nn.init.xavier_uniform_(self.bypass_conv.weight.data, np.sqrt(2))

        # we don't want to apply ReLU activation to raw image before convolution transformation.
        self.model = nn.Sequential(
            # SpectralNorm(self.conv1),
            self.conv1,
            nn.ReLU(),
            # SpectralNorm(self.conv2),
            self.conv2,
            nn.AvgPool2d(2))
        self.bypass = nn.Sequential(
            nn.AvgPool2d(2),
            # SpectralNorm(self.bypass_conv),
            self.bypass_conv,
        )
コード例 #5
0
 def __init__(self, inplanes, planes, stride=1, downsample=None):
     super(Bottleneck_var_ONI, self).__init__()
     self.bn1 = nn.BatchNorm2d(inplanes)
     #self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
     self.conv1 = my.NormConv(inplanes, planes, kernel_size=1, bias=False)
     self.bn2 = nn.BatchNorm2d(planes)
     #self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
     self.conv2 = my.NormConv(planes,
                              planes,
                              kernel_size=3,
                              stride=stride,
                              padding=1,
                              bias=False)
     self.bn3 = nn.BatchNorm2d(planes)
     #self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
     self.conv3 = my.NormConv(planes, planes * 4, kernel_size=1, bias=False)
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
コード例 #6
0
ファイル: vgg_ONI.py プロジェクト: lj-sandjakoska/ONI
def make_layers(cfg, batch_norm=False):
    layers = []
    in_channels = 3
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = my.NormConv(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    return nn.Sequential(*layers)
コード例 #7
0
ファイル: resnetDebug.py プロジェクト: lj-sandjakoska/ONI
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                #nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
                my.NormConv(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False, ONIRow_Fix=True),
                #nn.BatchNorm2d(planes * block.expansion), )
                my.Norm(planes * block.expansion), )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)
コード例 #8
0
    def __init__(self,args):
        super(Discriminator, self).__init__()

        #self.conv1 = SpectralNorm(nn.Conv2d(channels, 64, 3, stride=1, padding=(1,1)))
        self.conv1 = my.NormConv(channels, 64, 3, stride=1, padding=(1,1), bias=True, adjustScale=False, NScale=args.NScale, T=args.T)

        #self.conv2 = SpectralNorm(nn.Conv2d(64, 64, 4, stride=2, padding=(1,1)))
        self.conv2 = my.NormConv(64, 64, 4, stride=2, padding=(1,1), bias=True, adjustScale=False, NScale=args.NScale, T=args.T)
        #self.conv3 = SpectralNorm(nn.Conv2d(64, 128, 3, stride=1, padding=(1,1)))
        self.conv3 = my.NormConv(64, 128, 3, stride=1, padding=(1,1), bias=True, adjustScale=False, NScale=args.NScale, T=args.T)
        #self.conv4 = SpectralNorm(nn.Conv2d(128, 128, 4, stride=2, padding=(1,1)))
        self.conv4 = my.NormConv(128, 128, 4, stride=2, padding=(1,1), bias=True, adjustScale=False, NScale=args.NScale, T=args.T)
        #self.conv5 = SpectralNorm(nn.Conv2d(128, 256, 3, stride=1, padding=(1,1)))
        self.conv5 = my.NormConv(128, 256, 3, stride=1, padding=(1,1), bias=True, adjustScale=False, NScale=args.NScale, T=args.T)
        #self.conv6 = SpectralNorm(nn.Conv2d(256, 256, 4, stride=2, padding=(1,1)))
        self.conv6 = my.NormConv(256, 256, 4, stride=2, padding=(1,1), bias=True, adjustScale=False, NScale=args.NScale, T=args.T)
        #self.conv7 = SpectralNorm(nn.Conv2d(256, 512, 3, stride=1, padding=(1,1)))
        self.conv7 = my.NormConv(256, 512, 3, stride=1, padding=(1,1), bias=True, adjustScale=False, NScale=args.NScale, T=args.T)


        self.fc = SpectralNorm(nn.Linear(w_g * w_g * 512, 1))