def test_2(self): graph = build_graph(nodes, edges, { 'mul': { 'can_be_fused': True }, 'mul_const_data': { 'shape': np.array([1]), 'value': np.array([-1]) }, 'quantize_data': { 'shape': np.array([2, 3, 4, 4]) }, 'mi_o_data': { 'shape': np.array([1]), 'value': np.array([0]) }, 'ma_o_data': { 'shape': np.array([1]), 'value': np.array([1]) }, }, nodes_with_edges_only=True) graph.stage = 'middle' graph_ref = build_graph(nodes, edges_ref, { 'quantize_data': { 'shape': np.array([2, 3, 4, 4]) }, 'mul_const_data': { 'shape': np.array([1]), 'value': np.array([-1]) }, 'mi_o_data': { 'shape': np.array([1]), 'value': np.array([1]) }, 'ma_o_data': { 'shape': np.array([1]), 'value': np.array([0]) }, 'mi_i_data': { 'shape': np.array([1]), 'value': np.array([10]) }, 'ma_i_data': { 'shape': np.array([1]), 'value': np.array([-10]) }, }, nodes_with_edges_only=True) MulFakeQuantizeFuse().find_and_replace_pattern(graph) (flag, resp) = compare_graphs(graph, graph_ref, 'output', check_op_attrs=True) self.assertTrue(flag, resp)
def test_negative_5(self): graph = build_graph( nodes, edges, { 'mul': { 'can_be_fused': True }, 'mul_const_data': { 'shape': np.array([3, 1, 1]), 'value': np.array([[[0]], [[1]], [[2]]]) }, 'quantize_data': { 'shape': np.array([2, 3, 4, 4]) }, 'mi_o_data': { 'shape': np.array([1, 1, 1, 1]), 'value': np.broadcast_to(np.array([0]), (1, 1, 1, 1)) }, 'ma_o_data': { 'shape': np.array([1, 1, 1, 1]), 'value': np.broadcast_to(np.array([1]), (1, 1, 1, 1)) }, }, nodes_with_edges_only=True) graph.stage = 'middle' graph_ref = graph.copy() MulFakeQuantizeFuse().find_and_replace_pattern(graph) (flag, resp) = compare_graphs(graph, graph_ref, 'output', check_op_attrs=True) self.assertTrue(flag, resp)
def negative_test_1(self): graph = build_graph(nodes, edges, nodes_with_edges_only=True) graph.stage = 'middle' graph_ref = build_graph(nodes, edges, nodes_with_edges_only=True) MulFakeQuantizeFuse().find_and_replace_pattern(graph) (flag, resp) = compare_graphs(graph, graph_ref, 'output', check_op_attrs=True) self.assertTrue(flag, resp)
def find_and_replace_pattern(self, graph: Graph): fw = graph.graph['fw'] argv = graph.graph['cmd_params'] layout = graph.graph['layout'] for_graph_and_each_sub_graph_recursively(graph, fuse_pad) for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up()) # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes for_graph_and_each_sub_graph_recursively(graph, lambda graph: mark_unfused_nodes(graph, argv.finegrain_fusing)) # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence # IE doesn't support batchNormInference with 4 inputs, so we have to split it to two ScaleShift for_graph_and_each_sub_graph_recursively(graph, convert_batch_norm) if fw == 'caffe': # Converting ScaleShift layer to Mul->Add for_graph_and_each_sub_graph_recursively(graph, convert_scale_shift_to_mul_add) for_graph_and_each_sub_graph_recursively(graph, Div().find_and_replace_pattern) for_graph_and_each_sub_graph_recursively(graph, Sub().find_and_replace_pattern) for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up()) if not argv.disable_fusing: if fw != 'caffe': # Converting ScaleShift layer to Mul->Add for_graph_and_each_sub_graph_recursively(graph, convert_scale_shift_to_mul_add) for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up()) # Fusing the sequences of Mul/Add operations for_graph_and_each_sub_graph_recursively(graph, fuse_mul_add_sequence) for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up()) normalize_eltwise_inputs(graph) for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up()) # Fusing linear operation to Convolution for_graph_and_each_sub_graph_recursively(graph, fuse_linear_ops) for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up()) if not argv.disable_gfusing: for_graph_and_each_sub_graph_recursively(graph, grouped_convolutions_fusing) for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up()) if not argv.disable_fusing: for_graph_and_each_sub_graph_recursively(graph, fuse_linear_ops) for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up()) for_graph_and_each_sub_graph_recursively(graph, normalize_eltwise_inputs) for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up()) MarkNodesToFuseUpToFakeQuantize().find_and_replace_pattern(graph) FakeQuantizeFuse().find_and_replace_pattern(graph) AddFakeQuantizeFuse().find_and_replace_pattern(graph) MulFakeQuantizeFuse().find_and_replace_pattern(graph) for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up()) for_graph_and_each_sub_graph_recursively(graph, fuse_pad) for_graph_and_each_sub_graph_recursively(graph, lambda G: G.clean_up()) if layout != 'NHWC' and not argv.disable_resnet_optimization: stride_optimization(graph)
