def train(cfg, local_rank, distributed): model = build_detection_model(cfg) device = torch.device(cfg.MODEL.DEVICE) model.to(device) optimizer = make_optimizer(cfg, model) scheduler = make_lr_scheduler(cfg, optimizer) if distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], output_device=local_rank, # this should be removed if we update BatchNorm stats broadcast_buffers=False, ) arguments = {} arguments["iteration"] = 0 output_dir = cfg.OUTPUT_DIR summary_writer = SummaryWriter(log_dir=output_dir) save_to_disk = get_rank() == 0 checkpointer = DetectronCheckpointer(cfg, model, optimizer, scheduler, output_dir, save_to_disk) if cfg.MODEL.WEIGHT.upper() == 'CONTINUE': model_weight = last_checkpoint(output_dir) else: model_weight = cfg.MODEL.WEIGHT extra_checkpoint_data = checkpointer.load(model_weight) arguments.update(extra_checkpoint_data) data_loader = make_data_loader( cfg, is_train=True, is_distributed=distributed, start_iter=arguments["iteration"], ) data_loader_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)[0] checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD do_train(model=model, data_loader=data_loader, data_loader_val=data_loader_val, optimizer=optimizer, scheduler=scheduler, checkpointer=checkpointer, device=device, checkpoint_period=checkpoint_period, arguments=arguments, summary_writer=summary_writer) return model
def main(): parser = argparse.ArgumentParser( description="PyTorch Object Detection Inference") parser.add_argument( "--config-file", default= "/home/bong3/lib/robin_mrcnn/facebook_mrcnn/configs/example/caffe2/e2e_mask_rcnn_X-152-32x8d-FPN-IN5k_1.44x_caffe2.yaml", metavar="FILE", help="path to config file", ) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument( "opts", help="Modify config options using the command-line", default= None, #'MODEL.WEIGHT "/home/bong07/lib/robin_mrcnn/checkpoint/20190117-141315/model_0005000.pth"', nargs=argparse.REMAINDER, ) args = parser.parse_args() num_gpus = int( os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 distributed = num_gpus > 1 if distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend="nccl", init_method="env://") synchronize() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() save_dir = "" logger = setup_logger("maskrcnn_benchmark", save_dir, get_rank()) logger.info("Using {} GPUs".format(num_gpus)) logger.info(cfg) logger.info("Collecting env info (might take some time)") logger.info("\n" + collect_env_info()) model = build_detection_model(cfg) model.to(cfg.MODEL.DEVICE) output_dir = cfg.OUTPUT_DIR checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir) _ = checkpointer.load(cfg.MODEL.WEIGHT) iou_types = ("bbox", ) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm", ) if cfg.MODEL.KEYPOINT_ON: iou_types = iou_types + ("keypoints", ) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST if cfg.OUTPUT_DIR: for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed) for output_folder, dataset_name, data_loader_val in zip( output_folders, dataset_names, data_loaders_val): inference( model, data_loader_val, dataset_name=dataset_name, iou_types=iou_types, box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY, device=cfg.MODEL.DEVICE, expected_results=cfg.TEST.EXPECTED_RESULTS, expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, output_folder=output_folder, ) synchronize()
def main(): parser = argparse.ArgumentParser( description="PyTorch Object Detection Training") parser.add_argument( "--config-file", default= "../../configs/kidney/e2e_mask_rcnn_X_101_32x8d_FPN_1x_liver_bg_augmask_using_pretrained_model.yaml", metavar="FILE", help="path to config file", type=str, ) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument( "--skip-test", dest="skip_test", help="Do not test the final model", action="store_true", ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() num_gpus = int( os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 args.distributed = num_gpus > 1 if args.distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend="nccl", init_method="env://") cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) if cfg.OUTPUT_SUB_DIR: output_dir = os.path.join(cfg.OUTPUT_DIR, cfg.OUTPUT_SUB_DIR) else: now = time.localtime() time_dir_name = "%04d%02d%02d-%02d%02d%02d" % ( now.tm_year, now.tm_mon, now.tm_mday, now.tm_hour, now.tm_min, now.tm_sec) output_dir = os.path.join(cfg.OUTPUT_DIR, time_dir_name) cfg.merge_from_list(["OUTPUT_DIR", output_dir]) cfg.freeze() if output_dir: mkdir(output_dir) logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank()) logger.info("Using {} GPUs".format(num_gpus)) logger.info(args) logger.info("Collecting env info (might take some time)") logger.info("\n" + collect_env_info()) logger.info("Loaded configuration file {}".format(args.config_file)) with open(args.config_file, "r") as cf: config_str = "\n" + cf.read() logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) model = train(cfg, args.local_rank, args.distributed)