コード例 #1
0
def get_padded_feature_stack(window_size, correction_switch, degree, pad=-1):
    
    eigen_full=extract_polarimetric.eigen_raster_full(window_size, correction_switch, degree) #9 is the window size
    cov_arr=extract_polarimetric.extract_covariance_arr(window_size, correction_switch, degree)
    
    #padding=int(np.floor(window_size/2))
    
    padding=window_size//2 if pad!=0 else 0
    
    Ihh=np.pad(cov_arr[...,0,0], padding, 'constant')
    Ihv=np.pad(cov_arr[...,1,1], padding, 'constant')
    Ivv=np.pad(cov_arr[...,2,2], padding, 'constant')
    arr_lamb1=np.pad(eigen_full[:,:,2], padding, 'constant')
    arr_lamb2=np.pad(eigen_full[:,:,1], padding, 'constant')
    arr_lamb3=np.pad(eigen_full[:,:,0], padding, 'constant')
    
    co_pol_dif=np.pad(extract_polarimetric.co_pol_diff(cov_arr), padding, 'constant')
    arr_det_cov=np.pad(np.absolute(extract_polarimetric.determinant_cov_conj(cov_arr)), padding, 'constant')
    
    R_co = Rco_X = np.pad(np.real(cov_arr[...,0,2]), padding, 'constant')
    Ico_X = np.pad(np.absolute(np.imag(cov_arr[...,0,2])), padding, 'constant')
    
    #return np.dstack((np.real(Ihh),np.real(Ihv),np.real(Ivv),np.real(arr_lamb1), np.real(arr_lamb2), np.real(arr_lamb3), np.absolute(co_pol_dif),R_co, Ico_X, np.absolute(arr_det_cov)))
    
    return np.dstack((np.real(Ihh),np.real(Ihv),np.real(Ivv),np.real(arr_lamb1), np.real(arr_lamb2), np.real(arr_lamb3), np.absolute(co_pol_dif), np.absolute(arr_det_cov)))#,R_co, Ico_X
コード例 #2
0
def plot_feature_space_test(window_size):
    eigen_arr = extract_polarimetric.eigen_raster_full(window_size)
    cov_arr = extract_polarimetric.extract_covariance_arr(window_size, False)
    cppr = np.absolute(extract_polarimetric.co_pol_power_ratio_1(cov_arr))

    co_pol_diff = np.absolute(extract_polarimetric.co_pol_diff(cov_arr))
    lambda_3 = np.absolute(eigen_arr[:, :, 0])

    plot_feature_space(co_pol_diff, lambda_3)
コード例 #3
0
ファイル: plotting.py プロジェクト: Neithi/Radar-oilspill
def cloude_pottier(window_size):
    fig, ax = plt.subplots(nrows=3, ncols=3)
    arr = extract_polarimetric.eigen_raster_full(window_size)
    cov_arr = extract_polarimetric.extract_covariance_arr(window_size)

    plt.subplot(3, 3, 1)
    plt.imshow(arr[:, :, 2], cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('lambda_1')
    plt.colorbar()

    plt.subplot(3, 3, 2)
    plt.imshow(arr[:, :, 1], cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('lambda_2')
    plt.colorbar()

    plt.subplot(3, 3, 3)
    plt.imshow(arr[:, :, 0], cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('lambda_3')
    plt.colorbar()

    plt.subplot(3, 3, 4)
    plt.imshow(extract_polarimetric.entropy(arr), cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Entropy')
    plt.colorbar()

    plt.subplot(3, 3, 5)
    plt.imshow(extract_polarimetric.anisotropy(arr), cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Anisotropy')
    plt.colorbar()

    plt.subplot(3, 3, 6)
    plt.imshow(extract_polarimetric.pol_fraction(arr), cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Pol_fraction')
    plt.colorbar()

    plt.subplot(3, 3, 7)
    plt.imshow(extract_polarimetric.pedestal_height(arr), cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('pedestal_height')
    plt.colorbar()

    plt.show()
コード例 #4
0
def read_Pol_features(window_size, correction_switch, degree, rescale_switch = False, log_Transform_switch = False):
    #os.chdir('../')
    
    eigen_full = extract_polarimetric.eigen_raster_full(window_size, correction_switch, degree) #9 is the window size
    cov_arr = extract_polarimetric.extract_covariance_arr(window_size, correction_switch, degree)
    
