def main(args): output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.mkdir(output_dir) # Store some git revision info in a text file in the output directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) i = 0 for f in args.tsv_files: for line in f: fields = line.split('\t') class_dir = fields[0] img_name = fields[1] + '-' + fields[4] + '.' + args.output_format img_string = fields[6] img_dec_string = base64.b64decode(img_string) img_data = np.fromstring(img_dec_string, dtype=np.uint8) img = cv2.imdecode(img_data, cv2.cv.CV_LOAD_IMAGE_COLOR) #pylint: disable=maybe-no-member if args.size>0: img = misc.imresize(img, (args.size, args.size), interp='bilinear') full_class_dir = os.path.join(output_dir, class_dir) if not os.path.exists(full_class_dir): os.mkdir(full_class_dir) full_path = os.path.join(full_class_dir, img_name) cv2.imwrite(full_path, img) #pylint: disable=maybe-no-member print('%8d: %s' % (i, full_path)) i += 1
def main(args): funnel_cmd = 'funnelReal' funnel_model = 'people.train' output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the output directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir) np.random.shuffle(dataset) # Scale the image such that the face fills the frame when cropped to crop_size #scale = float(args.face_size) / args.image_size with TemporaryDirectory() as tmp_dir: for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) tmp_output_class_dir = os.path.join(tmp_dir, cls.name) if not os.path.exists(output_class_dir) and not os.path.exists(tmp_output_class_dir): print('Aligning class %s:' % cls.name) tmp_filenames = [] if not os.path.exists(tmp_output_class_dir): os.makedirs(tmp_output_class_dir) input_list_filename = os.path.join(tmp_dir, 'input_list.txt') output_list_filename = os.path.join(tmp_dir, 'output_list.txt') input_file = open(input_list_filename, 'w') output_file = open(output_list_filename,'w') for image_path in cls.image_paths: filename = os.path.split(image_path)[1] input_file.write(image_path+'\n') output_filename = os.path.join(tmp_output_class_dir, filename) output_file.write(output_filename+'\n') tmp_filenames.append(output_filename) input_file.close() output_file.close() cmd = args.funnel_dir+funnel_cmd + ' ' + input_list_filename + ' ' + args.funnel_dir+funnel_model + ' ' + output_list_filename subprocess.call(cmd, shell=True) # Resize and crop images if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) scale = 1.0 for tmp_filename in tmp_filenames: img = misc.imread(tmp_filename) img_scale = misc.imresize(img, scale) sz1 = img.shape[1]/2 sz2 = args.image_size/2 img_crop = img_scale[int(sz1-sz2):int(sz1+sz2),int(sz1-sz2):int(sz1+sz2),:] filename = os.path.splitext(os.path.split(tmp_filename)[1])[0] output_filename = os.path.join(output_class_dir, filename+'.png') print('Saving image %s' % output_filename) misc.imsave(output_filename, img_crop) # Remove tmp directory with images shutil.rmtree(tmp_output_class_dir)
def main(args): TEMPORAL_DIM = int(args.image_w / 5) SPATIAL_DIM = int(args.image_h / 5) seed_batch_idx = args.seed_batch_idx network = importlib.import_module(args.model_def) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) random.seed(args.seed) train_set = facenet.get_dataset(args.data_dir) nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels action_list, label_list = get_image_paths_and_labels( dataPath=args.dataPath, s_ID=None, is_training=True, x_type=args.x_type) assert len(action_list) > 0, 'The dataset should not be empty' ## create input pipeline queue_input_data = tf.placeholder( tf.float32, shape=[None, args.image_h, args.image_w, 3]) queue_input_label = tf.placeholder(tf.int64, shape=[None, 1]) queue = tf.FIFOQueue(capacity=20000, dtypes=[tf.float32, tf.int64], shapes=[[args.image_h, args.image_w, 3], [1]]) enqueue_op = queue.enqueue_many([queue_input_data, queue_input_label]) dequeue_data, dequeue_lab = queue.dequeue() dequeue_image = tf.image.per_image_standardization(dequeue_data) # Create a queue that produces indices into the action_list and label_list labels = ops.convert_to_tensor(label_list, dtype=tf.int32) range_size = array_ops.shape(labels)[0] index_queue = tf.train.range_input_producer(range_size, num_epochs=None, shuffle=True, seed=None, capacity=32) #index_dequeue_op = index_queue.dequeue_many(args.batch_size*args.epoch_size, 'index_dequeue') index_dequeue_op = index_queue.dequeue_many(args.batch_size * 100, 'index_dequeue') learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None, 1), name='image_paths') labels_placeholder = tf.placeholder(tf.int64, shape=(None, 1), name='labels') #image_batch, label_batch = tf.train.batch([dequeue_image, dequeue_lab], batch_size=args.batch_size, capacity=100) image_batch, label_batch = tf.train.batch( [dequeue_image, dequeue_lab], batch_size=batch_size_placeholder, capacity=1000) label_batch = tf.squeeze(label_batch) image_batch = tf.identity(image_batch, 'input') label_batch = tf.identity(label_batch, 'label_batch') tf.summary.image("input_image", image_batch, max_outputs=4) print('Total number of classes: %d' % nrof_classes) print('Total number of examples: %d' % len(action_list)) print('Building training graph') # Build the inference graph prelogits, _ = network.inference( image_batch, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) logits = slim.fully_connected( prelogits, len(train_set), activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') # Add center loss if args.center_loss_factor > 0.0: prelogits_center_loss, _ = facenet.center_loss( prelogits, label_batch, args.center_loss_alfa, nrof_classes) tf.add_to_collection( tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=label_batch, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # Calculate batch accuracy correct_prediction = tf.equal(tf.argmax(logits, axis=1), label_batch) batch_accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='batch_accuracy') tf.summary.scalar('batch_accuracy', batch_accuracy) # Calculate the total losses regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one 0batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms) # Create a saver saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=10) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord, sess=sess) enqueue_thread = threading.Thread(target=enqueue, args=[ sess, index_dequeue_op, enqueue_op, action_list, label_list, queue_input_data, queue_input_label, TEMPORAL_DIM, SPATIAL_DIM, seed_batch_idx ]) enqueue_thread.isDaemon() enqueue_thread.start() with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) saver.restore(sess, pretrained_model) # Training and validation loop print('Running training') epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train( args, sess, epoch, #image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder, learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW if args.lfw_dir: evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, embeddings, label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer) sess.run(queue.close(cancel_pending_enqueues=True)) coord.request_stop() coord.join(threads) sess.close() return model_dir
def main(args): sleep(random.random()) output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir) print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) bounding_boxes_filename = os.path.join( output_dir, 'bounding_boxes_%05d.txt' % random_key) with open(bounding_boxes_filename, "w") as text_file: nrof_images_total = 0 nrof_successfully_aligned = 0 if args.random_order: random.shuffle(dataset) for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) if args.random_order: random.shuffle(cls.image_paths) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.png') print(image_path) if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim < 2: print('Unable to align "%s"' % image_path + ", original saved.") misc.imsave(output_filename, img) text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2: img = facenet.to_rgb(img) img = img[:, :, 0:3] bounding_boxes, _ = align.detect_face.detect_face( img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces > 0: det = bounding_boxes[:, 0:4] det_arr = [] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: if args.detect_multiple_faces: for i in range(nrof_faces): det_arr.append(np.squeeze(det[i])) else: bounding_box_size = ( det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([ (det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0] ]) offset_dist_squared = np.sum( np.power(offsets, 2.0), 0) index = np.argmax( bounding_box_size - offset_dist_squared * 2.0 ) # some extra weight on the centering det_arr.append(det[index, :]) else: det_arr.append(np.squeeze(det)) for i, det in enumerate(det_arr): det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - args.margin / 2, 0) bb[1] = np.maximum(det[1] - args.margin / 2, 0) bb[2] = np.minimum(det[2] + args.margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + args.margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] scaled = misc.imresize( cropped, (args.image_size, args.image_size), interp='bilinear') nrof_successfully_aligned += 1 filename_base, file_extension = os.path.splitext( output_filename) if args.detect_multiple_faces: output_filename_n = "{}_{}{}".format( filename_base, i, file_extension) else: output_filename_n = "{}{}".format( filename_base, file_extension) misc.imsave(output_filename_n, scaled) text_file.write('%s %d %d %d %d\n' % (output_filename_n, bb[0], bb[1], bb[2], bb[3])) else: print('Unable to align "%s"' % image_path + ", original saved.") misc.imsave(output_filename, img) text_file.write('%s\n' % (output_filename)) print('Total number of images: %d' % nrof_images_total) print('Number of successfully aligned images: %d' % nrof_successfully_aligned)
def main(args): network = importlib.import_module(args.model_def) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = facenet.get_dataset(args.data_dir) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) # 预训练模型 if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) # # lfw 数据集的位置 # if args.lfw_dir: # print('LFW directory: %s' % args.lfw_dir) # # Read the file containing the pairs used for testing # pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # # Get the paths for the corresponding images # lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False, name='global_step') # Placeholders for the learning rate, batch_size, phase_train, image_path, labels learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None, 3), name='image_paths') labels_placeholder = tf.placeholder(tf.int64, shape=(None, 3), name='labels') input_queue = data_flow_ops.FIFOQueue(capacity=100000, dtypes=[tf.string, tf.int64], shapes=[(3,), (3,)], shared_name=None, name=None) enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder]) # 读取数据的线程数,将下面改为 multi_gpu 运行的版本 nrof_preprocess_threads = 4 images_and_labels_all = [] for _ in range(nrof_preprocess_threads): for gpu in range(args.num_gpus): images_and_labels = [] # 每次都从 queue 中将数据 dequeue 出来 filenames, label = input_queue.dequeue() images = [] for filename in tf.unstack(filenames): file_contents = tf.read_file(filename) image = tf.image.decode_image(file_contents, channels=3) if args.random_crop: image = tf.random_crop(image, [args.image_size, args.image_size, 3]) else: image = tf.image.resize_image_with_crop_or_pad(image, args.image_size, args.image_size) if args.random_flip: image = tf.image.random_flip_left_right(image) # pylint: disable=no-member image.set_shape((args.image_size, args.image_size, 3)) images.append(tf.image.per_image_standardization(image)) images_and_labels.append([images, label]) images_and_labels_all.append(images_and_labels) # 将数据整理,并适用于下面的多 gpu 运行 image_batch_split = [] label_batch_split = [] # label_extend = [] for i in range(args.num_gpus): image_batch, labels_batch = tf.train.batch_join( images_and_labels_all[i], batch_size=batch_size_placeholder, shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True, capacity=4 * nrof_preprocess_threads * args.batch_size, allow_smaller_final_batch=True) image_batch = tf.identity(image_batch, 'image_batch') image_batch = tf.identity(image_batch, 'input') labels_batch = tf.identity(labels_batch, 'label_batch') image_batch_split.append(image_batch) label_batch_split.append(labels_batch) # label_extend.extend(labels_batch) learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # print('Using optimizer: {}'.format(args.optimizer)) # if args.optimizer == 'ADAGRAD': # opt = tf.train.AdagradOptimizer(learning_rate) # elif args.optimizer == 'MOM': # opt = tf.train.MomentumOptimizer(learning_rate, rho=0.9, epsilon=1e-6) # elif args.optimizer=='ADAM': # opt = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999, epsilon=0.1) # elif