コード例 #1
0
    def extract_region(self, image):
        DIMS = image.shape
        blob = cv2.dnn.blobFromImage(
            image,
            1.0,
            (300, 300)  # , [104, 117, 123], False, False
        )
        self.net.setInput(blob)
        detections = self.net.forward()[0, 0, :, :]
        regions = []

        for i in range(detections.shape[0]):
            if detections[i, 2] >= self.threshold:
                reg = region.RectangleRegion(
                    detections[i, 3] * DIMS[1] - self.margin / 2,
                    detections[i, 4] * DIMS[0] - self.margin / 2,
                    (detections[i, 5] - detections[i, 3]) * DIMS[1] +
                    self.margin,
                    (detections[i, 6] - detections[i, 4]) * DIMS[0] +
                    self.margin,
                    detections[i, 2],
                )
                logging.debug("Face {} detected: {}".format(i, str(reg)))
                regions.append(reg)

        return regions, detections
コード例 #2
0
    def extract_region(
        self,
        image,
        threshold=0.9,  # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    ):

        bbs, points = mtcnn_tensorflow.detect_face(
            image,
            self.min_size,
            self.pnet,
            self.rnet,
            self.onet,
            self.threshold,
            self.factor,
        )

        regions = [
            region.RectangleRegion(
                bb[0], bb[1], bb[2] - bb[0], bb[3] - bb[1], bb[4]
            )
            for bb in bbs
            if bb[4] >= threshold
        ]

        return regions, (bbs, points)
コード例 #3
0
    def predict(self,
                X: np.ndarray,
                threshold=0.95,
                extract_image=False) -> datum.Datum:
        ret = self.detector.detect_face(X)

        if ret is None:
            return []

        bbox, points = ret
        if bbox.shape[0] == 0:
            return []

        data = []
        for bb, point in zip(*ret):

            if bb[4] >= threshold:
                dat = datum.Datum(
                    region=region.RectangleRegion(bb[0], bb[1], bb[2] - bb[0],
                                                  bb[3] - bb[1], bb[4]),
                    keypoints=point,
                )

                if extract_image:
                    point = point.reshape((2, 5)).T
                    aligned = align_mtcnn.align(X,
                                                bb,
                                                point,
                                                image_size="112,112")
                    dat.image = aligned
                data.append(dat)

        return data
コード例 #4
0
 def extract_region(self, image):
     raw_detection = self.face_det(image, 0)
     logger.info("Number of faces detected: {}".format(len(raw_detection)))
     regions = [
         region.RectangleRegion(
             i.rect.left(),
             i.rect.top(),
             i.rect.right() - i.rect.left(),
             i.rect.bottom() - i.rect.top(),
         ) for i in raw_detection
     ]
     return regions, raw_detection
コード例 #5
0
    def update(self, image):
        res = []
        rem_list = []
        for i, tr in enumerate(self.tracklets):
            retval, bbox = tr.tracker.update(image)
            if retval:
                reg = region.RectangleRegion(
                    bbox[0], bbox[1], bbox[2], bbox[3]
                )
                res.append(reg)
            else:
                # DONE Destroy tracker condition
                logger.debug("Tracklet face retrieval faillure.")
                tr.ttd -= 1
                if tr.ttd == 0:
                    rem_list.append(i)

        # Remove all tracklets where ttd == 0
        for i in rem_list:
            self.tracklets.pop(i)

        return res
コード例 #6
0
def parse_region_line(line, type=2):
    contents = line[:-1].split()
    if type == 1:
        # Rectangle
        dat = region.RectangleRegion(
            float(contents[0]),
            float(contents[1]),
            float(contents[2]),
            float(contents[3]),
            float(contents[4]),
        )
    elif type == 2:
        # Ellipse
        dat = region.EllipseRegion(
            float(contents[0]),
            float(contents[1]),
            float(contents[2]),
            float(contents[3]),
            float(contents[4]),
            float(contents[5]),
        )
    else:
        raise ValueError()
    return dat
コード例 #7
0
def openpose_face_detector(posePtr, threshold):
    point_top_left = np.zeros(2)
    face_size = 0.0
    score = 0.0

    points_used = set()

    neckScoreAbove = posePtr[1, 2] > threshold
    headNoseScoreAbove = posePtr[0, 2] > threshold
    lEarScoreAbove = posePtr[16, 2] > threshold
    rEarScoreAbove = posePtr[17, 2] > threshold
    lEyeScoreAbove = posePtr[14, 2] > threshold
    rEyeScoreAbove = posePtr[15, 2] > threshold

    counter = 0.0

    if neckScoreAbove and headNoseScoreAbove:
        if (lEyeScoreAbove == lEarScoreAbove
                and rEyeScoreAbove == rEarScoreAbove
                and lEyeScoreAbove != rEyeScoreAbove):
            if lEyeScoreAbove:
                point_top_left += (posePtr[14, 0:2] + posePtr[16, 0:2] +
                                   posePtr[0, 0:2]) / 3.0
                face_size += 0.85 * (dist(posePtr[14, 0:2], posePtr[16, 0:2]) +
                                     dist(posePtr[0, 0:2], posePtr[16, 0:2]) +
                                     dist(posePtr[14, 0:2], posePtr[0, 0:2]))
                points_used = points_used.union([0, 14, 16])
            else:
                point_top_left += (posePtr[15, 0:2] + posePtr[17, 0:2] +
                                   posePtr[0, 0:2]) / 3.0
                face_size += 0.85 * (dist(posePtr[15, 0:2], posePtr[17, 0:2]) +
                                     dist(posePtr[0, 0:2], posePtr[17, 0:2]) +
                                     dist(posePtr[15, 0:2], posePtr[0, 0:2]))
                points_used = points_used.union([0, 15, 17])