    arr_lamb1=np.absolute(eigen_full[:,:,2])
    arr_lamb2=np.absolute(eigen_full[:,:,1])
    arr_lamb3=np.absolute(eigen_full[:,:,0])
    co_pol_dif=np.absolute(extract_polarimetric.co_pol_diff(cov_arr))
    arr_det_cov=np.absolute(extract_polarimetric.determinant_cov_conj(cov_arr))
    Rco_X = np.real(cov_arr[...,0,2])
    Ico_X = abs(np.imag(cov_arr[...,0,2]))
    I_hh = np.absolute(cov_arr[...,0,0])
    I_hv = np.absolute(cov_arr[...,1,1])
    I_vv = np.absolute(cov_arr[...,2,2])
    
    if (log_Transform_switch ==True):
        arr_lamb1 = np.log10(arr_lamb1)
        arr_lamb2 = np.log10(arr_lamb2)
        arr_lamb3 = np.log10(arr_lamb3)
        co_pol_dif = np.log10(co_pol_dif)
        arr_det_cov = np.log10(arr_det_cov)
        Rco_X = np.log10(Rco_X)
        Ico_X = np.log10(Ico_X)
        I_hh = np.log10(I_hh)
        I_hv = np.log10(I_hv)
        I_vv = np.log10(I_vv)
    
    if(rescale_switch == True):
        arr_lamb1=rescale(arr_lamb1)
        arr_lamb2=rescale(arr_lamb2)
        arr_lamb3=rescale(arr_lamb3)
        co_pol_dif = rescale(co_pol_dif)
        arr_det_cov = rescale(arr_det_cov)
        Rco_X = rescale(Rco_X)
        Ico_X = rescale(Ico_X)
        I_hh = rescale(I_hh)
        I_hv = rescale(I_hv)
        I_vv = rescale(I_vv)
    
    
    #if(log_Transform_switch ==True):
        #return 10*np.log10(np.dstack((arr_lamb1, arr_lamb2, arr_lamb3, co_pol_dif, arr_det_cov, Rco_X, Ico_X, I_hh, I_hv, I_vv)))
    #else:
    return np.dstack((arr_lamb1, arr_lamb2, arr_lamb3, co_pol_dif, arr_det_cov, Rco_X, Ico_X, I_hh, I_hv, I_vv))
コード例 #5
0
def plot_all_UAVSAR_features(directory_MLC, window_size, correction_switch,
                             degree):
    os.chdir(directory_MLC)
    #ax = plt.subplots(3,3)
    matplotlib.rcParams.update({'font.size': 3})

    cov_arr = extract_polarimetric.extract_covariance_arr(
        window_size, correction_switch, degree)

    coh_arr = extract_polarimetric.extract_coherency_arr(
        window_size, correction_switch, degree)

    #===============1=============
    plt.subplot(5, 4, 1)
    plt.imshow(10 * np.log10(np.absolute(cov_arr[..., 0, 0])), cmap='gray')
    plt.colorbar(label='dB')
    plt.ylabel('Azimuth')
    plt.title('$I_{HH}$')

    plt.subplot(5, 4, 2)
    plt.imshow(10 * np.log10(np.absolute(cov_arr[..., 1, 1])), cmap='gray')
    plt.colorbar(label='dB')
    #plt.ylabel('Azimuth')
    plt.title('$I_{HV}$')

    plt.subplot(5, 4, 3)
    plt.imshow(10 * np.log10(np.absolute(cov_arr[..., 2, 2])), cmap='gray')
    plt.colorbar(label='dB')
    #plt.ylabel('Azimuth')
    plt.title('$I_{VV}$')

    #===============1=============
    arr_co_pol_pow_ratio = extract_polarimetric.co_pol_power_ratio_1(cov_arr)
    plt.subplot(5, 4, 4)
    plt.imshow(np.absolute(arr_co_pol_pow_ratio), cmap='gray')
    plt.colorbar()
    #plt.ylabel('Azimuth')
    plt.title('$\gamma_{CO}$')

    #===============2=============
    Rco_X = np.real(cov_arr[..., 0, 2])
    Ico_X = np.imag(cov_arr[..., 0, 2])
    plt.subplot(5, 4, 5)
    plt.imshow(10 * np.log10(Rco_X), cmap='gray')
    plt.colorbar(label='dB')
    plt.title('$r_{CO}$')
    plt.ylabel('Azimuth')