args.optimizer=='RMSPROP': # opt = tf.train.RMSPropOptimizer(learning_rate, decay=0.9, momentum=0.9, epsilon=1.0) # elif args.optimizer=='MOM': # opt = tf.train.MomentumOptimizer(learning_rate, 0.9, use_nesterov=True) # else: # raise Exception('Not supported optimizer: {}'.format(args.optimizer)) # 在这部分进行 multi_gpu print('Building training graph....') tower_losses = [] tower_triplet = [] tower_reg= [] # embeddings_extend = [] embeddings_split = [] for i in range(args.num_gpus): with tf.device("/gpu:" + str(i)): with tf.name_scope("tower_" + str(i)) as scope: with tf.variable_scope(tf.get_variable_scope()) as var_scope: # Build the inference graph with tf.variable_scope(name_or_scope='', reuse=tf.AUTO_REUSE): # # Dequeues one batch for one tower # image_batch_de, label_batch_de = batch_queue.dequeue() prelogits, _ = network.inference(image_batch_split[i], args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') # embeddings_extend.extend(embeddings) embeddings_split.append(embeddings) # Split embeddings into anchor, postive and negative and calculate triplet loss anchor, positive, negative = tf.unstack(tf.reshape(embeddings, [-1,3,args.embedding_size]), 3, 1) triplet_loss_split = facenet.triplet_loss(anchor, positive, negative, args.alpha) regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) tower_triplet.append(triplet_loss_split) loss = triplet_loss_split + tf.add_n(regularization_losses) tower_losses.append(loss) tower_reg.append(regularization_losses) # 同名变量可以重用 tf.get_variable_scope().reuse_variables() total_loss = tf.reduce_mean(tower_losses) total_reg = tf.reduce_mean(tower_reg) losses = {} losses['total_loss'] = total_loss losses['total_reg'] = total_reg # # 计算 embeddings 的均值 # tmp_embeddings = None # for j in range(arg.num_gpus): # if j > 0: # tmp_embeddings += embeddings_split[j] # else: # tmp_embeddings = embeddings_split[j] # embeddings = tmp_embeddings / args.num_gpus # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables()) # grads = opt.compute_gradients(total_loss,tf.trainable_variables(),colocate_gradients_with_ops=True) # apply_gradient_op = opt.apply_gradients(grads,global_step=global_step) # update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # with tf.control_dependencies(update_ops): # train_op = tf.group(apply_gradient_op) # Create a saver saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # Initialize variables sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder:True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder:True}) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) saver.restore(sess, os.path.expanduser(args.pretrained_model)) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train multi gpus for one epoch epoch_start_time = time.time() # for i in range(args.num_gpus): train_multi_gpu(args, sess, train_set, epoch, image_paths_placeholder, labels_placeholder, label_batch_split[0], label_batch_split[1], batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, input_queue, global_step, embeddings_split[0], embeddings_split[1], losses['total_loss'], losses['total_reg'], train_op, summary_op, summary_writer, args.learning_rate_schedule_file, args.embedding_size) print('The %dth epoch running time is %.3f seconds!!!' %(epoch, time.time()-epoch_start_time)) # # Train for one epoch # train(args, sess, epoch, # learning_rate_placeholder, phase_train_placeholder, global_step, # losses, train_op, summary_op, summary_writer, args.learning_rate_schedule_file) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) return model_dir
def main(args): network = importlib.import_module(args.model_def) image_size = (args.image_size, args.image_size) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) stat_file_name = os.path.join(log_dir, 'stat.h5') # Write arguments to a text file facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) random.seed(args.seed) dataset = facenet.get_dataset(args.data_dir) if args.filter_filename: dataset = filter_dataset(dataset, os.path.expanduser(args.filter_filename), args.filter_percentile, args.filter_min_nrof_images_per_class) if args.validation_set_split_ratio > 0.0: train_set, val_set = facenet.split_dataset( dataset, args.validation_set_split_ratio, args.min_nrof_val_images_per_class, 'SPLIT_IMAGES') else: train_set, val_set = dataset, [] nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths( os.path.expanduser(args.lfw_dir), pairs) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(train_set) assert len(image_list) > 0, 'The training set should not be empty' val_image_list, val_label_list = facenet.get_image_paths_and_labels( val_set) # Create a queue that produces indices into the image_list and label_list labels = ops.convert_to_tensor(label_list, dtype=tf.int32) range_size = array_ops.shape(labels)[0] index_queue = tf.train.range_input_producer(range_size, num_epochs=None, shuffle=True, seed=None, capacity=32) index_dequeue_op = index_queue.dequeue_many( args.batch_size * args.epoch_size, 'index_dequeue') learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None, 1), name='image_paths') labels_placeholder = tf.placeholder(tf.int32, shape=(None, 1), name='labels') control_placeholder = tf.placeholder(tf.int32, shape=(None, 1), name='control') nrof_preprocess_threads = 4 input_queue = data_flow_ops.FIFOQueue( capacity=2000000, dtypes=[tf.string, tf.int32, tf.int32], shapes=[(1, ), (1, ), (1, )], shared_name=None, name=None) enqueue_op = input_queue.enqueue_many( [image_paths_placeholder, labels_placeholder, control_placeholder], name='enqueue_op') image_batch, label_batch = facenet.create_input_pipeline( input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder) image_batch = tf.identity(image_batch, 'image_batch') image_batch = tf.identity(image_batch, 'input') label_batch = tf.identity(label_batch, 'label_batch') print('Number of classes in training set: %d' % nrof_classes) print('Number of examples in training set: %d' % len(image_list)) print('Number of classes in validation set: %d' % len(val_set)) print('Number of examples in validation set: %d' % len(val_image_list)) print('Building training graph') # Build the inference graph prelogits, _ = network.inference( image_batch, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) logits = slim.fully_connected( prelogits, len(train_set), activation_fn=None, weights_initializer=slim.initializers.xavier_initializer(), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') g = tf.get_default_graph() tf.contrib.quantize.create_training_graph(input_graph=g, quant_delay=0) # Norm for the prelogits eps = 1e-4 prelogits_norm = tf.reduce_mean( tf.norm(tf.abs(prelogits) + eps, ord=args.prelogits_norm_p, axis=1)) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_norm * args.prelogits_norm_loss_factor) # Add center loss prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch, args.center_loss_alfa, nrof_classes) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=label_batch, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) correct_prediction = tf.cast( tf.equal(tf.argmax(logits, 1), tf.cast(label_batch, tf.int64)), tf.float32) accuracy = tf.reduce_mean(correct_prediction) # Calculate the total losses regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms) # Create a saver saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) saver_new = tf.train.Saver(max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. # gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) saver.restore(sess, pretrained_model) # Training and validation loop print('Running training') nrof_steps = args.max_nrof_epochs * args.epoch_size nrof_val_samples = int( math.ceil(args.max_nrof_epochs / args.validate_every_n_epochs) ) # Validate every validate_every_n_epochs as well as in the last epoch stat = { 'loss': np.zeros((nrof_steps, ), np.float32), 'center_loss': np.zeros((nrof_steps, ), np.float32), 'reg_loss': np.zeros((nrof_steps, ), np.float32), 'xent_loss': np.zeros((nrof_steps, ), np.float32), 'prelogits_norm': np.zeros((nrof_steps, ), np.float32), 'accuracy': np.zeros((nrof_steps, ), np.float32), 'val_loss': np.zeros((nrof_val_samples, ), np.float32), 'val_xent_loss': np.zeros((nrof_val_samples, ), np.float32), 'val_accuracy': np.zeros((nrof_val_samples, ), np.float32), 'lfw_accuracy': np.zeros((args.max_nrof_epochs, ), np.float32), 'lfw_valrate': np.zeros((args.max_nrof_epochs, ), np.float32), 'learning_rate': np.zeros((args.max_nrof_epochs, ), np.float32), 'time_train': np.zeros((args.max_nrof_epochs, ), np.float32), 'time_validate': np.zeros((args.max_nrof_epochs, ), np.float32), 'time_evaluate': np.zeros((args.max_nrof_epochs, ), np.float32), 'prelogits_hist': np.zeros((args.max_nrof_epochs, 1000), np.float32), } for epoch in range(1, args.max_nrof_epochs + 1): step = sess.run(global_step, feed_dict=None) # Train for one epoch t = time.time() cont = train( args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder, learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file, stat, cross_entropy_mean, accuracy, learning_rate, prelogits, prelogits_center_loss, args.random_rotate, args.random_crop, args.random_flip, prelogits_norm, args.prelogits_hist_max, args.use_fixed_image_standardization) stat['time_train'][epoch - 1] = time.time() - t if not cont: break t = time.time() if len(val_image_list) > 0 and ( (epoch - 1) % args.validate_every_n_epochs == args.validate_every_n_epochs - 1 or epoch == args.max_nrof_epochs): validate(args, sess, epoch, val_image_list, val_label_list, enqueue_op, image_paths_placeholder, labels_placeholder, control_placeholder, phase_train_placeholder, batch_size_placeholder, stat, total_loss, regularization_losses, cross_entropy_mean, accuracy, args.validate_every_n_epochs, args.use_fixed_image_standardization) stat['time_validate'][epoch - 1] = time.time() - t # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver_new, summary_writer, model_dir, subdir, epoch) # Evaluate on LFW t = time.time() if args.lfw_dir: evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, embeddings, label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer, stat, epoch, args.lfw_distance_metric, args.lfw_subtract_mean, args.lfw_use_flipped_images, args.use_fixed_image_standardization) stat['time_evaluate'][epoch - 1] = time.time() - t print('Saving statistics') with h5py.File(stat_file_name, 'w') as f: for key, value in stat.items(): f.create_dataset(key, data=value) return model_dir
def main(args): img_mean = np.array([134.10714722, 102.52040863, 87.15436554]) img_stddev = np.sqrt(np.array([3941.30175781, 2856.94287109, 2519.35791016])) vae_def = importlib.import_module(args.vae_def) vae = vae_def.Vae(args.latent_var_size) gen_image_size = vae.get_image_size() subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) log_file_name = os.path.join(model_dir, 'logs.h5') # Write arguments to a text file facenet.write_arguments_to_file(args, os.path.join(model_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, model_dir, ' '.join(sys.argv)) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) train_set = facenet.get_dataset(args.data_dir) image_list, _ = facenet.get_image_paths_and_labels(train_set) # Create the input queue input_queue = tf.train.string_input_producer(image_list, shuffle=True) nrof_preprocess_threads = 4 image_per_thread = [] for _ in range(nrof_preprocess_threads): file_contents = tf.read_file(input_queue.dequeue()) image = tf.image.decode_image(file_contents, channels=3) image = tf.image.resize_image_with_crop_or_pad(image, args.input_image_size, args.input_image_size) image.set_shape((args.input_image_size, args.input_image_size, 3)) image = tf.cast(image, tf.float32) #pylint: disable=no-member image_per_thread.append([image]) images = tf.train.batch_join( image_per_thread, batch_size=args.batch_size, capacity=4 * nrof_preprocess_threads * args.batch_size, allow_smaller_final_batch=False) # Normalize images_norm = (images-img_mean) / img_stddev # Resize to appropriate size for the encoder images_norm_resize = tf.image.resize_images(images_norm, (gen_image_size,gen_image_size)) # Create encoder network mean, log_variance = vae.encoder(images_norm_resize, True) epsilon = tf.random_normal((tf.shape(mean)[0], args.latent_var_size)) std = tf.exp(log_variance/2) latent_var = mean + epsilon * std # Create decoder network reconstructed_norm = vae.decoder(latent_var, True) # Un-normalize reconstructed = (reconstructed_norm*img_stddev) + img_mean # Create reconstruction loss if args.reconstruction_loss_type=='PLAIN': images_resize = tf.image.resize_images(images, (gen_image_size,gen_image_size)) reconstruction_loss = tf.reduce_mean(tf.reduce_sum(tf.pow(images_resize - reconstructed,2))) elif