コード例 #1
0
 def detect(self,image_path):
     aligned = []
     try:
         img = misc.imread(image_path)
     except (IOError, ValueError, IndexError) as e:
         errorMessage = '{}: {}'.format(image_path, e)
         logging.info(errorMessage)
     else:
         if img.ndim < 2:
             logging.info('Unable to align "%s"' % image_path)
             return []
         if img.ndim == 2:
             img = facenet.to_rgb(img)
         img = img[:, :, 0:3]
         bounding_boxes, _ = detect_face.detect_face(img, self.minsize, self.pnet, self.rnet, self.onet, self.threshold, self.factor)
         nrof_faces = bounding_boxes.shape[0]
         if nrof_faces > 0:
             det_all = bounding_boxes[:, 0:4]
             img_size = np.asarray(img.shape)[0:2]
             for boxindex in range(nrof_faces):
                 det = np.squeeze(det_all[boxindex, :])
                 bb = np.zeros(4, dtype=np.int32)
                 bb[0] = np.maximum(det[0] - self.margin / 2, 0)
                 bb[1] = np.maximum(det[1] - self.margin / 2, 0)
                 bb[2] = np.minimum(det[2] + self.margin / 2, img_size[1])
                 bb[3] = np.minimum(det[3] + self.margin / 2, img_size[0])
                 left, top, right, bottom = bb[0], bb[1], bb[2], bb[3]
                 aligned.append({'x': left,'y':top,'w':right-left,'h':bottom-top})
         return aligned
コード例 #2
0
def load_image(path):
    image_size = 160
    img = misc.imread(path)
    if img.ndim == 2:
        img = to_rgb(img)
    img = prewhiten(img)
    img = crop(img, False, image_size)
    img = flip(img, False)
    return img
コード例 #3
0
def raw_process(img):
    if img.ndim == 2:
        img = to_rgb(img)
    try:
        img = prewhiten(img)
    except:
        pass
    img = crop(img, False, 160)
    img = flip(img, False)
    return img
コード例 #4
0
def align_dataset_mtcnn(target,
                        image_size=160,
                        margin=44,
                        random_order='store_true',
                        gpu_memory_fraction=1.0,
                        detect_multiple_faces=True,
                        text_counter=0):
    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None)
    minsize = 20  # minimum size of face
    threshold = [0.6, 0.7, 0.7]  # three steps's threshold
    factor = 0.709  # scale factor

    bounding_box_list = []

    output_class_dir = os.path.join('tmp', target)
    files = list(
        filter(lambda x: 'DS_Store' not in x,
               sorted(os.listdir(output_class_dir))))
    if len(files) == 0:
        print('fatal: no image in target folder')
    filename = files[0]
    filepath = os.path.join(output_class_dir, filename)
    try:
        img = misc.imread(filepath)
    except (IOError, ValueError, IndexError) as e:
        errorMessage = '{}: {}'.format(filepath, e)
        print('fatal:', errorMessage)
        return

    if img.ndim < 2:
        print('fatal:', 'Unable to align "%s"' % filepath)
        return
    if img.ndim == 2:
        img = facenet.to_rgb(img)
    img = img[:, :, 0:3]

    bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet,
                                                      onet, threshold, factor)
    nrof_faces = bounding_boxes.shape[0]
    if nrof_faces > 0:
        det = bounding_boxes[:, 0:4]
        det_arr = []
        img_size = np.asarray(img.shape)[0:2]
        if nrof_faces > 1:
            if detect_multiple_faces:
                for i in range(nrof_faces):
                    det_arr.append(np.squeeze(det[i]))
            else:
                bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] -
                                                               det[:, 1])
                img_center = img_size / 2
                offsets = np.vstack([
                    (det[:, 0] + det[:, 2]) / 2 - img_center[1],
                    (det[:, 1] + det[:, 3]) / 2 - img_center[0]
                ])
                offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
                index = np.argmax(bounding_box_size - offset_dist_squared *
                                  2.0)  # some extra weight on the centering
                det_arr.append(det[index, :])
        else:
            det_arr.append(np.squeeze(det))