    #===============6=============
    plt.subplot(5, 4, 6)
    plt.imshow(10 * np.log10(abs(Ico_X)), cmap='gray')
    plt.colorbar(label='dB')
    plt.title('$|i_{CO}|$')

    #===============4=============
    plt.subplot(5, 4, 7)
    slc_dir = '/home/anurag/Documents/MScProject/SAR/OilSpill/North_Sea_UAVSAR/UAV_norway/UA_norway_00709_15092_000_150610_L090_CX_02'
    sd_phase_diff = extract_polarimetric.sd_co_pol_phase_diff(slc_dir)
    plt.imshow(np.absolute(sd_phase_diff), cmap='gray')
    plt.colorbar()
    plt.title('$\phi_{CO}$')

    #===============5=============
    plt.subplot(5, 4, 8)
    plt.imshow(10 * np.log10(extract_polarimetric.determinant_cov(cov_arr)),
               cmap='gray')
    plt.colorbar(label='dB')
    plt.title('$det (C_{FP})$')
    #plt.ylabel('Azimuth')

    #===============6=============
    plt.subplot(5, 4, 9)
    plt.imshow(10 *
               np.log10(np.absolute(cov_arr[..., 0, 0] - cov_arr[..., 2, 2])),
               cmap='gray')
    plt.colorbar(label='dB')
    plt.title('PD')
    plt.ylabel('Azimuth')

    #===============7=============
    plt.subplot(5, 4, 10)
    plt.imshow(np.absolute(cov_arr[..., 1, 1]) / np.absolute(
        (cov_arr[..., 0, 0] + cov_arr[..., 2, 2])),
               cmap='gray')
    plt.colorbar()
    plt.title('$P_{X}$')

    #===============8=============

    eigen_full = extract_polarimetric.eigen_raster_full(
        window_size, correction_switch, degree)
    arr_lamb1 = eigen_full[:, :, 2]
    arr_lamb2 = eigen_full[:, :, 1]
    arr_lamb3 = eigen_full[:, :, 0]

    #===============8=============
    plt.subplot(5, 4, 11)
    plt.imshow(10 * np.log10(np.absolute(arr_lamb1)), cmap='gray')
    plt.colorbar(label='dB')
    plt.title('$\lambda_{1}$')

    #===============9=============
    plt.subplot(5, 4, 12)
    plt.imshow(10 * np.log10(np.absolute(arr_lamb2)), cmap='gray')
    plt.colorbar(label='dB')
    #plt.ylabel('Azimuth')
    plt.title('$\lambda_{2}$')

    #===============10=============
    plt.subplot(5, 4, 13)
    plt.imshow(10 * np.log10(np.absolute(arr_lamb3)), cmap='gray')
    plt.colorbar(label='dB')
    plt.title('$\lambda_{3}$')
    plt.ylabel('Azimuth')
    #===============11=============
    plt.subplot(5, 4, 14)
    arr_ent = extract_polarimetric.entropy(eigen_full)
    plt.imshow(10 * np.log10(np.absolute(arr_ent)), cmap='gray')
    plt.colorbar()
    plt.title('$H$')

    #===============12=============
    plt.subplot(5, 4, 15)
    arr_pol_frac = extract_polarimetric.pol_fraction(eigen_full)
    plt.imshow(arr_pol_frac, cmap='gray')
    plt.colorbar()
    plt.title('$PF$')

    #===============13=============
    plt.subplot(5, 4, 16)
    arr_anisotropy = extract_polarimetric.anisotropy(eigen_full)
    plt.imshow(arr_anisotropy, cmap='gray')
    plt.colorbar()
    #plt.xlabel('Range')
    #plt.ylabel('Azimuth')
    plt.title('$A$')

    #================14==============
    plt.subplot(5, 4, 17)
    co_pol_corr_arr = extract_polarimetric.co_pol_correlation(cov_arr)
    plt.imshow(np.absolute(co_pol_corr_arr), cmap='gray')
    plt.colorbar()
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('$Co-pol Correlation$')

    #================15==============
    plt.subplot(5, 4, 18)
    arr_conform_coeff = extract_polarimetric.conformity_coeff(cov_arr)
    plt.imshow(np.absolute(arr_conform_coeff), cmap='gray')
    plt.colorbar()
    plt.xlabel('Range')
    plt.title('Conformity Coefficient')