args.reconstruction_loss_type=='PERCEPTUAL': network = importlib.import_module(args.model_def) reconstructed_norm_resize = tf.image.resize_images(reconstructed_norm, (args.input_image_size,args.input_image_size)) # Stack images from both the input batch and the reconstructed batch in a new tensor shp = [-1] + images_norm.get_shape().as_list()[1:] input_images = tf.reshape(tf.stack([images_norm, reconstructed_norm_resize], axis=0), shp) _, end_points = network.inference(input_images, 1.0, phase_train=False, bottleneck_layer_size=128, weight_decay=0.0) # Get a list of feature names to use for loss terms feature_names = args.loss_features.replace(' ', '').split(',') # Calculate L2 loss between original and reconstructed images in feature space reconstruction_loss_list = [] for feature_name in feature_names: feature_flat = slim.flatten(end_points[feature_name]) image_feature, reconstructed_feature = tf.unstack(tf.reshape(feature_flat, [2,args.batch_size,-1]), num=2, axis=0) reconstruction_loss = tf.reduce_mean(tf.reduce_sum(tf.pow(image_feature-reconstructed_feature, 2)), name=feature_name+'_loss') reconstruction_loss_list.append(reconstruction_loss) # Sum up the losses in for the different features reconstruction_loss = tf.add_n(reconstruction_loss_list, 'reconstruction_loss') else: pass # Create KL divergence loss kl_loss = kl_divergence_loss(mean, log_variance) kl_loss_mean = tf.reduce_mean(kl_loss) total_loss = args.alfa*kl_loss_mean + args.beta*reconstruction_loss learning_rate = tf.train.exponential_decay(args.initial_learning_rate, global_step, args.learning_rate_decay_steps, args.learning_rate_decay_factor, staircase=True) # Calculate gradients and make sure not to include parameters for the perceptual loss model opt = tf.train.AdamOptimizer(learning_rate) grads = opt.compute_gradients(total_loss, var_list=get_variables_to_train()) # Apply gradients apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) with tf.control_dependencies([apply_gradient_op]): train_op = tf.no_op(name='train') # Create a saver saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) facenet_saver = tf.train.Saver(get_facenet_variables_to_restore()) # Start running operations on the Graph gpu_memory_fraction = 1.0 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if args.reconstruction_loss_type=='PERCEPTUAL': if not args.pretrained_model: raise ValueError('A pretrained model must be specified when using perceptual loss') pretrained_model_exp = os.path.expanduser(args.pretrained_model) print('Restoring pretrained model: %s' % pretrained_model_exp) facenet_saver.restore(sess, pretrained_model_exp) log = { 'total_loss': np.zeros((0,), np.float), 'reconstruction_loss': np.zeros((0,), np.float), 'kl_loss': np.zeros((0,), np.float), 'learning_rate': np.zeros((0,), np.float), } step = 0 print('Running training') while step < args.max_nrof_steps: start_time = time.time() step += 1 save_state = step>0 and (step % args.save_every_n_steps==0 or step==args.max_nrof_steps) if save_state: _, reconstruction_loss_, kl_loss_mean_, total_loss_, learning_rate_, rec_ = sess.run( [train_op, reconstruction_loss, kl_loss_mean, total_loss, learning_rate, reconstructed]) img = facenet.put_images_on_grid(rec_, shape=(16,8)) misc.imsave(os.path.join(model_dir, 'reconstructed_%06d.png' % step), img) else: _, reconstruction_loss_, kl_loss_mean_, total_loss_, learning_rate_ = sess.run( [train_op, reconstruction_loss, kl_loss_mean, total_loss, learning_rate]) log['total_loss'] = np.append(log['total_loss'], total_loss_) log['reconstruction_loss'] = np.append(log['reconstruction_loss'], reconstruction_loss_) log['kl_loss'] = np.append(log['kl_loss'], kl_loss_mean_) log['learning_rate'] = np.append(log['learning_rate'], learning_rate_) duration = time.time() - start_time print('Step: %d \tTime: %.3f \trec_loss: %.3f \tkl_loss: %.3f \ttotal_loss: %.3f' % (step, duration, reconstruction_loss_, kl_loss_mean_, total_loss_)) if save_state: print('Saving checkpoint file') checkpoint_path = os.path.join(model_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step, write_meta_graph=False) print('Saving log') with h5py.File(log_file_name, 'w') as f: for key, value in log.iteritems(): f.create_dataset(key, data=value)
def main(args): network = importlib.import_module(args.model_def, 'inference') if args.model_name: subdir = args.model_name preload_model = True else: subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') preload_model = False log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist os.mkdir(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.mkdir(model_dir) # Store some git revision info in a text file in the log directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = facenet.get_dataset(args.data_dir) print('Model directory: %s' % model_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Placeholder for input images images_placeholder = tf.placeholder(tf.float32, shape=(None, args.image_size, args.image_size, 3), name='input') # Placeholder for phase_train phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') # Build the inference graph embeddings = network.inference(images_placeholder, args.pool_type, args.use_lrn, args.keep_probability, phase_train=phase_train_placeholder, weight_decay=args.weight_decay) # Split example embeddings into anchor, positive and negative anchor, positive, negative = tf.split(0, 3, embeddings) # Calculate triplet loss loss = facenet.triplet_loss(anchor, positive, negative, args.alpha) # Calculate the total loss regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([loss] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op, _ = facenet.train(total_loss, global_step, args.optimizer, args.learning_rate, args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, args.moving_average_decay) # Create a saver saver = tf.train.Saver(tf.all_variables(), max_to_keep=0) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Build an initialization operation to run below. init = tf.initialize_all_variables() # Start running operations on the Graph. sess = tf.Session() sess.run(init) summary_writer = tf.train.SummaryWriter(log_dir, sess.graph) with sess.as_default(): if preload_model: ckpt = tf.train.get_checkpoint_state(model_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) else: raise ValueError('Checkpoint not found') # Training and validation loop for epoch in range(args.max_nrof_epochs): # Train for one epoch step = train(args, sess, train_set, epoch, images_placeholder, phase_train_placeholder, global_step, embeddings, loss, train_op, summary_op, summary_writer) _, _, accuracy, val, val_std, far = lfw.validate(sess, paths, actual_issame, args.seed, args.batch_size, images_placeholder, phase_train_placeholder, embeddings, nrof_folds=args.lfw_nrof_folds) print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy))) print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) # Add validation loss and accuracy to summary summary = tf.Summary() summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy)) summary.value.add(tag='lfw/val_rate', simple_value=val) summary_writer.add_summary(summary, step) if (epoch % args.checkpoint_period == 0) or (epoch==args.max_nrof_epochs-1): # Save the model checkpoint print('Saving checkpoint') checkpoint_path = os.path.join(model_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) return model_dir
def main(args): sleep(random.random()) output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir) print('Load from model!') with tf.Graph().as_default(): gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) bounding_boxes_filename = os.path.join( output_dir, 'bounding_boxes_%05d.txt' % random_key) with open(bounding_boxes_filename, "w") as text_file: nrof_images_total = 0 nrof_successfully_aligned = 0 if args.random_order: random.shuffle(dataset) for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) if args.random_order: random.shuffle(cls.image_paths) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.png') print(image_path) if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim < 2: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2: img = facenet.to_rgb(img) img = img[:, :, 0:3] #### alignment faces # saver = tf.train.import_meta_graph('./mtcnn-3000000.meta') # graph = tf.get_default_graph() # sess.run(tf.global_variables_initializer()) # saver.restore(sess, './mtcnn-3000000') bounding_boxes, points = align.detect_face.detect_face( img, minsize, pnet, rnet, onet, threshold, factor) if len(points) != 0: nrof_faces = points.shape[1] if nrof_faces > 0: det = bounding_boxes[:, 0:4] # --------- show faces with box ----- for i in range(nrof_faces): bb = det[i, :].astype(dtype=np.int32) img_and_crop = cv2.rectangle( img, (bb[0], bb[1]), (bb[2], bb[3]), (0, 255, 0)) cv2.putText(img, '# {}'.format(i), (bb[0], bb[3] - bb[1]), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), lineType=cv2.LINE_AA) image_tmp = cv2.cvtColor( img_and_crop, cv2.COLOR_BGR2RGB) cv2.imshow('img_crp', image_tmp) cv2.waitKey() ########################## det_arr = [] _landmark = None img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: if args.detect_multiple_faces: for i in range(nrof_faces): _landmark = points[:, i].reshape( (2, 5)).T _bb = np.squeeze( bounding_boxes[i, 0:4]) warp0, M = alignment( img, _landmark, img_size) ### crop aligned images bounding_boxes_new, point = align.detect_face.detect_face( warp0, minsize, pnet, rnet, onet, threshold, factor) if np.shape( bounding_boxes_new)[0] > 1: print( '======find more faces after warp choose the most likely one! ======' ) offsets = [ np.linalg.norm( dist(point[:, i])) for i in range( np.shape(point)[1]) ] index_min = np.argmin(offsets) det = bounding_boxes_new[ index_min, 0:4] elif np.shape(bounding_boxes_new )[0] == 0: print('\n') print( '====== #{} have faces, while warp has none ======' .format(output_filename)) print('\n') det = _bb else: det = bounding_boxes_new[0, 0:4] # bb = det.astype(dtype=np.int32) # img_and_crop = cv2.rectangle(warp0, (bb[0], bb[1]), (bb[2], bb[3]), # (0, 255, 0)) # image_tmp = cv2.cvtColor(img_and_crop, cv2.COLOR_BGR2RGB) # cv2.imshow('img_crp', image_tmp) # cv2.waitKey() nrof_successfully_aligned = crop_face( i, det, args.margin, img_size, warp0, args.image_size, nrof_successfully_aligned, args.detect_multiple_faces, output_filename, text_file) else: bounding_box_size = ( det[:, 2] - det[:, 0]) * ( det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([ (det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0] ]) offset_dist_squared = np.sum( np.power(offsets, 2.0), 0) index = np.argmax( 2 * bounding_box_size - offset_dist_squared ) # some extra weight on the centering det_arr.append(det[index, :]) _bbox = det[index, :] _landmark = points[:, index].reshape( (2, 5)).T warp0, _ = alignment( img, _landmark, img_size) #### crop aligned images bounding_boxes_new, point = align.detect_face.detect_face( warp0, minsize, pnet, rnet, onet, threshold, factor) if np.shape(bounding_boxes_new)[0] > 1: print( '======find more faces after warp choose the most likely one! ======' ) offsets = [ np.linalg.norm( dist(point[:, i])) for i in range( np.shape(point)[1]) ] index_min = np.argmin(offsets) det = bounding_boxes_new[index_min, 0:4] elif np.shape( bounding_boxes_new)[0] == 0: print('\n') print( '====== #{} have faces, while warp has none ======' .format(output_filename)) print('\n') continue else: det = bounding_boxes_new[0, 0:4] nrof_successfully_aligned = crop_face( 0, det, args.margin, img_size, warp0, args.image_size, nrof_successfully_aligned, False, output_filename, text_file) else: _landmark = points.reshape((2, 5)).T warp0, M = alignment( img, _landmark, img_size) #### crop aligned images bounding_boxes_new, point = align.detect_face.detect_face( warp0, minsize, pnet, rnet, onet, threshold, factor) if np.shape(bounding_boxes_new)[0] > 1: print( '======find more faces after warp choose the most likely one! ======' ) offsets = [ np.linalg.norm(dist(point[:, i])) for i in range(np.shape(point)[1]) ] index_min = np.argmin(offsets) det = bounding_boxes_new[index_min, 0:4] elif np.shape(bounding_boxes_new)[0] == 0: print('\n') print( '====== #{} have faces, while warp has none ======' .format(output_filename)) print('\n') continue else: det = bounding_boxes_new[0, 0:4] nrof_successfully_aligned = crop_face( 0, det, args.margin, img_size, warp0, args.image_size, nrof_successfully_aligned, False, output_filename, text_file) else: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) os.remove(image_path) else: print( '==== No faces in this image in {}, remove it! ====' .format(output_filename)) os.remove(image_path) print('Total number of images: %d' % nrof_images_total) print('Number of successfully aligned images: %d' % nrof_successfully_aligned)
