'result': 0 }, { 'res': 1080, 'file': './1_1920x1080.jpg', 'minsize': 80, 'cpus': 2, 'result': 0 }, { 'res': 1080, 'file': './1_1920x1080.jpg', 'minsize': 200, 'cpus': 2, 'result': 0 }] m.init('./model/') print('warming up') m.set_minsize(40) m.set_num_threads(1) m.set_threshold(0.6, 0.7, 0.8) result = m.detect('./1_854x480.jpg') print(result) m.detect('./1_854x480.jpg') m.detect('./1_854x480.jpg') m.detect('./1_854x480.jpg') m.detect('./1_854x480.jpg') print('starting up') rounds = 20 for item in benchmark:
from __future__ import print_function import face_detection as m import json, cv2, os import numpy as np from scipy import misc import face_preprocess import time minsize = int(os.getenv("MINIMAL_FACE_RESOLUTION", default="100")) # minimum size of face, 100 for 1920x1080 resolution, 70 for 1280x720. threads_number = int(os.getenv("THREADS_NUM_FACE_DETECTOR", default="1")) image_size = 160 margin = 16 BLURY_THREHOLD = 5 m.init('./model') m.set_minsize(minsize) m.set_threshold(0.6,0.7,0.8) m.set_num_threads(threads_number) def get_filePath_fileName_fileExt(filename): (filepath,tempfilename) = os.path.split(filename) (shotname,extension) = os.path.splitext(tempfilename) return filepath, shotname, extension def prewhiten(x): mean = np.mean(x) std = np.std(x) std_adj = np.maximum(std, 1.0/np.sqrt(x.size)) y = np.multiply(np.subtract(x, mean), 1/std_adj) return y
import face_detection as m import time m.init('./models/ncnn/') print('warming up') m.set_minsize(40) m.set_threshold(0.6, 0.7, 0.8) m.set_num_threads(1) m.detect('./images_480p/1_854x480.jpg') m.detect('./images_480p/1_854x480.jpg') m.detect('./images_480p/1_854x480.jpg') m.detect('./images_480p/1_854x480.jpg') m.detect('./images_480p/1_854x480.jpg') start = time.time() for i in range(100): step_start = time.time() result = m.detect('./images_480p/1_854x480.jpg') step_end = time.time() print('step {} duration is {}'.format(i, step_end - step_start)) end = time.time() print(result) print('average duration is {}'.format((end - start) / 100))