コード例 #1
0
    def __init__(self, keras_model, rc_name):
        # Example of rc_name: FeatureSqueezing?squeezer=bit_depth_1
        self.model_predict = lambda x: keras_model.predict(x)
        subject, params = parse_params(rc_name)
        assert subject == 'MagNet'

        if FLAGS.dataset_name == "MNIST":
            self.reformer = SimpleReformer(mnist_autoencoder_fpath)
        elif FLAGS.dataset_name == "CIFAR-10":
            self.reformer = SimpleReformer(cifar10_autoencoder_fpath)

        self.filter = lambda x: self.reformer.heal(x)
コード例 #2
0
ファイル: magnet_cifar.py プロジェクト: kjam/EvadeML-Zoo
    def __init__(self, model, detector_name):
        classifier = ClassifierWrapper(model)

        autoencoder_model_fpath = os.path.join(
            project_dir, "downloads/MagNet/defensive_models/CIFAR")

        reformer = SimpleReformer(autoencoder_model_fpath)
        id_reformer = IdReformer()

        # Note: we may swap the two.
        reconstructor = id_reformer
        prober = reformer
        # reconstructor = reformer
        # prober = id_reformer

        eb_detector = AEDetector(autoencoder_model_fpath, p=1)
        db_detector_I = DBDetector(reconstructor, prober, classifier, T=10)
        db_detector_II = DBDetector(reconstructor, prober, classifier, T=40)

        detector_dict = dict()
        detector_dict["db-I"] = db_detector_I
        detector_dict["db-II"] = db_detector_II
        detector_dict['eb'] = eb_detector

        self.operator = Operator(CIFAR(), classifier, detector_dict, reformer)
コード例 #3
0
    def __init__(self, model, detector_name):
        cur_folder = os.path.dirname(os.path.abspath(__file__))

        autoencoder_model_I_fpath = os.path.join(project_dir, "downloads/MagNet/defensive_models/MNIST_I")
        autoencoder_model_II_fpath = os.path.join(project_dir, "downloads/MagNet/defensive_models/MNIST_II")

        detector_I = AEDetector(autoencoder_model_I_fpath, p=2)
        detector_II = AEDetector(autoencoder_model_II_fpath, p=1)
        reformer = SimpleReformer(autoencoder_model_I_fpath)

        id_reformer = IdReformer()
        classifier = ClassifierWrapper(model)

        detector_dict = dict()
        detector_dict["I"] = detector_I
        detector_dict["II"] = detector_II

        self.operator = Operator(MNIST(), classifier, detector_dict, reformer)
コード例 #4
0
ファイル: magnet.py プロジェクト: kjam/EvadeML-Zoo
class MagNetRC:
    def __init__(self, keras_model, rc_name):
        # Example of rc_name: FeatureSqueezing?squeezer=bit_depth_1
        self.model_predict = lambda x: keras_model.predict(x)
        subject, params = parse_params(rc_name)
        assert subject == 'MagNet'

        if tf.flags.FLAGS.dataset_name == "MNIST":
            self.reformer = SimpleReformer(mnist_autoencoder_fpath)
        elif tf.flags.FLAGS.dataset_name == "CIFAR-10":
            self.reformer = SimpleReformer(cifar10_autoencoder_fpath)

        self.filter = lambda x: self.reformer.heal(x)

    def predict(self, X):
        X_filtered = self.filter(X)
        Y_pred = self.model_predict(X_filtered)
        return Y_pred

    def visualize_and_predict(self, X):
        X_filtered = self.filter(X)
        Y_pred = self.model_predict(X_filtered)
        return X_filtered, Y_pred
コード例 #5
0
    y = tf.py_func(my_func, [imgs], tf.float32, stateful=False)
    return y


none_tf = none_py = lambda x:x


import sys, os
project_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(project_path)

from externals.MagNet.worker import SimpleReformer
mnist_autoencoder_fpath = os.path.join(project_path, "downloads/MagNet/defensive_models/MNIST_I")
cifar10_autoencoder_fpath = os.path.join(project_path, "downloads/MagNet/defensive_models/CIFAR")

reformer_mnist = SimpleReformer(mnist_autoencoder_fpath)
reformer_cifar10 = SimpleReformer(cifar10_autoencoder_fpath)

def magnet_mnist_py(imgs):
    return reformer_mnist.heal(imgs)

def magnet_cifar10_py(imgs):
    return reformer_cifar10.heal(imgs)

# Construct a name search function.
def isfloat(value):
    try:
        float(value)
        return True
    except:
        return False