def main(args): network = importlib.import_module(args.model_def) image_size = (args.image_size, args.image_size) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) #日志保存地址 if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory # os.path.realpath(__file__)代表返回当前模块真实路径 # os.path.split(os.path.realpath(__file__))代表返回路径的目录和文件名(元组形式) src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) random.seed(args.seed) # dataset是列表,列表元素为每一个类的ImageClass对象,定义见facenet.py文件 dataset = facenet.get_dataset(args.data_dir) if args.filter_filename: dataset = filter_dataset(dataset, os.path.expanduser(args.filter_filename), args.filter_percentile, args.filter_min_nrof_images_per_class) # 划分训练集和测试集,train_set和val_set的形式和dataset一样 if args.validation_set_split_ratio > 0.0: train_set, val_set = facenet.split_dataset( dataset, args.validation_set_split_ratio, args.min_nrof_val_images_per_class, 'SPLIT_IMAGES') else: train_set, val_set = dataset, [] nrof_classes = len(train_set) #类目数(即有多少人) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing # pairs也是列表,子元素也是列表,每个子列表包含pairs.txt的每一行 pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images #lfw_paths为两两比较的列表,列表的元素为有2个元素的元祖,actual_issame为列表,表示每个元素是否为同一个人 lfw_paths, actual_issame = lfw.get_paths( os.path.expanduser(args.lfw_dir), pairs) with tf.Graph().as_default(): tf.set_random_seed(args.seed) # global_step对应的是全局批的个数,根据这个参数可以更新学习率 global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(train_set) assert len(image_list) > 0, 'The training set should not be empty' val_image_list, val_label_list = facenet.get_image_paths_and_labels( val_set) # Create a queue that produces indices into the image_list and label_list labels = ops.convert_to_tensor(label_list, dtype=tf.int32) # range_size的大小和样本个数一样 range_size = array_ops.shape(labels)[0] #QueueRunner:保存的是队列中的入列操作,保存在一个list当中,其中每个enqueue运行在一个线程当中 #range_input_producer:返回的是一个队列,队列中有打乱的整数,范围是从0到range size #range_size大小和总的样本个数一样 #并将一个QueueRunner添加到当前图的QUEUE_RUNNER集合中 index_queue = tf.train.range_input_producer( range_size, num_epochs=None, shuffle=True, seed=None, capacity=32) #capacity代表队列容量 # 返回的是一个出列操作,每次出列一个epoch需要用到的样本个数 index_dequeue_op = index_queue.dequeue_many( args.batch_size * args.epoch_size, 'index_dequeue') learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None, 1), name='image_paths') labels_placeholder = tf.placeholder(tf.int32, shape=(None, 1), name='labels') control_placeholder = tf.placeholder(tf.int32, shape=(None, 1), name='control') # 上面的队列是一个样本索引的出队队列,只用来出列 # 用来每次出列一个epoch中用到的样本 # 这里是第二个队列,这个队列用来入列,每个元素的大小为shape=[(1,),(1,),(1,)] nrof_preprocess_threads = 4 # 这里的shape代表每一个元素的维度 input_queue = data_flow_ops.FIFOQueue( capacity=600000, dtypes=[tf.string, tf.int32, tf.int32], shapes=[(1, ), (1, ), (1, )], shared_name=None, name=None) # 这时一个入列的操作,这个操作将在session run的时候用到 # 每次入列的是image_paths_placeholder, labels_placeholder对 # 注意,这里只有2个队列,一个用来出列打乱的元素序号 # 一个根据对应的需要读取指定的文件 enqueue_op = input_queue.enqueue_many( [image_paths_placeholder, labels_placeholder, control_placeholder], name='enqueue_op') image_batch, label_batch = facenet.create_input_pipeline( input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder) # image_batch = tf.identity(image_batch, 'image_batch') image_batch = tf.identity(image_batch, 'input') label_batch = tf.identity(label_batch, 'label_batch') print('Total number of classes: %d' % nrof_classes) print('Total number of examples: %d' % len(image_list)) print('Building training graph') # Build the inference graph prelogits, _ = network.inference( image_batch, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') # arcface_logits = arcface_logits_compute(embeddings, label_batch, args, nrof_classes) learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) with tf.variable_scope('Logits'): arcface_logits = arcface_logits_compute(embeddings, label_batch, args, nrof_classes) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=label_batch, logits=arcface_logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) correct_prediction = tf.cast( tf.equal(tf.argmax(arcface_logits, 1), tf.cast(label_batch, tf.int64)), tf.float32) accuracy = tf.reduce_mean(correct_prediction) # for weights in slim.get_variables_by_name('embedding_weights'): # weight_regularization = tf.contrib.layers.l2_regularizer(args.weight_decay)(weights) # tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, weight_regularization) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) if args.weight_decay == 0: total_loss = tf.add_n([cross_entropy_mean], name='total_loss') else: total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') #define two saver in case under 'finetuning on different dataset' situation saver_save = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms) summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) facenet.load_model(pretrained_model) print('Running arcface training') best_accuracy = 0.0 for epoch in range(1, args.max_nrof_epochs + 1): step = sess.run(global_step, feed_dict=None) cont = train( args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder, learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, global_step, total_loss, accuracy, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file, args.random_rotate, args.random_crop, args.random_flip, args.use_fixed_image_standardization, control_placeholder) if not cont: break print('validation running...') if args.lfw_dir: best_accuracy = evaluate( sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, embeddings, label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer, best_accuracy, saver_save, model_dir, subdir, args.lfw_subtract_mean, args.lfw_use_flipped_images, args.use_fixed_image_standardization, args.lfw_distance_metric) return model_dir
def main(argv=None): # pylint: disable=unused-argument if FLAGS.model_name: subdir = FLAGS.model_name preload_model = True else: subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') preload_model = False log_dir = os.path.join(os.path.expanduser(FLAGS.logs_base_dir), subdir) if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist os.mkdir(log_dir) model_dir = os.path.join(os.path.expanduser(FLAGS.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.mkdir(model_dir) # Store some git revision info in a text file in the log directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(argv)) np.random.seed(seed=FLAGS.seed) dataset = facenet.get_dataset(FLAGS.data_dir) train_set, validation_set = facenet.split_dataset(dataset, FLAGS.train_set_fraction, FLAGS.split_mode) print('Model directory: %s' % model_dir) with tf.Graph().as_default(): tf.set_random_seed(FLAGS.seed) global_step = tf.Variable(0, trainable=False) # Placeholder for input images images_placeholder = tf.placeholder(tf.float32, shape=(None, FLAGS.image_size, FLAGS.image_size, 3), name='input') # Placeholder for phase_train phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') # Build the inference graph embeddings = network.inference(images_placeholder, FLAGS.pool_type, FLAGS.use_lrn, FLAGS.keep_probability, phase_train=phase_train_placeholder) # Split example embeddings into anchor, positive and negative anchor, positive, negative = tf.split(0, 3, embeddings) # Calculate triplet loss loss = facenet.triplet_loss(anchor, positive, negative, FLAGS.alpha) # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op, _ = facenet.train(loss, global_step, FLAGS.optimizer, FLAGS.learning_rate, FLAGS.moving_average_decay) # Create a saver saver = tf.train.Saver(tf.all_variables(), max_to_keep=0) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Build an initialization operation to run below. init = tf.initialize_all_variables() # Start running operations on the Graph. sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)) sess.run(init) summary_writer = tf.train.SummaryWriter(log_dir, sess.graph) with sess.as_default(): if preload_model: ckpt = tf.train.get_checkpoint_state(model_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) else: raise ValueError('Checkpoint not found') # Training and validation loop for epoch in range(FLAGS.max_nrof_epochs): # Train for one epoch step = train(sess, train_set, epoch, images_placeholder, phase_train_placeholder, global_step, embeddings, loss, train_op, summary_op, summary_writer) # Store the state of the random number generator rng_state = np.random.get_state() # Test on validation set np.random.seed(seed=FLAGS.seed) validate(sess, validation_set, epoch, images_placeholder, phase_train_placeholder, global_step, embeddings, loss, 'validation', summary_writer) # Test on training set np.random.seed(seed=FLAGS.seed) validate(sess, train_set, epoch, images_placeholder, phase_train_placeholder, global_step, embeddings, loss, 'training', summary_writer) # Restore state of the random number generator np.random.set_state(rng_state) if (epoch % FLAGS.checkpoint_period == 0) or (epoch==FLAGS.max_nrof_epochs-1): # Save the model checkpoint print('Saving checkpoint') checkpoint_path = os.path.join(model_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step)
def main(args): network = importlib.import_module(args.model_def) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') + args.experiment_name log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) class_name = [ 'smile', 'oval_face', '5_ocloc_shadow', 'bald', 'archied_eyebrows', 'big_lips', 'big_nose' ] class_num = len(class_name) class_index = [31, 25, 0, 4, 1, 6, 7] all_image_list = [] all_label_list = [] for i in range(class_num): image_list = [] label_list = [] train_set = facenet.get_sub_category_dataset(args.data_dir, class_index[i]) image_list_p, label_list_p = facenet.get_image_paths_and_labels_triplet( train_set[0], args) image_list_n, label_list_n = facenet.get_image_paths_and_labels_triplet( train_set[1], args) image_list.append(image_list_p) image_list.append(image_list_n) label_list.append(label_list_p) label_list.append(label_list_n) all_image_list.append(image_list) all_label_list.append(label_list) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) image_size = args.image_size batch_size = args.batch_size with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') # image_paths_placeholder = tf.placeholder(tf.string, shape=(None,3), name='image_paths') image_placeholder = tf.placeholder(tf.float32, shape=(batch_size, image_size, image_size, 3), name='images') labels_placeholder = tf.placeholder(tf.int64, shape=(batch_size, 3), name='labels') code_placeholder = tf.placeholder(tf.float32, shape=(batch_size, class_num, 1, 1), name='code') image_batch = normalized_image(image_placeholder) code_batch = code_placeholder control_code = tf.tile(code_placeholder, [1, 1, args.embedding_size, 1]) mask_array = np.ones((1, class_num, args.embedding_size, 1), np.float32) # for i in range(class_num): # mask_array[:,i,(args.embedding_size/class_num)*i:(args.embedding_size/class_num)*(i+1)] = 1 mask_tensor = tf.get_variable('mask', dtype=tf.float32, trainable=args.learned_mask, initializer=tf.constant(mask_array)) mask_tensor = tf.tile(mask_tensor, [batch_size, 1, 1, 1]) control_code = tf.tile(code_placeholder, [1, 1, args.embedding_size, 1]) mask_out = tf.multiply(mask_tensor, control_code) mask_out = tf.reduce_sum(mask_out, axis=1) mask_out = tf.squeeze(mask_out) mask_out = tf.nn.relu(mask_out) mask0_array = np.ones((1, class_num, 128, 1), np.float32) mask0_tensor = tf.get_variable('mask0', dtype=tf.float32, trainable=args.learned_mask, initializer=tf.constant(mask0_array)) mask0_tensor = tf.tile(mask0_tensor, [batch_size, 1, 1, 1]) control0_code = tf.tile(code_placeholder, [1, 1, 128, 1]) mask0_out = tf.multiply(mask0_tensor, control0_code) mask0_out = tf.reduce_sum(mask0_out, axis=1) mask0_out = tf.squeeze(mask0_out) mask0_out = tf.nn.relu(mask0_out) mask0_out = tf.expand_dims(mask0_out, 1) mask0_out = tf.expand_dims(mask0_out, 1) mask1_array = np.ones((1, class_num, 128, 1), np.float32) mask1_tensor = tf.get_variable('mask1', dtype=tf.float32, trainable=args.learned_mask, initializer=tf.constant(mask1_array)) mask1_tensor = tf.tile(mask1_tensor, [batch_size, 1, 1, 1]) control1_code = tf.tile(code_placeholder, [1, 1, 128, 1]) mask1_out = tf.multiply(mask1_tensor, control1_code) mask1_out = tf.reduce_sum(mask1_out, axis=1) mask1_out = tf.squeeze(mask1_out) mask1_out = tf.nn.relu(mask1_out) mask1_out = tf.expand_dims(mask1_out, 1) mask1_out = tf.expand_dims(mask1_out, 1) # Build the inference graph prelogits, features = network.inference( image_batch, mask0_out, mask1_out, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) embeddings_pre = tf.multiply(mask_out, prelogits) embeddings = tf.nn.l2_normalize(embeddings_pre, 1, 