def detect(self,image_path): aligned = [] try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) logging.info(errorMessage) else: if img.ndim < 2: logging.info('Unable to align "%s"' % image_path) return [] if img.ndim == 2: img = facenet.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face(img, self.minsize, self.pnet, self.rnet, self.onet, self.threshold, self.factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces > 0: det_all = bounding_boxes[:, 0:4] img_size = np.asarray(img.shape)[0:2] for boxindex in range(nrof_faces): det = np.squeeze(det_all[boxindex, :]) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - self.margin / 2, 0) bb[1] = np.maximum(det[1] - self.margin / 2, 0) bb[2] = np.minimum(det[2] + self.margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + self.margin / 2, img_size[0]) left, top, right, bottom = bb[0], bb[1], bb[2], bb[3] aligned.append({'x': left,'y':top,'w':right-left,'h':bottom-top}) return aligned
def load_image(path): image_size = 160 img = misc.imread(path) if img.ndim == 2: img = to_rgb(img) img = prewhiten(img) img = crop(img, False, image_size) img = flip(img, False) return img
def raw_process(img): if img.ndim == 2: img = to_rgb(img) try: img = prewhiten(img) except: pass img = crop(img, False, 160) img = flip(img, False) return img
def align_dataset_mtcnn(target, image_size=160, margin=44, random_order='store_true', gpu_memory_fraction=1.0, detect_multiple_faces=True, text_counter=0): with tf.Graph().as_default(): gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor bounding_box_list = [] output_class_dir = os.path.join('tmp', target) files = list( filter(lambda x: 'DS_Store' not in x, sorted(os.listdir(output_class_dir)))) if len(files) == 0: print('fatal: no image in target folder') filename = files[0] filepath = os.path.join(output_class_dir, filename) try: img = misc.imread(filepath) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(filepath, e) print('fatal:', errorMessage) return if img.ndim < 2: print('fatal:', 'Unable to align "%s"' % filepath) return if img.ndim == 2: img = facenet.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces > 0: det = bounding_boxes[:, 0:4] det_arr = [] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: if detect_multiple_faces: for i in range(nrof_faces): det_arr.append(np.squeeze(det[i])) else: bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([ (det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0] ]) offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) index = np.argmax(bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering det_arr.append(det[index, :]) else: det_arr.append(np.squeeze(det)) for i, det in enumerate(det_arr): det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - margin / 2, 0) bb[1] = np.maximum(det[1] - margin / 2, 0) bb[2] = np.minimum(det[2] + margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] scaled = misc.imresize(cropped, (image_size, image_size), interp='bilinear') bounding_box_list.append(bb[:4]) else: print('fatal:', 'Unable to align "%s"' % filepath) return filename, bounding_box_list
def align(image_path): print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) filename = os.path.splitext(os.path.split(image_path)[1])[0] try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim < 2: print('Unable to align "%s"' % image_path) return if img.ndim == 2: img = facenet.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] print('nrof_faces: %s' % nrof_faces) n = 0 if nrof_faces > 0: det = bounding_boxes[:, 0:4] img_size = np.asarray(img.shape)[0:2] if nrof_faces >= 1: bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([ (det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0] ]) offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) #index = np.argmax(bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering #det = det[index,:] for one in det: one = np.squeeze(one) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(one[0] - 5.0 / 2, 0) bb[1] = np.maximum(one[1] - 5.0 / 2, 0) bb[2] = np.minimum(one[2] + 5.0 / 2, img_size[1]) bb[3] = np.minimum(one[3] + 5.0 / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] scaled = misc.imresize(cropped, (128, 128), interp='bilinear') misc.imsave('/dl/' + str(n) + '.png', scaled) n += 1 else: print('Unable to align "%s"' % image_path)
def main(args): sleep(random.random()) output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir) print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) bounding_boxes_filename = os.path.join( output_dir, 'bounding_boxes_%05d.txt' % random_key) with open(bounding_boxes_filename, "w") as text_file: nrof_images_total = 0 nrof_successfully_aligned = 0 if args.random_order: random.shuffle(dataset) for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) if args.random_order: random.shuffle(cls.image_paths) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.png') print(image_path) if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim < 2: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2: img = facenet.