def driver(onnx_modelproto_bytes, precision: str, output_model_name: str, output_dir: str): try: model_proto = onnx.load_from_string(bytes(onnx_modelproto_bytes)) except Exception as e: print("[python] onnx exception: ", str(e)) model_graph = model_proto.graph # pylint: disable=no-member log.debug("Number of nodes in graph_def: {}".format(len(model_graph.node))) log.debug( "Number of all input ports (not true inputs) in graph_def: {}".format( len(model_graph.input))) log.debug("Number of initializers in graph_def: {}".format( len(model_graph.initializer))) log.debug("Number of real inputs in graph_def: {}".format( len(model_graph.input) - len(model_graph.initializer))) update_extractors_with_extensions(onnx_op_extractors) try: graph = protobuf2nx(model_proto) log.debug("Number of nodes in NX graph: {}".format( graph.number_of_nodes())) graph.__setattr__( 'name', output_model_name if output_model_name else model_proto.graph.name) # pylint: disable=no-member graph.graph['layout'] = 'NCHW' graph.graph['fw'] = 'onnx' graph.graph[ 'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3 graph.graph['cmd_params'] = argparse.Namespace( batch=None, data_type='float', disable_fusing=False, disable_gfusing=False, disable_resnet_optimization=False, enable_concat_optimization=False, extensions=mo_extensions, finegrain_fusing=None, framework='onnx', freeze_placeholder_with_value=None, generate_deprecated_IR_V2=False, input=None, input_model=None, input_shape=None, keep_shape_ops=False, log_level='ERROR', mean_scale_values={}, mean_values=(), model_name=None, move_to_preprocess=False, output=None, output_dir='.', placeholder_shapes=None, reverse_input_channels=False, scale=None, scale_values=(), silent=False, version=False, blobs_as_inputs=False, keep_quantize_ops_in_IR=False, generate_experimental_IR_V10=False) graph.graph['ir_version'] = 6 except Exception as e: raise Error( 'Cannot pre-process ONNX graph after reading from model file "{}". ' \ 'File is corrupt or has unsupported format. Details: {}. ' + refer_to_faq_msg(44), model_file_name, str(e) ) from e graph.check_empty_graph( 'protobuf2nx. It may happen due to problems with loaded model') extract_node_attrs( graph, lambda node: onnx_op_extractor( node, check_for_duplicates(onnx_op_extractors))) # --------------------------------- LOAD END ------------------------------------------------------ class_registration.apply_replacements( graph, class_registration.ClassType.FRONT_REPLACER) class_registration.apply_replacements( graph, class_registration.ClassType.MIDDLE_REPLACER) fuse_pad(graph) graph_clean_up_onnx(graph) for_graph_and_each_sub_graph_recursively( graph, convert_matmul_to_fully_connected) # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes mark_unfused_nodes(graph, False) # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift convert_batch_norm(graph) graph_clean_up_onnx(graph) # Converting ScaleShift layer to Mul->Add convert_scale_shift_to_mul_add(graph) graph_clean_up_onnx(graph) # Fusing the sequences of Mul/Add operations fuse_mul_add_sequence(graph) graph_clean_up_onnx(graph) # Fusing linear operation to Convolution fuse_linear_ops(graph) graph_clean_up_onnx(graph) grouped_convolutions_fusing(graph) graph_clean_up_onnx(graph) fuse_linear_ops(graph) graph_clean_up_onnx(graph) MarkNodesToFuseUpToFakeQuantize().find_and_replace_pattern(graph) FakeQuantizeFuse().find_and_replace_pattern(graph) AddFakeQuantizeFuse().find_and_replace_pattern(graph) MulFakeQuantizeFuse().find_and_replace_pattern(graph) convert_muladd_to_scaleshift(graph) graph_clean_up_onnx(graph) graph_clean_up_onnx(graph) convert_add_or_mul_to_scaleshift(graph) # scale = 1 graph_clean_up_onnx(graph) fuse_pad(graph) graph_clean_up_onnx(graph) FuseReshapesSequence().find_and_replace_pattern(graph) RemoveRedundantReshapes().find_and_replace_pattern(graph) graph_clean_up_onnx(graph) pattern = EltwiseInputNormalize() pattern.find_and_replace_pattern(graph) merge_nodes_permutations(graph) permute_data_nodes_attrs(graph) permute_op_nodes_attrs(graph) graph_clean_up_onnx(graph) class_registration.apply_replacements( graph, class_registration.ClassType.BACK_REPLACER) for_graph_and_each_sub_graph_recursively(graph, remove_const_ops) CreateConstNodesReplacement().find_and_replace_pattern(graph) for_graph_and_each_sub_graph_recursively(graph, remove_output_ops) weights, xml_string = prepare_emit_ir(graph=graph, data_type=precision, output_dir=output_dir, output_model_name=output_model_name, meta_info={'unset': []}) return weights, xml_string