1e-10, name='embeddings') anchor_index = list(range(0, batch_size, 3)) positive_index = list(range(1, batch_size, 3)) negative_index = list(range(2, batch_size, 3)) a_indice = tf.constant(np.array(anchor_index)) p_indice = tf.constant(np.array(positive_index)) n_indice = tf.constant(np.array(negative_index)) anchor = tf.gather(embeddings, a_indice) positive = tf.gather(embeddings, p_indice) negative = tf.gather(embeddings, n_indice) triplet_loss = facenet.triplet_loss(anchor, positive, negative, args.alpha) learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the total losses regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([triplet_loss] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables()) # Create a saver trainable_variables = tf.trainable_variables() saver = tf.train.Saver(trainable_variables, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # Initialize variables sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder: True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder: True}) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) saver.restore(sess, os.path.expanduser(args.pretrained_model)) # Training and validation loop epoch = 0 Accuracy = [0] while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) # epoch = step // args.epoch_size # Train for one epoch code_list = [] triplets_list = [] if (epoch + 1) % args.lr_epoch == 0: args.learning_rate = 0.1 * args.learning_rate if args.random_trip: for i in range(class_num): code = np.zeros((batch_size, class_num, 1, 1), np.float32) _class = i code[:, _class, :, :] = 1 Triplets = triplet_random( args, sess, all_image_list[i], all_image_list, epoch, image_placeholder, batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, global_step, embeddings, total_loss, train_op, summary_op, summary_writer, args.learning_rate_schedule_file, args.embedding_size, anchor, positive, negative, triplet_loss) triplets_list.append(Triplets) code_list.append(code) for i in range(class_num): Accuracy = test( args, sess, image_list, epoch, image_placeholder, code_placeholder, batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, global_step, embeddings, total_loss, train_op, summary_op, summary_writer, args.learning_rate_schedule_file, args.embedding_size, anchor, positive, negative, triplet_loss, triplets_list, Accuracy, features, mask0_out, mask1_out, mask_out, class_name, i) # Save variables and the metagraph if it doesn't exist already sess.close() return model_dir
def main(args): # 模型,定义在inception_resnet_v1 V2里(), --model_def models.inception_resnet_v1 network = importlib.import_module(args.model_def) image_size = (args.image_size, args.image_size) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) stat_file_name = os.path.join(log_dir, 'stat.h5') # Write arguments to a text file facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) random.seed(args.seed) dataset = facenet.get_dataset(args.data_dir) if args.filter_filename: dataset = filter_dataset(dataset, os.path.expanduser(args.filter_filename), args.filter_percentile, args.filter_min_nrof_images_per_class) if args.validation_set_split_ratio>0.0: train_set, val_set = facenet.split_dataset(dataset, args.validation_set_split_ratio, args.min_nrof_val_images_per_class, 'SPLIT_IMAGES') else: train_set, val_set = dataset, [] nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels # 训练数据 image_list, label_list = facenet.get_image_paths_and_labels(train_set) assert len(image_list)>0, 'The training set should not be empty' # 测试数据 val_image_list, val_label_list = facenet.get_image_paths_and_labels(val_set) # Create a queue that produces indices into the image_list and label_list # tf.convert_to_tensor用于将不同数据变成张量:比如可以让数组变成张量、也可以让列表变成张量。 labels = ops.convert_to_tensor(label_list, dtype=tf.int32) range_size = array_ops.shape(labels)[0] # 多线程读取数据,shuffle=True表示不是按顺序存储,可以随机获取,并一直循环。 # https://blog.csdn.net/lyg5623/article/details/69387917 index_queue = tf.train.range_input_producer(range_size, num_epochs=None, shuffle=True, seed=None, capacity=32) # epoch 大数据时迭代完一轮时次数,少量数据应该epoch = 全部数据个数/batch index_dequeue_op = index_queue.dequeue_many(args.batch_size*args.epoch_size, 'index_dequeue') learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths') labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels') control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control') nrof_preprocess_threads = 4 input_queue = data_flow_ops.FIFOQueue(capacity=2000000, dtypes=[tf.string, tf.int32, tf.int32], shapes=[(1,), (1,), (1,)], shared_name=None, name=None) enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder, control_placeholder], name='enqueue_op') image_batch, label_batch = facenet.create_input_pipeline(input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder) image_batch = tf.identity(image_batch, 'image_batch') image_batch = tf.identity(image_batch, 'input') label_batch = tf.identity(label_batch, 'label_batch') print('Number of classes in training set: %d' % nrof_classes) print('Number of examples in training set: %d' % len(image_list)) print('Number of classes in validation set: %d' % len(val_set)) print('Number of examples in validation set: %d' % len(val_image_list)) print('Building training graph') # Build the inference graph prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) # 因为模型输出的(bottleneck_layer_size)没有计算最后一层(映射到图片类型),这里计算最后一层 logits = slim.fully_connected(prelogits, len(train_set), activation_fn=None, weights_initializer=slim.initializers.xavier_initializer(), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) # 按行进行泛化,行的平方求和再求平方根,得到的值按行除每个行的元素,对深度层面泛化? interface里最后一层输出为128个节点,slim.fully_connected(net, bottleneck_layer_size, activation_fn=None, #https://blog.csdn.net/abiggg/article/details/79368982 embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') # 计算loss函数,当然还有其它训练参数也会加到这里来,通过比训练过程中一个weight加到正则化参数里来tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, weight) # 模型中最后会把这个加到优化的loss中来。 #L= L_softmax + λL_cneter = Softmax(W_i + b_yj) + λ1/2||f(x_i) - c_yj ||_2^2 # Norm for the prelogits eps = 1e-4 prelogits_norm = tf.reduce_mean(tf.norm(tf.abs(prelogits)+eps, ord=args.prelogits_norm_p, axis=1)) # 模型中最后输出(bottleneck_layer_size每个类型的输出值的个数)的平均值加到正则化loss中,但prelogits_norm_loss_factor貌似为0 tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_norm * args.prelogits_norm_loss_factor) # 计算中心损失及增加的正则化loss中 # Add center loss prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch, args.center_loss_alfa, nrof_classes) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch # 计算预测损失,和上面框架的Softmax(W_i + b_yj) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=label_batch, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') # 预测损失平均值加到losses变量中 tf.add_to_collection('losses', cross_entropy_mean) correct_prediction = tf.cast(tf.equal(tf.argmax(logits, 1), tf.cast(label_batch, tf.int64)), tf.float32) accuracy = tf.reduce_mean(correct_prediction) #计算总损失,cross_entropy_mean + 前面增加的一些正则化损失(包括模型中增加的),通过tf.GraphKeys.REGULARIZATION_LOSSES获取出来 # Calculate the total losses regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms) # Create a saver saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) saver.restore(sess, pretrained_model) # Training and validation loop print('Running training') nrof_steps = args.max_nrof_epochs*args.epoch_size nrof_val_samples = int(math.ceil(args.max_nrof_epochs / args.validate_every_n_epochs)) # Validate every validate_every_n_epochs as well as in the last epoch stat = { 'loss': np.zeros((nrof_steps,), np.float32), 'center_loss': np.zeros((nrof_steps,), np.float32), 'reg_loss': np.zeros((nrof_steps,), np.float32), 'xent_loss': np.zeros((nrof_steps,), np.float32), 'prelogits_norm': np.zeros((nrof_steps,), np.float32), 'accuracy': np.zeros((nrof_steps,), np.float32), 'val_loss': np.zeros((nrof_val_samples,), np.float32), 'val_xent_loss': np.zeros((nrof_val_samples,), np.float32), 'val_accuracy': np.zeros((nrof_val_samples,), np.float32), 'lfw_accuracy': np.zeros((args.max_nrof_epochs,), np.float32), 'lfw_valrate': np.zeros((args.max_nrof_epochs,), np.float32), 'learning_rate': np.zeros((args.max_nrof_epochs,), np.float32), 'time_train': np.zeros((args.max_nrof_epochs,), np.float32), 'time_validate': np.zeros((args.max_nrof_epochs,), np.float32), 'time_evaluate': np.zeros((args.max_nrof_epochs,), np.float32), 'prelogits_hist': np.zeros((args.max_nrof_epochs, 1000), np.float32), } for epoch in range(1,args.max_nrof_epochs+1): step = sess.run(global_step, feed_dict=None) # Train for one epoch t = time.time() # 训练模型 cont = train(args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder, learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file, stat, cross_entropy_mean, accuracy, learning_rate, prelogits, prelogits_center_loss, args.random_rotate, args.random_crop, args.random_flip, prelogits_norm, args.prelogits_hist_max, args.use_fixed_image_standardization) stat['time_train'][epoch-1] = time.time() - t if not cont: break # 在测试数据上计算正确率 t = time.time() if len(val_image_list)>0 and ((epoch-1) % args.validate_every_n_epochs == args.validate_every_n_epochs-1 or epoch==args.max_nrof_epochs): validate(args, sess, epoch, val_image_list, val_label_list, enqueue_op, image_paths_placeholder, labels_placeholder, control_placeholder, phase_train_placeholder, batch_size_placeholder, stat, total_loss, regularization_losses, cross_entropy_mean, accuracy, args.validate_every_n_epochs, args.use_fixed_image_standardization) stat['time_validate'][epoch-1] = time.time() - t # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, epoch) # Evaluate on LFW t = time.time() if args.lfw_dir: evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, embeddings, label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer, stat, epoch, args.lfw_distance_metric, args.lfw_subtract_mean, args.lfw_use_flipped_images, args.use_fixed_image_standardization) stat['time_evaluate'][epoch-1] = time.time() - t print('Saving statistics') with h5py.File(stat_file_name, 'w') as f: for key, value in stat.items(): f.create_dataset(key, data=value) return model_dir
def main(args): sleep(random.random()) output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir, max_items_per_class=99999) print('Creating networks and loading parameters') total = 0 for cls in dataset: total += len(cls.image_paths) print(total) with tf.Graph().as_default(): gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) minsize = 50 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) bounding_boxes_filename = os.path.join( output_dir, 'bounding_boxes_%05d.txt' % random_key) with open(bounding_boxes_filename, "w") as text_file: nrof_images_total = 0 nrof_successfully_aligned = 0 if args.random_order: random.shuffle(dataset) for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) if args.random_order: random.shuffle(cls.image_paths) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.jpg') #print(image_path) if not os.path.exists(output_filename): try: #img = misc.imread(image_path) img = Image.open(image_path) img = np.asarray(img) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim < 2: print('Not RGB, Unable to align "%s"' % image_path) #text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2: img = facenet.to_rgb(img) img = img[:, :, 0:3] #minsize = 0.5*img.shape[0] bounding_boxes, _ = align.detect_face.detect_face( img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces > 0: det = bounding_boxes[:, 0:4] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: bounding_box_size = (det[:, 2] - det[:, 0]) * ( det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([ (det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0] ]) offset_dist_squared = np.sum( np.power(offsets, 2.0), 0) index = np.argmax( bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering det = det[index, :] det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) # width margin = np.minimum(det[2] - det[0], det[3] - det[1]) * args.margin bb[0] = np.maximum(det[0] - margin, 0) bb[1] = np.maximum(det[1] - margin, 0) bb[2] = np.minimum(det[2] + margin, img_size[1]) bb[3] = np.minimum(det[3] + margin, img_size[0]) # change the bouinding to square but aspect ratio doesn't change diff = (bb[3] - bb[1]) - (bb[2] - bb[0]) side = 0 if diff > 0: # height greater than width side = bb[3] - bb[1] bb[0] = np.maximum(bb[0] - diff / 2, 0) bb[1] = bb[1] else: # height less than width side = bb[2] - bb[0] bb[0] = bb[0] bb[1] = np.maximum(bb[1] - diff / 2, 0) bb[3] = bb[1] + side bb[2] = bb[0] + side cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] scaled = cropped nrof_successfully_aligned += 1 misc.imsave(output_filename, scaled) else: print('Unable to align "%s"' % image_path) print('Total number of images: %d' % nrof_images_total) print('Number of successfully aligned images: %d' % nrof_successfully_aligned)