        for i, det in enumerate(det_arr):
            det = np.squeeze(det)
            bb = np.zeros(4, dtype=np.int32)
            bb[0] = np.maximum(det[0] - margin / 2, 0)
            bb[1] = np.maximum(det[1] - margin / 2, 0)
            bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
            bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
            cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
            scaled = misc.imresize(cropped, (image_size, image_size),
                                   interp='bilinear')

            bounding_box_list.append(bb[:4])
    else:
        print('fatal:', 'Unable to align "%s"' % filepath)

    return filename, bounding_box_list
コード例 #5
0
ファイル: align.py プロジェクト: vaxin/facenet
def align(image_path):
    print('Creating networks and loading parameters')

    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = detect_face.create_mtcnn(sess, None)

    minsize = 20  # minimum size of face
    threshold = [0.6, 0.7, 0.7]  # three steps's threshold
    factor = 0.709  # scale factor

    # Add a random key to the filename to allow alignment using multiple processes
    random_key = np.random.randint(0, high=99999)
    filename = os.path.splitext(os.path.split(image_path)[1])[0]

    try:
        img = misc.imread(image_path)
    except (IOError, ValueError, IndexError) as e:
        errorMessage = '{}: {}'.format(image_path, e)
        print(errorMessage)
    else:
        if img.ndim < 2:
            print('Unable to align "%s"' % image_path)
            return

        if img.ndim == 2:
            img = facenet.to_rgb(img)
        img = img[:, :, 0:3]

        bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet,
                                                    onet, threshold, factor)
        nrof_faces = bounding_boxes.shape[0]
        print('nrof_faces: %s' % nrof_faces)
        n = 0
        if nrof_faces > 0:
            det = bounding_boxes[:, 0:4]
            img_size = np.asarray(img.shape)[0:2]
            if nrof_faces >= 1:
                bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] -
                                                               det[:, 1])
                img_center = img_size / 2
                offsets = np.vstack([
                    (det[:, 0] + det[:, 2]) / 2 - img_center[1],
                    (det[:, 1] + det[:, 3]) / 2 - img_center[0]
                ])
                offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
                #index = np.argmax(bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering
                #det = det[index,:]
                for one in det:
                    one = np.squeeze(one)
                    bb = np.zeros(4, dtype=np.int32)
                    bb[0] = np.maximum(one[0] - 5.0 / 2, 0)
                    bb[1] = np.maximum(one[1] - 5.0 / 2, 0)
                    bb[2] = np.minimum(one[2] + 5.0 / 2, img_size[1])
                    bb[3] = np.minimum(one[3] + 5.0 / 2, img_size[0])
                    cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
                    scaled = misc.imresize(cropped, (128, 128),
                                           interp='bilinear')
                    misc.imsave('/dl/' + str(n) + '.png', scaled)
                    n += 1
        else:
            print('Unable to align "%s"' % image_path)
コード例 #6
0
def main(args):
    sleep(random.random())
    output_dir = os.path.expanduser(args.output_dir)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    # Store some git revision info in a text file in the log directory
    src_path, _ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv))
    dataset = facenet.get_dataset(args.input_dir)

    print('Creating networks and loading parameters')

    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = detect_face.create_mtcnn(sess, None)

    minsize = 20  # minimum size of face
    threshold = [0.6, 0.7, 0.7]  # three steps's threshold
    factor = 0.709  # scale factor

    # Add a random key to the filename to allow alignment using multiple processes
    random_key = np.random.randint(0, high=99999)
    bounding_boxes_filename = os.path.join(
        output_dir, 'bounding_boxes_%05d.txt' % random_key)

    with open(bounding_boxes_filename, "w") as text_file:
        nrof_images_total = 0
        nrof_successfully_aligned = 0
        if args.random_order:
            random.shuffle(dataset)
        for cls in dataset:
            output_class_dir = os.path.join(output_dir, cls.name)
            if not os.path.exists(output_class_dir):
                os.makedirs(output_class_dir)
                if args.random_order:
                    random.shuffle(cls.image_paths)
            for image_path in cls.image_paths:
                nrof_images_total += 1
                filename = os.path.splitext(os.path.split(image_path)[1])[0]
                output_filename = os.path.join(output_class_dir,
                                               filename + '.png')
                print(image_path)
                if not os.path.exists(output_filename):
                    try:
                        img = misc.imread(image_path)
                    except (IOError, ValueError, IndexError) as e:
                        errorMessage = '{}: {}'.format(image_path, e)
                        print(errorMessage)
                    else:
                        if img.ndim < 2:
                            print('Unable to align "%s"' % image_path)
                            text_file.write('%s\n' % (output_filename))
                            continue
                        if img.ndim == 2:
                            img = facenet.to_rgb(img)
                        img = img[:, :, 0:3]

