コード例 #1
0
def ensure_data_directory(relative_path: Path = None) -> Path:
    """Checks if a directory in the data dir path exists. Creates it if necessary

    Args:
        relative_path: A Path object pointing to a file relative to the data directory

    Returns:
        The absolute path Path object

    """
    if relative_path is None:
        return Path(config.data_dir())
    try:
        path = Path(config.data_dir(), relative_path)
        # if path points to a file, create parent directory instead
        if path.suffix:
            if not path.parent.exists():
                path.parent.mkdir(exist_ok=True, parents=True)
        else:
            if not path.exists():
                path.mkdir(exist_ok=True, parents=True)
        return path
    except OSError as exception:
        if exception.errno != errno.EEXIST:
            raise
コード例 #2
0
def ensure_data_directory(relative_path: Path = None

) -> Path:
"""Checks if a directory in the data dir path exists. Creates it if necessary
Args:
    relative_path: A Path object pointing to a file relative to the data directory
Returns:
    The absolute path Path object
"""
if relative_path is None:
    return Path(config.data_dir())
try:
    path = Path(config.data_dir(), relative_path)
    # if path points to a file, create parent directory instead
    if path.suffix:
        if not path.parent.exists():
            path.parent.mkdir(exist_ok=True, parents=True)
    else:
        if not path.exists():
            path.mkdir(exist_ok=True, parents=True)
    return path
except OSError as exception:
    if exception.errno != errno.EEXIST:
        raise


def parse_labels(labels: [{}]

) -> {str: str}:
"""Extracts labels from a string.
Args:
    labels: Labels in the form of
            [{"id": "1", "name": "{key_1=value_1}"},
             {"id": "2", "name": "{key_2=value_2}"}]"'
Returns:
        A dictionary of labels with {key_1 : value_1, ...} format
"""
labels_dict = {}
for label in labels:
    match = re.search("{([a-zA-Z|_]+)=([a-zA-Z|_]+)}", label['name'])
    if match:
        key = match.group(1).strip().lower().title()
        value = match.group(2).strip()
        labels_dict[key] = value
return labels_dict


@rate_limiting
def _get_ad_accounts() ->


[adaccount.AdAccount]:
"""Retrieves the ad accounts of the user whose access token was provided and
returns them as a list.
Returns:
    A list of ad accounts
"""
system_user = user.User(fbid='me')
ad_accounts = system_user.get_ad_accounts(fields=['account_id',
                                                  'name',
                                                  'created_time',
                                                  'timezone_offset_hours_utc'])
return list(ad_accounts)


def _upsert_ad_performance(ad_insights: [adsinsights.AdsInsights], con

: sqlite3.Connection):
"""Creates the ad performance table if it does not exists and upserts the
ad insights data afterwards
Args:
    ad_insights: A list of Insights objects
    con: A sqlite database connection
"""
con.execute("""
CREATE TABLE IF NOT EXISTS ad_performance (
  date          DATE   NOT NULL,
  ad_id         BIGINT NOT NULL,
  device        TEXT   NOT NULL,
  performance   TEXT   NOT NULL,
  PRIMARY KEY (ad_id, device)
);""")
con.executemany("INSERT OR REPLACE INTO ad_performance VALUES (?,?,?,?)",
                _to_insight_row_tuples(ad_insights))


def _to_insight_row_tuples(ad_insights: [adsinsights.AdsInsights]

) -> Generator[tuple, None, None]:
"""Transforms the Insights objects into tuples that can be directly inserted
into the ad_performance table
Args:
    ad_insights: A list of Insights objects for an ad on a specific day
Returns:
    A list of tuples of ad performance data
"""
for ad_insight in ad_insights:
    actions = ad_insight.get('actions') or []
    actions = [_floatify_values(action) for action in actions]

    action_values = ad_insight.get('action_values') or []
    action_values = [_floatify_values(action_value) for action_value in action_values]

    performance = {'impressions': int(ad_insight['impressions']),
                   'spend': float(ad_insight['spend']),
                   'actions': actions,
                   'action_values': action_values}

    ad_insight_tuple = (ad_insight['date_start'],
                        ad_insight['ad_id'],
                        ad_insight['impression_device'],
                        json.dumps(performance))

    yield ad_insight_tuple


def _floatify(value: str

) -> Union[str, float]:
try:
    return float(value)
except ValueError:
    return value


def _floatify_values(inp: {}

) -> {}:
return {key: _floatify(value) for key, value in inp.items()}


def _first_download_date_of_ad_account(ad_account: adaccount.AdAccount

) -> datetime.date:
"""Finds the first date for which the ad account's performance should be
downloaded by comparing the first download date from the configuration and
the creation date of the account and returning the maximum of the two.
Args:
    ad_account: An ad account to download
Returns:
    The first date to download the performance data for
"""
config_first_date = datetime.datetime.strptime(config.first_date(),
                                               '%Y-%m-%d').date()
if 'created_time' in ad_account:
    account_created_date = datetime.datetime.strptime(ad_account['created_time'],
                                                      "%Y-%m-%dT%H:%M:%S%z").date()
    return max(config_first_date, account_created_date)
else:
    return config_first_date