def main(args): #network = importlib.import_module(args.model_def, 'inception_v3') network = importlib.import_module(args.model_def) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) with open(os.path.join(model_dir, 'args.txt'), 'w') as f: for arg in vars(args): f.write(arg + ' ' + str(getattr(args, arg)) + '\n') # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = facenet.get_dataset(args.data_dir) nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths( os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(train_set) # Read data and apply label preserving distortions image_batch, label_batch = facenet.read_and_augument_data( image_list, label_list, args.image_size, args.batch_size, args.max_nrof_epochs, args.random_rotate, args.random_crop, args.random_flip, args.nrof_preprocess_threads) print('Total number of classes: %d' % len(train_set)) print('Total number of examples: %d' % len(image_list)) # Node for input images image_batch = tf.identity(image_batch, name='input') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') # Placeholder for phase_train phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') # Placeholder for keep probability keep_probability_placeholder = tf.placeholder(tf.float32, name='keep_prob') # Build the inference graph # prelogits = network.inference(image_batch, keep_probability_placeholder, # phase_train=phase_train_placeholder, weight_decay=args.weight_decay) batch_norm_params = { # Decay for the moving averages 'decay': 0.995, # epsilon to prevent 0s in variance 'epsilon': 0.001, # force in-place updates of mean and variance estimates 'updates_collections': None, # Moving averages ends up in the trainable variables collection 'variables_collections': [tf.GraphKeys.TRAINABLE_VARIABLES], # Only update statistics during training mode 'is_training': phase_train_placeholder } #prelogits, _ = network.inception_v3(image_batch, num_classes=len(train_set),is_training=True) prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=phase_train_placeholder, weight_decay=args.weight_decay) #prelogits = tf.identity(prelogits, name="prelogits") bottleneck = _fully_connected(prelogits, args.embedding_size, name='embedding') logits = _fully_connected(bottleneck, len(train_set), name='logits') """ bottleneck = slim.fully_connected(prelogits, args.embedding_size, activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(args.weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params, scope='Bottleneck', reuse=False) logits = slim.fully_connected(bottleneck, len(train_set), activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) logits = tf.identity(logits, name="logits") """ # Add DeCov regularization loss if args.decov_loss_factor > 0.0: logits_decov_loss = facenet.decov_loss( logits) * args.decov_loss_factor tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, logits_decov_loss) # Add center loss update_centers = tf.no_op('update_centers') if args.center_loss_factor > 0.0: prelogits_center_loss, update_centers = facenet.center_loss( bottleneck, label_batch, args.center_loss_alfa, nrof_classes) tf.add_to_collection( tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) #embeddings = tf.nn.l2_normalize(bottleneck, 1, 1e-10, name='embeddings') learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=label_batch, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') """ # Multi-label loss: sigmoid loss sigmoid_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=label_batch, logits=logits, name='sigmoid_loss_per_example') sigmoid_loss_mean = tf.reduce_mean(sigmoid_loss, name='sigmoid_loss') """ tf.add_to_collection('losses', cross_entropy_mean) # Calculate the total losses regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') #total_loss = tf.add_n([cross_entropy_mean], name='total_loss') # prediction prediction = tf.argmax(logits, axis=1, name='prediction') acc = slim.metrics.accuracy(predictions=tf.cast(prediction, dtype=tf.int32), labels=tf.cast(label_batch, dtype=tf.int32)) # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables()) # Create a saver # save_variables = list(set(tf.all_variables())-set([w])-set([b])) save_variables = tf.trainable_variables() saver = tf.train.Saver(save_variables, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. # gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) # sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) tf.train.start_queue_runners(sess=sess) with sess.as_default(): if pretrained_model: saver.restore(sess, pretrained_model) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, epoch, phase_train_placeholder, learning_rate_placeholder, keep_probability_placeholder, global_step, total_loss, acc, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file, update_centers) # Evaluate on LFW if args.lfw_dir: start_time = time.time() _, _, accuracy, val, val_std, far = lfw.validate( sess, lfw_paths, actual_issame, args.seed, args.batch_size, image_batch, phase_train_placeholder, keep_probability_placeholder, embeddings, nrof_folds=args.lfw_nrof_folds) print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy))) print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) lfw_time = time.time() - start_time # Add validation loss and accuracy to summary summary = tf.Summary() #pylint: disable=maybe-no-member summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy)) summary.value.add(tag='lfw/val_rate', simple_value=val) summary.value.add(tag='time/lfw', simple_value=lfw_time) summary_writer.add_summary(summary, step) with open(os.path.join(log_dir, 'lfw_result.txt'), 'at') as f: f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val)) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) return model_dir
def main(args): network = importlib.import_module(args.model_def, 'inference') subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Store some git revision info in a text file in the log directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = facenet.get_dataset(args.data_dir) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None,3), name='image_paths') labels_placeholder = tf.placeholder(tf.int64, shape=(None,3), name='labels') input_queue = data_flow_ops.FIFOQueue(capacity=100000, dtypes=[tf.string, tf.int64], shapes=[(3,), (3,)], shared_name=None, name=None) enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder]) nrof_preprocess_threads = 4 images_and_labels = [] for _ in range(nrof_preprocess_threads): filenames, label = input_queue.dequeue() images = [] for filename in tf.unpack(filenames): file_contents = tf.read_file(filename) image = tf.image.decode_png(file_contents) if args.random_crop: image = tf.random_crop(image, [args.image_size, args.image_size, 3]) else: image = tf.image.resize_image_with_crop_or_pad(image, args.image_size, args.image_size) if args.random_flip: image = tf.image.random_flip_left_right(image) #pylint: disable=no-member image.set_shape((args.image_size, args.image_size, 3)) images.append(tf.image.per_image_standardization(image)) images_and_labels.append([images, label]) image_batch, labels_batch = tf.train.batch_join( images_and_labels, batch_size=batch_size_placeholder, shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True, capacity=4 * nrof_preprocess_threads * args.batch_size, allow_smaller_final_batch=True) # Build the inference graph prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=phase_train_placeholder, weight_decay=args.weight_decay) pre_embeddings = slim.fully_connected(prelogits, args.embedding_size, activation_fn=None, scope='Embeddings', reuse=False) #embedding_size = 1792 embeddings = tf.nn.l2_normalize(pre_embeddings, 1, 1e-10, name='embeddings') # Split embeddings into anchor, positive and negative and calculate triplet loss anchor, positive, negative = tf.unpack(tf.reshape(embeddings, [-1,3,args.embedding_size]), 3, 1) triplet_loss = facenet.triplet_loss(anchor, positive, negative, args.alpha) learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the total losses regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([triplet_loss] + regularization_losses, name='total_loss') # Create list with variables to restore restore_vars = [] update_gradient_vars = [] if args.pretrained_model: update_gradient_vars = tf.global_variables() for var in tf.global_variables(): if not 'Embeddings/' in var.op.name: restore_vars.append(var) #else: #update_gradient_vars.append(var) else: restore_vars = tf.global_variables() update_gradient_vars = tf.global_variables() # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, update_gradient_vars) # Create a saver restore_saver = tf.train.Saver(restore_vars) saver = tf.train.Saver(tf.global_variables(), max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # Initialize variables sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) tf.train.start_queue_runners(sess=sess) with sess.as_default(): if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) restore_saver.restore(sess, os.path.expanduser(args.pretrained_model)) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, train_set, epoch, image_paths_placeholder, labels_placeholder, labels_batch, batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, input_queue, global_step, embeddings, total_loss, train_op, summary_op, summary_writer, args.learning_rate_schedule_file, args.embedding_size, anchor, positive, negative, triplet_loss) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW if args.lfw_dir: evaluate(sess, lfw_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder, batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, actual_issame, args.batch_size, args.seed, args.lfw_nrof_folds, log_dir, step, summary_writer, args.embedding_size) return model_dir
def main(args): output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir) print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = align.detect_face.create_mtcnn(sess, '../../data/') minsize = 20 # minimum size of face threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold factor = 0.709 # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) bounding_boxes_filename = os.path.join(output_dir, 'bounding_boxes_%05d.txt' % random_key) with open(bounding_boxes_filename, "w") as text_file: nrof_images_total = 0 nrof_successfully_aligned = 0 if args.random_order: random.shuffle(dataset) for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) if args.random_order: random.shuffle(cls.image_paths) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename+'.png') print(image_path) if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim<2: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2: img = facenet.to_rgb(img) img = img[:,:,0:3] bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces>0: det = bounding_boxes[:,0:4] img_size = np.asarray(img.shape)[0:2] if nrof_faces>1: bounding_box_size = (det[:,2]-det[:,0])*(det[:,3]-det[:,1]) img_center = img_size / 2 offsets = np.vstack([ (det[:,0]+det[:,2])/2-img_center[1], (det[:,1]+det[:,3])/2-img_center[0] ]) offset_dist_squared = np.sum(np.power(offsets,2.0),0) index = np.argmax(bounding_box_size-offset_dist_squared*2.0) # some extra weight on the centering det = det[index,:] det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0]-args.margin/2, 0) bb[1] = np.maximum(det[1]-args.margin/2, 0) bb[2] = np.minimum(det[2]+args.margin/2, img_size[1]) bb[3] = np.minimum(det[3]+args.margin/2, img_size[0]) cropped = img[bb[1]:bb[3],bb[0]:bb[2],:] scaled = misc.imresize(cropped, (args.image_size, args.image_size), interp='bilinear') nrof_successfully_aligned += 1 misc.imsave(output_filename, scaled) text_file.write('%s %d %d %d %d\n' % (output_filename, bb[0], bb[1], bb[2], bb[3])) else: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) print('Total number of images: %d' % nrof_images_total) print('Number of successfully aligned images: %d' % nrof_successfully_aligned)