def driver(argv: argparse.Namespace, model_file_name: str, output_model_name: str, output_dir: str): log_step(argv.steps, 'LOAD') meta_info = get_meta_info(argv) model_proto = load_onnx_model(model_file_name) model_graph = model_proto.graph # pylint: disable=no-member # print(model_graph) # assert len(model_graph) == 1, "An ONNX model contains more than 1 graph: unsupported" log.debug("Number of nodes in graph_def: {}".format(len(model_graph.node))) log.debug( "Number of all input ports (not true inputs) in graph_def: {}".format( len(model_graph.input))) log.debug("Number of initializers in graph_def: {}".format( len(model_graph.initializer))) log.debug("Number of real inputs in graph_def: {}".format( len(model_graph.input) - len(model_graph.initializer))) update_extractors_with_extensions(onnx_op_extractors) try: graph = protobuf2nx(model_proto) log.debug("Number of nodes in NX graph: {}".format( graph.number_of_nodes())) graph.__setattr__( 'name', output_model_name if output_model_name else model_proto.graph.name) # pylint: disable=no-member graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'onnx' graph.graph[ 'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3 if graph.graph['cmd_params'].generate_experimental_IR_V10: version = 10 else: version = 6 graph.graph[ 'ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version except Exception as e: raise Error( 'Cannot pre-process ONNX graph after reading from model file "{}". ' \ 'File is corrupt or has unsupported format. Details: {}. ' + refer_to_faq_msg(44), model_file_name, str(e) ) from e graph.check_empty_graph( 'protobuf2nx. It may happen due to problems with loaded model') extract_node_attrs( graph, lambda node: onnx_op_extractor( node, check_for_duplicates(onnx_op_extractors))) # --------------------------------- LOAD END ------------------------------------------------------ log_step(argv.steps, 'FRONT') class_registration.apply_replacements( graph, class_registration.ClassType.FRONT_REPLACER) log_step(argv.steps, 'MIDDLE') class_registration.apply_replacements( graph, class_registration.ClassType.MIDDLE_REPLACER) fuse_pad(graph) graph_clean_up_onnx(graph) for_graph_and_each_sub_graph_recursively( graph, convert_matmul_to_fully_connected) # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes mark_unfused_nodes(graph, argv.finegrain_fusing) # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift convert_batch_norm(graph) graph_clean_up_onnx(graph) if not argv.disable_fusing: # Converting ScaleShift layer to Mul->Add convert_scale_shift_to_mul_add(graph) graph_clean_up_onnx(graph) # Fusing the sequences of Mul/Add operations fuse_mul_add_sequence(graph) graph_clean_up_onnx(graph) # Fusing linear operation to Convolution fuse_linear_ops(graph) graph_clean_up_onnx(graph) if not argv.disable_gfusing: grouped_convolutions_fusing(graph) graph_clean_up_onnx(graph) if not argv.disable_fusing: fuse_linear_ops(graph) graph_clean_up_onnx(graph) MarkNodesToFuseUpToFakeQuantize().find_and_replace_pattern(graph) FakeQuantizeFuse().find_and_replace_pattern(graph) AddFakeQuantizeFuse().find_and_replace_pattern(graph) MulFakeQuantizeFuse().find_and_replace_pattern(graph) convert_muladd_to_scaleshift(graph) graph_clean_up_onnx(graph) graph_clean_up_onnx(graph) convert_add_or_mul_to_scaleshift(graph) # scale = 1 graph_clean_up_onnx(graph) fuse_pad(graph) graph_clean_up_onnx(graph) if argv.reverse_input_channels: reverse_input_channels(graph) if argv.move_to_preprocess: move_scaleshift_to_preprocess(graph) graph_clean_up_onnx(graph) FuseReshapesSequence().find_and_replace_pattern(graph) RemoveRedundantReshapes().find_and_replace_pattern(graph) graph_clean_up_onnx(graph) pattern = EltwiseInputNormalize() pattern.find_and_replace_pattern(graph) merge_nodes_permutations(graph) permute_data_nodes_attrs(graph) permute_op_nodes_attrs(graph) graph_clean_up_onnx(graph) log_step(argv.steps, 'BACK') class_registration.apply_replacements( graph, class_registration.ClassType.BACK_REPLACER) for_graph_and_each_sub_graph_recursively(graph, remove_const_ops) CreateConstNodesReplacement().find_and_replace_pattern(graph) for_graph_and_each_sub_graph_recursively(graph, remove_output_ops) log_step(argv.steps, 'EMIT') prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name, meta_info=meta_info) return 0