                        bounding_boxes, _ = detect_face.detect_face(
                            img, minsize, pnet, rnet, onet, threshold, factor)
                        nrof_faces = bounding_boxes.shape[0]
                        if nrof_faces > 0:
                            det = bounding_boxes[:, 0:4]
                            det_arr = []
                            img_size = np.asarray(img.shape)[0:2]
                            if nrof_faces > 1:
                                if args.detect_multiple_faces:
                                    for i in range(nrof_faces):
                                        det_arr.append(np.squeeze(det[i]))
                                else:
                                    bounding_box_size = (
                                        det[:, 2] - det[:, 0]) * (det[:, 3] -
                                                                  det[:, 1])
                                    img_center = img_size / 2
                                    offsets = np.vstack([
                                        (det[:, 0] + det[:, 2]) / 2 -
                                        img_center[1],
                                        (det[:, 1] + det[:, 3]) / 2 -
                                        img_center[0]
                                    ])
                                    offset_dist_squared = np.sum(
                                        np.power(offsets, 2.0), 0)
                                    index = np.argmax(
                                        bounding_box_size -
                                        offset_dist_squared * 2.0
                                    )  # some extra weight on the centering
                                    det_arr.append(det[index, :])
                            else:
                                det_arr.append(np.squeeze(det))

                            for i, det in enumerate(det_arr):
                                det = np.squeeze(det)
                                bb = np.zeros(4, dtype=np.int32)
                                bb[0] = np.maximum(det[0] - args.margin / 2, 0)
                                bb[1] = np.maximum(det[1] - args.margin / 2, 0)
                                bb[2] = np.minimum(det[2] + args.margin / 2,
                                                   img_size[1])
                                bb[3] = np.minimum(det[3] + args.margin / 2,
                                                   img_size[0])
                                cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
                                scaled = misc.imresize(
                                    cropped,
                                    (args.image_size, args.image_size),
                                    interp='bilinear')
                                nrof_successfully_aligned += 1
                                filename_base, file_extension = os.path.splitext(
                                    output_filename)
                                if args.detect_multiple_faces:
                                    output_filename_n = "{}_{}{}".format(
                                        filename_base, i, file_extension)
                                else:
                                    output_filename_n = "{}{}".format(
                                        filename_base, file_extension)
                                misc.imsave(output_filename_n, scaled)
                                text_file.write('%s %d %d %d %d\n' %
                                                (output_filename_n, bb[0],
                                                 bb[1], bb[2], bb[3]))
                        else:
                            print('Unable to align "%s"' % image_path)
                            text_file.write('%s\n' % (output_filename))

    print('Total number of images: %d' % nrof_images_total)
    print('Number of successfully aligned images: %d' %
          nrof_successfully_aligned)
コード例 #7
0
def RecognizeFace(frames, model=None, class_names=None):

    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = detect_face.create_mtcnn(sess, npy)

            minsize = 20  # minimum size of face
            threshold = [0.6, 0.7, 0.7]  # three steps's threshold
            factor = 0.709  # scale factor
            margin = 32
            frame_interval = 3
            batch_size = 1000
            image_size = 160
            input_image_size = 160

            print('Loading feature extraction model')
            facenet.load_model(modeldir)

            images_placeholder = tf.get_default_graph().get_tensor_by_name(
                "input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name(
                "embeddings:0")
            phase_train_placeholder = tf.get_default_graph(
            ).get_tensor_by_name("phase_train:0")
            embedding_size = embeddings.get_shape()[1]

            classifier_filename_exp = os.path.expanduser(classifier_filename)
            if model == None or class_names == None:
                with open(classifier_filename_exp, 'rb') as infile:
                    (model, class_names) = pickle.load(infile)