    #================16==============
    plt.subplot(5, 4, 19)
    alpha = extract_polarimetric.mean_alpha_angle(eigen_full, window_size,
                                                  correction_switch, degree)
    plt.imshow(alpha, cmap='gray')
    plt.colorbar(label='degrees')
    plt.title('Mean alpha angle')
    plt.xlabel('Range')

    #================16==============
    plt.subplot(5, 4, 20)
    PH = extract_polarimetric.pedestal_height(eigen_full)
    plt.imshow(PH, cmap='gray')
    plt.colorbar()
    plt.title('PH')
    plt.xlabel('Range')

    plt.tight_layout()

    plt.savefig(
        '/home/anurag/Documents/MScProject/Meetings_ITC/Results/Features/Polarimetric_Features/Inc_corr_applied/Det_cov_conj.tiff',
        dpi=300,
        box_inches='tight',
        papertype='a4',
        orientation='portrait')

    plt.show()
コード例 #6
0
def cloude_pottier(window_size):
    #fig, ax = plt.subplots(nrows=3, ncols=3)
    arr = extract_polarimetric.eigen_raster_full(window_size)
    cov_arr = extract_polarimetric.extract_covariance_arr(window_size, False)

    #plt.subplot(3,3,1)
    plt.imshow(arr[:, :, 2], cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('lambda_1')
    plt.colorbar()
    plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/' +
                'lambda_1' + '.tiff',
                dpi=300)
    plt.clf()

    #plt.subplot(3,3,2)
    plt.imshow(arr[:, :, 1], cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('lambda_2')
    plt.colorbar()
    plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/' +
                'lambda_2' + '.tiff',
                dpi=300)
    plt.clf()

    #plt.subplot(3,3,3)
    plt.imshow(arr[:, :, 0], cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('lambda_3')
    plt.colorbar()
    plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/' +
                'lambda_3' + '.tiff',
                dpi=300)
    plt.clf()

    #plt.subplot(3,3,4)
    plt.imshow(extract_polarimetric.entropy(arr), cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Entropy')
    plt.colorbar()
    plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/' +
                'Entropy' + '.tiff',
                dpi=300)
    plt.clf()

    #plt.subplot(3,3,5)
    plt.imshow(extract_polarimetric.anisotropy(arr), cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Anisotropy')
    plt.colorbar()
    plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/' +
                'Anisotropy' + '.tiff',
                dpi=300)
    plt.clf()

    #plt.subplot(3,3,6)
    plt.imshow(extract_polarimetric.pol_fraction(arr), cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('Pol_fraction')
    plt.colorbar()
    plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/' +
                'Pol_fraction' + '.tiff',
                dpi=300)
    plt.clf()

    #plt.subplot(3,3,7)
    plt.imshow(extract_polarimetric.pedestal_height(arr), cmap='gray')
    plt.xlabel('Range')
    plt.ylabel('Azimuth')
    plt.title('pedestal_height')
    plt.colorbar()
    plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results/' +
                'pedestal_height' + '.tiff',
                dpi=300)
    plt.clf()
コード例 #7
0
    plt.xlabel('Range')
    plt.ylabel('dB')
    plt.title('PO_TSx')
    
    plt.tight_layout()
    plt.savefig('/home/anurag/Documents/MScProject/Meetings_ITC/Results//Multifrequency/Detectability.tiff', dpi=300, papertype='a4', bbox_inches='tight')
    
    plt.show()
    
    
    '''
    #=======multi_freq_ratio===========
    #IVV_UAV=10*np.log10(np.absolute(C3_UAV_TS[...,2,2]))

    #I_VV=np.absolute(TS_x[...,1])**2
    #I_VV_TSX=10*np.log10(I_VV)

    #multi_freq_ratio(IVV_UAV, I_VV_TSX)

    #===========H-alpha decomposition==============
    os.chdir(UAVSAR_directory_TSX)
    eigen_raster_full = extract_polarimetric.eigen_raster_full(
        window_size=9, correction_switch=False, degree=0)[35:815, 87:724, ...]

    H = extract_polarimetric.entropy(eigen_raster_full)
    A = extract_polarimetric.anisotropy(eigen_raster_full)

    plt.imshow(A, cmap='jet')
    plt.colorbar()
    plt.show()