        else:
            point_top_left += (posePtr[1, 0:2] + posePtr[0, 0:2]) / 2.0
            face_size += 2.0 * dist(posePtr[1, 0:2], posePtr[0, 0:2])
            points_used = points_used.union([0, 1])

        counter += 1.0

    if lEyeScoreAbove and rEyeScoreAbove:
        point_top_left += (posePtr[14, 0:2] + posePtr[15, 0:2]) / 2.0
        face_size += 3.0 * dist(posePtr[14, 0:2], posePtr[15, 0:2])
        counter += 1.0
        points_used = points_used.union([14, 15])

    if lEarScoreAbove and rEarScoreAbove:
        point_top_left += (posePtr[16, 0:2] + posePtr[17, 0:2]) / 2.0
        face_size += 2.0 * dist(posePtr[16, 0:2], posePtr[17, 0:2])
        counter += 1.0
        points_used = points_used.union([16, 17])

    if counter > 0:
        point_top_left /= counter
        face_size /= counter
        score = np.mean(posePtr[list(points_used), 2])

    return region.RectangleRegion(
        point_top_left[0] - face_size / 2,
        point_top_left[1] - face_size / 2,
        face_size,
        face_size,
        score,
    )
コード例 #8
0
def openpose_face_detector2(posePtr, threshold):
    point_top_left = np.zeros(2)
    face_size = [0.0, 0.0]  # (width, height)
    score = np.mean(posePtr[[0, 1, 14, 15, 16, 17], 2])

    l_true = None
    r_true = None

    neckScoreAbove = posePtr[1, 2] > threshold
    headNoseScoreAbove = posePtr[0, 2] > threshold
    lEarScoreAbove = posePtr[16, 2] > threshold
    rEarScoreAbove = posePtr[17, 2] > threshold
    lEyeScoreAbove = posePtr[14, 2] > threshold
    rEyeScoreAbove = posePtr[15, 2] > threshold

    counter = 0.2

    # Leftmost point
    if lEarScoreAbove:
        l_true = posePtr[16, 0:2]
    # Rightmost point
    if rEarScoreAbove:
        r_true = posePtr[17, 0:2]

    counter = 0.0

    if headNoseScoreAbove:
        if (lEyeScoreAbove == lEarScoreAbove
                and rEyeScoreAbove == rEarScoreAbove
                and lEyeScoreAbove != rEyeScoreAbove):
            if lEyeScoreAbove:
                point_top_left += (posePtr[14, 0:2] + posePtr[16, 0:2] +
                                   posePtr[0, 0:2]) / 3.0
                face_size[1] += 0.85 * (
                    dist(posePtr[14, 0:2], posePtr[16, 0:2]) +
                    dist(posePtr[0, 0:2], posePtr[16, 0:2]) +
                    dist(posePtr[14, 0:2], posePtr[0, 0:2]))
                face_size[0] += 0.85 * (
                    dist(posePtr[14, 0:2], posePtr[16, 0:2]) +
                    dist(posePtr[0, 0:2], posePtr[14, 0:2]))
            else:
                point_top_left += (posePtr[15, 0:2] + posePtr[17, 0:2] +
                                   posePtr[0, 0:2]) / 3.0
                face_size[1] += 0.85 * (
                    dist(posePtr[15, 0:2], posePtr[17, 0:2]) +
                    dist(posePtr[0, 0:2], posePtr[17, 0:2]) +
                    dist(posePtr[15, 0:2], posePtr[0, 0:2]))
                face_size[0] += 0.85 * (
                    dist(posePtr[15, 0:2], posePtr[17, 0:2]) +
                    dist(posePtr[0, 0:2], posePtr[15, 0:2]))
            counter += 1.0
        elif neckScoreAbove:
            point_top_left += posePtr[0, 0:2]
            face_size[1] += 1.0 * dist(posePtr[1, 0:2], posePtr[0, 0:2])
            face_size[0] += 0.0 * dist(posePtr[1, 0:2], posePtr[0, 0:2])
            counter += 1.0

    if lEyeScoreAbove and rEyeScoreAbove:
        point_top_left += (posePtr[14, 0:2] + posePtr[15, 0:2]) / 2.0
        face_size[1] += 4.0 * dist(posePtr[14, 0:2], posePtr[15, 0:2])
        face_size[0] += 3.0 * dist(posePtr[14, 0:2], posePtr[15, 0:2])
        counter += 1.0

    if lEarScoreAbove and rEarScoreAbove:
        point_top_left += (posePtr[16, 0:2] + posePtr[17, 0:2]) / 2.0
        face_size[1] += 1.2 * dist(posePtr[16, 0:2], posePtr[17, 0:2])
        face_size[0] += dist(posePtr[16, 0:2], posePtr[17, 0:2])
        counter += 1.0

    if counter > 0:
        point_top_left /= counter
        face_size[0] /= counter
        face_size[1] /= counter

    if l_true is not None:
        ll = l_true[0]
        face_size[0] = face_size[0] - (ll -
                                       (point_top_left[0] - face_size[0] / 2))
    else:
        ll = point_top_left[0] - face_size[0] / 2
    #
    if r_true is not None:
        rr = r_true[0]
        face_size[0] = rr - ll

    return region.RectangleRegion(
        ll,
        point_top_left[1] - face_size[1] / 2,
        face_size[0],
        face_size[1],
        score,
    )