            # video_capture = cv2.VideoCapture("akshay_mov.mp4")
            c = 0

            HumanNames = class_names
            print(HumanNames)

            print('Start Recognition!')
            prevTime = 0
            # ret, frame = video_capture.read()
            #frame = cv2.imread(img_path,0)

            #frame = cv2.resize(frame, (0,0), fx=0.5, fy=0.5)    #resize frame (optional)
            total_faces_detected = {}
            for frame in frames:
                frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                curTime = time.time() + 1  # calc fps
                timeF = frame_interval

                if (c % timeF == 0):
                    find_results = []

                    if frame.ndim == 2:
                        frame = facenet.to_rgb(frame)
                        frame = frame[:, :, 0:3]
                        bounding_boxes, _ = detect_face.detect_face(
                            frame, minsize, pnet, rnet, onet, threshold,
                            factor)
                        nrof_faces = bounding_boxes.shape[0]
                        print('Face Detected: %d' % nrof_faces)

                        if nrof_faces > 0:
                            det = bounding_boxes[:, 0:4]
                            img_size = np.asarray(frame.shape)[0:2]

                            cropped = []
                            scaled = []
                            scaled_reshape = []
                            bb = np.zeros((nrof_faces, 4), dtype=np.int32)

                            for i in range(nrof_faces):
                                emb_array = np.zeros((1, embedding_size))

                                bb[i][0] = det[i][0]
                                bb[i][1] = det[i][1]
                                bb[i][2] = det[i][2]
                                bb[i][3] = det[i][3]

                                #inner exception
                                if bb[i][0] <= 0 or bb[i][1] <= 0 or bb[i][
                                        2] >= len(frame[0]) or bb[i][3] >= len(
                                            frame):
                                    print('face is too close')
                                    break

                                cropped.append(frame[bb[i][1]:bb[i][3],
                                                     bb[i][0]:bb[i][2], :])
                                cropped[i] = facenet.flip(cropped[i], False)
                                scaled.append(
                                    misc.imresize(cropped[i],
                                                  (image_size, image_size),
                                                  interp='bilinear'))
                                scaled[i] = cv2.resize(
                                    scaled[i],
                                    (input_image_size, input_image_size),
                                    interpolation=cv2.INTER_CUBIC)
                                scaled[i] = facenet.prewhiten(scaled[i])
                                scaled_reshape.append(scaled[i].reshape(
                                    -1, input_image_size, input_image_size, 3))
                                feed_dict = {
                                    images_placeholder: scaled_reshape[i],
                                    phase_train_placeholder: False
                                }
                                emb_array[0, :] = sess.run(embeddings,
                                                           feed_dict=feed_dict)

                                predictions = model.predict_proba(emb_array)
                                print(predictions)
                                best_class_indices = np.argmax(predictions,
                                                               axis=1)
                                # print(best_class_indices)
                                best_class_probabilities = predictions[
                                    np.arange(len(best_class_indices)),
                                    best_class_indices]

                                #plot result idx under box
                                text_x = bb[i][0]
                                text_y = bb[i][3] + 20
                                print('Result Indices: ',
                                      best_class_indices[0])
                                print(HumanNames)
                                for H_i in HumanNames:
                                    # print(H_i)
                                    if HumanNames[best_class_indices[
                                            0]] == H_i and best_class_probabilities >= 0.4:
                                        result_names = HumanNames[
                                            best_class_indices[0]]
                                        if result_names in total_faces_detected:
                                            if predictions[0][best_class_indices[
                                                    0]] > total_faces_detected[
                                                        result_names]:
                                                total_faces_detected[
                                                    result_names] = predictions[
                                                        0][best_class_indices[
                                                            0]]
                                        else:
                                            total_faces_detected[
                                                result_names] = predictions[0][
                                                    best_class_indices[0]]

                    else:
                        print("BHAKKK")
            if len(total_faces_detected) == 0:
                return None
            else:
                x = sorted(total_faces_detected.items(),
                           key=operator.itemgetter(1))
                return [x[len(x) - 1][0]]