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face( img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces > 0: det = bounding_boxes[:, 0:4] det_arr = [] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: if args.detect_multiple_faces: for i in range(nrof_faces): det_arr.append(np.squeeze(det[i])) else: bounding_box_size = ( det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([ (det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0] ]) offset_dist_squared = np.sum( np.power(offsets, 2.0), 0) index = np.argmax( bounding_box_size - offset_dist_squared * 2.0 ) # some extra weight on the centering det_arr.append(det[index, :]) else: det_arr.append(np.squeeze(det)) for i, det in enumerate(det_arr): det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - args.margin / 2, 0) bb[1] = np.maximum(det[1] - args.margin / 2, 0) bb[2] = np.minimum(det[2] + args.margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + args.margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] scaled = misc.imresize( cropped, (args.image_size, args.image_size), interp='bilinear') nrof_successfully_aligned += 1 filename_base, file_extension = os.path.splitext( output_filename) if args.detect_multiple_faces: output_filename_n = "{}_{}{}".format( filename_base, i, file_extension) else: output_filename_n = "{}{}".format( filename_base, file_extension) misc.imsave(output_filename_n, scaled) text_file.write('%s %d %d %d %d\n' % (output_filename_n, bb[0], bb[1], bb[2], bb[3])) else: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) print('Total number of images: %d' % nrof_images_total) print('Number of successfully aligned images: %d' % nrof_successfully_aligned)
def RecognizeFace(frames, model=None, class_names=None): with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, npy) minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor margin = 32 frame_interval = 3 batch_size = 1000 image_size = 160 input_image_size = 160 print('Loading feature extraction model') facenet.load_model(modeldir) images_placeholder = tf.get_default_graph().get_tensor_by_name( "input:0") embeddings = tf.get_default_graph().get_tensor_by_name( "embeddings:0") phase_train_placeholder = tf.get_default_graph( ).get_tensor_by_name("phase_train:0") embedding_size = embeddings.get_shape()[1] classifier_filename_exp = os.path.expanduser(classifier_filename) if model == None or class_names == None: with open(classifier_filename_exp, 'rb') as infile: (model, class_names) = pickle.load(infile) # video_capture = cv2.VideoCapture("akshay_mov.mp4") c = 0 HumanNames = class_names print(HumanNames) print('Start Recognition!') prevTime = 0 # ret, frame = video_capture.read() #frame = cv2.imread(img_path,0) #frame = cv2.resize(frame, (0,0), fx=0.5, fy=0.5) #resize frame (optional) total_faces_detected = {} for frame in frames: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) curTime = time.time() + 1 # calc fps timeF = frame_interval if (c % timeF == 0): find_results = [] if frame.ndim == 2: frame = facenet.to_rgb(frame) frame = frame[:, :, 0:3] bounding_boxes, _ = detect_face.detect_face( frame, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] print('Face Detected: %d' % nrof_faces) if nrof_faces > 0: det = bounding_boxes[:, 0:4] img_size = np.asarray(frame.shape)[0:2] cropped = [] scaled = [] scaled_reshape = [] bb = np.zeros((nrof_faces, 4), dtype=np.int32) for i in range(nrof_faces): emb_array = np.zeros((1, embedding_size)) bb[i][0] = det[i][0] bb[i][1] = det[i][1] bb[i][2] = det[i][2] bb[i][3] = det[i][3] #inner exception if bb[i][0] <= 0 or bb[i][1] <= 0 or bb[i][ 2] >= len(frame[0]) or bb[i][3] >= len( frame): print('face is too close') break cropped.append(frame[bb[i][1]:bb[i][3], bb[i][0]:bb[i][2], :]) cropped[i] = facenet.flip(cropped[i], False) scaled.append( misc.imresize(cropped[i], (image_size, image_size), interp='bilinear')) scaled[i] = cv2.resize( scaled[i], (input_image_size, input_image_size), interpolation=cv2.INTER_CUBIC) scaled[i] = facenet.prewhiten(scaled[i]) scaled_reshape.append(scaled[i].reshape( -1, input_image_size, input_image_size, 3)) feed_dict = { images_placeholder: scaled_reshape[i], phase_train_placeholder: False } emb_array[0, :] = sess.run(embeddings, feed_dict=feed_dict) predictions = model.predict_proba(emb_array) print(predictions) best_class_indices = np.argmax(predictions, axis=1) # print(best_class_indices) best_class_probabilities = predictions[ np.arange(len(best_class_indices)), best_class_indices] #plot result idx under box text_x = bb[i][0] text_y = bb[i][3] + 20 print('Result Indices: ', best_class_indices[0]) print(HumanNames) for H_i in HumanNames: # print(H_i) if HumanNames[best_class_indices[ 0]] == H_i and best_class_probabilities >= 0.4: result_names = HumanNames[ best_class_indices[0]] if result_names in total_faces_detected: if predictions[0][best_class_indices[ 0]] > total_faces_detected[ result_names]: total_faces_detected[ result_names] = predictions[ 0][best_class_indices[ 0]] else: total_faces_detected[ result_names] = predictions[0][ best_class_indices[0]] else: print("BHAKKK") if len(total_faces_detected) == 0: return None else: x = sorted(total_faces_detected.items(), key=operator.itemgetter(1)) return [x[len(x) - 1][0]]