def generate_input_fn(set, mode=tf.estimator.ModeKeys.EVAL, batch_size=1): def parse_function(filename, label): image_string = tf.read_file(filename) # Don't use tf.image.decode_image, or the output shape will be undefined image = tf.image.decode_jpeg(image_string, channels=3) # This will convert to float values in [0, 1] image = tf.image.convert_image_dtype(image, tf.float32) image = tf.image.resize_images(image, [args.image_size, args.image_size]) return image, label def _input_fn(): is_training = (mode == tf.estimator.ModeKeys.TRAIN) image_list, label_list = facenet.get_image_paths_and_labels(set) assert len(image_list)>0, 'The training set should not be empty' dataset = tf.data.Dataset.from_tensor_slices((filenames, labels)) dataset = dataset.shuffle(len(filenames)) dataset = dataset.map(parse_function, num_parallel_calls=args.nrof_preprocess_threads) if is_training: dataset = dataset.map(train_preprocess, num_parallel_calls=args.nrof_preprocess_threads) dataset = dataset.batch(args.batch_size) dataset = dataset.prefetch(args.prefetch_value) features = {'images': images} return features, label_list return _input_fn def get_feature_columns(): feature_columns = { 'images': tf.feature_column.numeric_column('images', (IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_DEPTH)), } return feature_columns def model_fn(features, labels, mode, params): # Create the input layers from the features feature_columns = list(get_feature_columns().values()) images = tf.feature_column.input_layer( features=features, feature_columns=feature_columns) images = tf.reshape( images, shape=(-1, IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_DEPTH)) # Calculate logits through CNN network = importlib.import_module(args.model_def) learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths') labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels') control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control') # Build the inference graph prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) logits = slim.fully_connected(prelogits, len(train_set), activation_fn=None, weights_initializer=slim.initializers.xavier_initializer(), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms) # Create a saver saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() if mode in (tf.estimator.ModeKeys.PREDICT, tf.estimator.ModeKeys.EVAL): predicted_indices = tf.argmax(input=logits, axis=1) probabilities = tf.nn.softmax(logits, name='softmax_tensor') if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL): global_step = tf.train.get_or_create_global_step() tf.logging.info("Global Step {}".format(global_step)) # Norm for the prelogits eps = 1e-4 prelogits_norm = tf.reduce_mean(tf.norm(tf.abs(prelogits)+eps, ord=args.prelogits_norm_p, axis=1)) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_norm * args.prelogits_norm_loss_factor) # Add center loss prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch, args.center_loss_alfa, nrof_classes) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) learning_rate = tf.train.exponential_decay(params['learning_rate'], global_step, args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=label_batch, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) correct_prediction = tf.cast(tf.equal(tf.argmax(logits, 1), tf.cast(label_batch, tf.int64)), tf.float32) accuracy = tf.reduce_mean(correct_prediction) # Calculate the total losses regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') label_indices = tf.argmax(input=labels, axis=1) loss = tf.losses.softmax_cross_entropy( onehot_labels=labels, logits=logits) tf.summary.scalar('cross_entropy', loss) if mode == tf.estimator.ModeKeys.PREDICT: predictions = { 'classes': predicted_indices, 'probabilities': probabilities } export_outputs = { 'predictions': tf.estimator.export.PredictOutput(predictions) } return tf.estimator.EstimatorSpec( mode, predictions=predictions, export_outputs=export_outputs) if mode == tf.estimator.ModeKeys.TRAIN: # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms) # Create a saver saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir=params['log_dir'] stat_file_name=params['stat_file_name'] summary.value.add(tag='time/total', simple_value=train_time) summary_hook = tf.train.SummarySaverHook( SAVE_EVERY_N_STEPS, output_dir=log_dir, summary_op=tf.summary.merge_all()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train, training_hooks=[summary_hook]) if mode == tf.estimator.ModeKeys.EVAL: eval_metric_ops = { 'accuracy': tf.metrics.accuracy(label_indices, predicted_indices) } return tf.estimator.EstimatorSpec( mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(args): network = importlib.import_module(args.model_def) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) stat_file_name = os.path.join(log_dir, 'stat.h5') # Write arguments to a text file facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) random.seed(args.seed) dataset = facenet.get_dataset(args.data_dir) if args.filter_filename: dataset = filter_dataset(dataset, os.path.expanduser(args.filter_filename), args.filter_percentile, args.filter_min_nrof_images_per_class) if args.validation_set_split_ratio>0.0: train_set, val_set = facenet.split_dataset(dataset, args.validation_set_split_ratio, args.min_nrof_val_images_per_class, 'SPLIT_IMAGES') else: train_set, val_set = dataset, [] nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs) print('Number of classes in training set: %d' % nrof_classes) print('Number of examples in training set: %d' % len(image_list)) print('Number of classes in validation set: %d' % len(val_set)) print('Number of examples in validation set: %d' % len(val_image_list)) params={'log_dir':log_dir,'stat_file_name':stat_file_name,'stat':stat} with tf.Graph().as_default(): # trainset, valset # Create a queue that produces indices into the image_list and label_list learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths') labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels') control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control') # Start running operations on the Graph. gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction,allow_growth=True) config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False) config=tf.estimator.RunConfig(session_config=config,save_checkpoints_steps=args.save_checkpoints_steps, tf_random_seed=args.seed, model_dir=args.model_dir) estimator = tf.estimator.Estimator( model_fn=model_fn, model_dir=FLAGS.model_dir, config=tf.contrib.learn.RunConfig(session_config=config),params=params) with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) saver.restore(sess, pretrained_model) nrof_steps = args.max_nrof_epochs*args.epoch_size nrof_val_samples = int(math.ceil(args.max_nrof_epochs / args.validate_every_n_epochs)) # Validate every validate_every_n_epochs as well as in the last epoch stat = { 'loss': np.zeros((nrof_steps,), np.float32), 'center_loss': np.zeros((nrof_steps,), np.float32), 'reg_loss': np.zeros((nrof_steps,), np.float32), 'xent_loss': np.zeros((nrof_steps,), np.float32), 'prelogits_norm': np.zeros((nrof_steps,), np.float32), 'accuracy': np.zeros((nrof_steps,), np.float32), 'val_loss': np.zeros((nrof_val_samples,), np.float32), 'val_xent_loss': np.zeros((nrof_val_samples,), np.float32), 'val_accuracy': np.zeros((nrof_val_samples,), np.float32), 'lfw_accuracy': np.zeros((args.max_nrof_epochs,), np.float32), 'lfw_valrate': np.zeros((args.max_nrof_epochs,), np.float32), 'learning_rate': np.zeros((args.max_nrof_epochs,), np.float32), 'time_train': np.zeros((args.max_nrof_epochs,), np.float32), 'time_validate': np.zeros((args.max_nrof_epochs,), np.float32), 'time_evaluate': np.zeros((args.max_nrof_epochs,), np.float32), 'prelogits_hist': np.zeros((args.max_nrof_epochs, 1000), np.float32), } for epoch in range(1,args.max_nrof_epochs+1): step = sess.run(global_step, feed_dict=None) # Train for one epoch t = time.time() cont = train(args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder, learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file, stat, cross_entropy_mean, accuracy, learning_rate, prelogits, prelogits_center_loss, args.random_rotate, args.random_crop, args.random_flip, prelogits_norm, args.prelogits_hist_max, args.use_fixed_image_standardization) stat['time_train'][epoch-1] = time.time() - t if not cont: break t = time.time() if len(val_image_list)>0 and ((epoch-1) % args.validate_every_n_epochs == args.validate_every_n_epochs-1 or epoch==args.max_nrof_epochs): validate(args, sess, epoch, val_image_list, val_label_list, enqueue_op, image_paths_placeholder, labels_placeholder, control_placeholder, phase_train_placeholder, batch_size_placeholder, stat, total_loss, regularization_losses, cross_entropy_mean, accuracy, args.validate_every_n_epochs, args.use_fixed_image_standardization) stat['time_validate'][epoch-1] = time.time() - t # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, epoch) # Evaluate on LFW t = time.time() if args.lfw_dir: evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, embeddings, label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer, stat, epoch, args.lfw_distance_metric, args.lfw_subtract_mean, args.lfw_use_flipped_images, args.use_fixed_image_standardization) stat['time_evaluate'][epoch-1] = time.time() - t print('Saving statistics') with h5py.File(stat_file_name, 'w') as f: for key, value in stat.iteritems(): f.create_dataset(key, data=value) return model_dir
def main(args): funnel_cmd = 'funnelReal' funnel_model = 'people.train' output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the output directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir) np.random.shuffle(dataset) # Scale the image such that the face fills the frame when cropped to crop_size #scale = float(args.face_size) / args.image_size with TemporaryDirectory() as tmp_dir: for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) tmp_output_class_dir = os.path.join(tmp_dir, cls.name) if not os.path.exists(output_class_dir) and not os.path.exists( tmp_output_class_dir): print('Aligning class %s:' % cls.name) tmp_filenames = [] if not os.path.exists(tmp_output_class_dir): os.makedirs(tmp_output_class_dir) input_list_filename = os.path.join(tmp_dir, 'input_list.txt') output_list_filename = os.path.join(tmp_dir, 'output_list.txt') input_file = open(input_list_filename, 'w') output_file = open(output_list_filename, 'w') for image_path in cls.image_paths: filename = os.path.split(image_path)[1] input_file.write(image_path + '\n') output_filename = os.path.join(tmp_output_class_dir, filename) output_file.write(output_filename + '\n') tmp_filenames.append(output_filename) input_file.close() output_file.close() cmd = args.funnel_dir+funnel_cmd + ' ' + input_list_filename + \ ' ' + args.funnel_dir+funnel_model + ' ' + output_list_filename subprocess.call(cmd, shell=True) # Resize and crop images if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) scale = 1.0 for tmp_filename in tmp_filenames: img = misc.imread(tmp_filename) img_scale = misc.imresize(img, scale) sz1 = img.shape[1] / 2 sz2 = args.image_size / 2 img_crop = img_scale[int(sz1 - sz2):int(sz1 + sz2), int(sz1 - sz2):int(sz1 + sz2), :] filename = os.path.splitext( os.path.split(tmp_filename)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.png') print('Saving image %s' % output_filename) misc.imsave(output_filename, img_crop) # Remove tmp directory with images shutil.rmtree(tmp_output_class_dir)
def main(args): network = importlib.import_module(args.model_def, 'inference') subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Store some git revision info in a text file in the log directory if not args.no_store_revision_info: src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = facenet.get_dataset(args.data_dir) logging.info('Model directory: %s' % model_dir) logging.info('Log directory: %s' % log_dir) logging.info('Train set size:%d' % len(train_set)) if args.pretrained_model: logging.info('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) if args.lfw_dir: logging.info('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing # pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images # lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) lfw_paths, actual_issame, _ = lfw.get_paths(args.lfw_dir, args.labels_file) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None, 3), name='image_paths') labels_placeholder = tf.placeholder(tf.int64, shape=(None, 3), name='labels') input_queue = data_flow_ops.FIFOQueue(capacity=100000, dtypes=[tf.string, tf.int64], shapes=[(3, ), (3, )], shared_name=None, name=None) enqueue_op = input_queue.enqueue_many( [image_paths_placeholder, labels_placeholder]) nrof_preprocess_threads = 4 images_and_labels = [] for _ in range(nrof_preprocess_threads): filenames, label = input_queue.dequeue() images = [] # _sess = tf.Session() for filename in tf.unstack(filenames): file_contents = tf.read_file(filename) image = tf.image.decode_jpeg(file_contents) # logging.info('111111111111') # _filename = _sess.run([filename]) # logging.info('222222222222') image = tf.image.resize_images( image, [args.image_size, args.image_size]) # logging.info(image.shape) # if tf.equal(image.shape[2], 1): # logging.info('msg' * 10) # else: # if _image[-1] == 1: # image = tf.image.grayscale_to_rgb(image) try: image = porcessor.preprocess_image(image, args.image_size, args.image_size, is_training=True) except Exception as e: logging.error(e) continue #pylint: disable=no-member image.set_shape((args.image_size, args.image_size, 3)) images.append(tf.image.per_image_standardization(image)) images_and_labels.append([images, label]) image_batch, labels_batch = tf.train.batch_join( images_and_labels, batch_size=batch_size_placeholder, shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True, capacity=4 * nrof_preprocess_threads * args.batch_size, allow_smaller_final_batch=True) image_batch = tf.identity(image_batch, 'image_batch') image_batch = tf.identity(image_batch, 'input') batch_norm_params = { # Decay for the moving averages 'decay': 0.995, # epsilon to prevent 0s in variance 'epsilon': 0.001, # force in-place updates of mean and variance estimates 'updates_collections': None, # Moving averages ends up in the trainable variables collection 'variables_collections': [tf.GraphKeys.TRAINABLE_VARIABLES], # Only update statistics during training mode 'is_training': phase_train_placeholder } # Build the inference graph prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=phase_train_placeholder, weight_decay=args.weight_decay) pre_embeddings = slim.fully_connected( prelogits, args.embedding_size, activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(args.weight_decay), normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params, scope='Bottleneck', reuse=False) embeddings = tf.nn.l2_normalize(pre_embeddings, 1, 1e-10, name='embeddings') # Split embeddings into anchor, positive and negative and calculate triplet loss logging.info('embeddings shape:%s' % embeddings.shape) anchor, positive, negative = tf.unstack( tf.reshape(embeddings, [-1, 3, args.embedding_size]), 3, 1) triplet_loss = facenet.triplet_loss(anchor, positive, negative, args.alpha) learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the total losses regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([triplet_loss] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables()) # Create a saver saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=100) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # Initialize variables sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder: True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder: True}) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if args.pretrained_model: logging.info('Restoring pretrained model: %s' % args.pretrained_model) saver.restore(sess, os.path.expanduser(args.pretrained_model)) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, train_set, epoch, image_paths_placeholder, labels_placeholder, labels_batch, batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, input_queue, global_step, embeddings, total_loss, train_op, summary_op, summary_writer, args.learning_rate_schedule_file, args.embedding_size, anchor, positive, negative, triplet_loss) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW if args.lfw_dir: evaluate(sess, lfw_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder, batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, actual_issame, args.batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer, args.embedding_size) sess.close() return model_dir
def main(args): #define three networks network_G = importlib.import_module(args.model_def) #import G Network network_D = importlib.import_module(args.discriminator_def) #import D Network (connected with G) network_F = importlib.import_module(args.Net_def) #F network(same with G) #model dir subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') #model name (named by time)1 log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist 1 os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist 1 os.makedirs(model_dir) # Write arguments to a text file 1 facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) #mark arguments # Store some git revision info in a text file in the log directory 1 src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) random.seed(args.seed) train_set = facenet.get_dataset(args.data_dir) #get train dataset if args.filter_filename: #not used train_set = filter_dataset(train_set, os.path.expanduser(args.filter_filename), args.filter_percentile, args.filter_min_nrof_images_per_class) nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) #facenet model print('Pre-trained model: %s' % pretrained_model) # not used here if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) # copy from faceNet def get_image_paths_and_labels(dataset): image_paths_flat = [] labels_flat = [] for i in range(len(dataset)): image_paths_flat += dataset[i].image_paths #print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')#++++++++++++++++++++++++++++++++ #print(dataset[i].image_paths)#++++++++++++++++++++++++++++++++ labels_flat += [i] * len(dataset[i].image_paths)#labels_flat=age?????????????????????????????????????? return image_paths_flat, labels_flat with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels image_list, label_list = get_image_paths_and_labels(train_set) #[path, path, ..., path], [1,1,2,2,2,3,3,4,...,9] assert len(image_list)>0, 'The dataset should not be empty' # Create a queue that produces indices into the image_list and label_list #labels and images into queue labels = ops.convert_to_tensor(label_list, dtype=tf.int32) range_size = array_ops.shape(labels)[0] index_queue = tf.train.range_input_producer(range_size, num_epochs=None, shuffle=True, seed=None, capacity=32) index_dequeue_op = index_queue.dequeue_many(args.batch_size*args.epoch_size, 'index_dequeue') #placeholder learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') #connected to validate image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths') image_embeddings_placeholder = tf.placeholder(tf.float32, shape=(None,1,args.embedding_size), name='image_embs') labels_placeholder = tf.placeholder(tf.int64, shape=(None,1), name='labels') input_queue = data_flow_ops.FIFOQueue(capacity=100000, dtypes=[tf.string, tf.int64,tf.float32], shapes=[(1,), (1,),(1,args.embedding_size,)], shared_name=None, name=None) #(image path, labels, embedding) enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder,image_embeddings_placeholder], name='enqueue_op') nrof_preprocess_threads = 4 images_and_labels = [] #preprocess some images to extend database for _ in range(nrof_preprocess_threads): filenames, label ,image_embeddings= input_queue.dequeue() #get (image path, labels, embedding) from queue print('filenames.shape, label.shape, image_embeddings.shape:') print(filenames.shape,label.shape,image_embeddings.shape) #print(filenames[1,1]) #queueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeecheck images = [] for filename in tf.unstack(filenames): file_contents = tf.read_file(filename) image = tf.image.decode_image(file_contents, channels=3) #BGR, , Decode .PNG read an image from filename=image path if args.random_rotate: image = tf.py_func(facenet.random_rotate_image, [image], tf.uint8) if args.random_crop: image = tf.random_crop(image, [args.image_size, args.image_size, 3]) else: #run here image = tf.image.resize_image_with_crop_or_pad(image, args.image_size, args.image_size) if args.random_flip: image = tf.image.random_flip_left_right(image) #pylint: disable=no-member image.set_shape((args.image_size, args.image_size, 3)) images.append(tf.image.per_image_standardization(image)) #add into image set named images #print(len(images)) #1????? images_and_labels.append([images, label,image_embeddings]) #from queue into batch image_batch, label_batch ,embeddings_batch= tf.train.batch_join( images_and_labels, batch_size=batch_size_placeholder, shapes=[(args.image_size, args.image_size, 3), (),(128)], enqueue_many=True, capacity=4 * nrof_preprocess_threads * args.batch_size, allow_smaller_final_batch=True) print('Shape of embeddings_batch:') print(embeddings_batch.shape) image_batch = tf.identity(image_batch, 'image_batch') image_batch = tf.identity(image_batch, 'input') label_batch = tf.identity(label_batch, 'label_batch') embeddings_batch = tf.identity(embeddings_batch, 'emb_batch') print('Total number of classes:%d' %nrof_classes) print('Length of image list:%d' % len(image_list)) print('Building training graph ...') # Build the inference graph, from inception resnet.py prelogits, ep = network_G.inference(image_batch, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) prelogits2, _ = network_D.inference(prelogits,ep, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) prelogits3, ep2 = network_F.inference(image_batch, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) logits = slim.fully_connected(prelogits2, len(train_set), activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='DiscriminatorLogits', reuse=False) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') #G feature embeddings2 = tf.nn.l2_normalize(prelogits3, 1, 1e-10, name='embeddings2') #F feature labels = tf.nn.l2_normalize(prelogits2, 1, 1e-10, name='labels') #D decision print('embeddingsshape:',embeddings.shape,embeddings_batch.shape) emb_loss = args.beta * tf.reduce_mean(tf.square(embeddings - embeddings_batch)) #!!!!!!!!!!!!!!!!!!!!!!!emb_loss=pretrained feature-F feature #print('emb_loss') #print(np.sum(emb_loss)) # Add center loss for D center_loss_all=0.0 if args.center_loss_factor>0.0: prelogits_center_loss, _ = facenet.center_loss(prelogits2, label_batch, args.center_loss_alfa, nrof_classes) center_loss_all = prelogits_center_loss * args.center_loss_factor # Do not add the center loss to regularization #regularization_losses = tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES) learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch 1 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=label_batch, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # Calculate the reg losses regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) #********************************************consistency_loss************************************************************************ consistency_loss_G = args.betaG * tf.reduce_mean(tf.square(embeddings - embeddings2)) consistency_loss_F = args.betaF * tf.reduce_mean(tf.square(embeddings - embeddings2)) #different coefficients #*******************************************unsupervised id loss********************************************************************* #anchor, positive, negative = tf.unstack(tf.reshape(embeddings, [-1,3,args.embedding_size]), 3, 1) anchor = embeddings positive = embeddings2 negative = embeddings id_loss = args.betaI * identity_loss(anchor, positive, negative, args.alpha, args.batch_size) #************************************************************************************************************************************ # losses of three networks total_loss_G = tf.add_n([-cross_entropy_mean] +[-center_loss_all]+ [emb_loss]+[consistency_loss_G]+ regularization_losses, name='total_loss_G') # loss of G_network, to decrease the discriminant # of age while not change embeddings total_loss_D = tf.add_n([cross_entropy_mean] +[center_loss_all]+ regularization_losses, name='total_loss_D') total_loss_F = tf.add_n([id_loss]+ [consistency_loss_F]+ regularization_losses, name='total_loss_F') #optimizer########################################################################################################################### optimizer=args.optimizer loss_averages_op1 = facenet._add_loss_summaries(total_loss_D) loss_averages_op2 = facenet._add_loss_summaries(total_loss_G) loss_averages_op3 = facenet._add_loss_summaries(total_loss_F) #just add an op? learning_rate2=learning_rate learning_rate3=learning_rate if optimizer=='ADAGRAD': opt1 = tf.train.AdagradOptimizer(learning_rate) opt2 = tf.train.AdagradOptimizer(learning_rate2) opt3 = tf.train.AdagradOptimizer(learning_rate3) elif optimizer=='ADADELTA': opt1 = tf.train.AdadeltaOptimizer(learning_rate, rho=0.9, epsilon=1e-6) opt2 = tf.train.AdadeltaOptimizer(learning_rate2, rho=0.9, epsilon=1e-6) opt3 = tf.train.AdadeltaOptimizer(learning_rate3, rho=0.9, epsilon=1e-6) elif optimizer=='ADAM': opt1 = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999, epsilon=0.1) opt2 = tf.train.AdamOptimizer(learning_rate2, beta1=0.9, beta2=0.999, epsilon=0.1) opt3 = tf.train.AdadeltaOptimizer(learning_rate3, beta1=0.9, beta2=0.999, epsilon=0.1) elif optimizer=='RMSPROP': opt1 = tf.train.RMSPropOptimizer(learning_rate, decay=0.9, momentum=0.9, epsilon=1.0) opt2 = tf.train.RMSPropOptimizer(learning_rate2, decay=0.9, momentum=0.9, epsilon=1.0) opt3 = tf.train.AdadeltaOptimizer(learning_rate3, decay=0.9, momentum=0.9, epsilon=1.0) elif optimizer=='MOM': opt1 = tf.train.MomentumOptimizer(learning_rate, 0.9, use_nesterov=True) opt2 = tf.train.MomentumOptimizer(learning_rate2, 0.9, use_nesterov=True) opt3 = tf.train.AdadeltaOptimizer(learning_rate3, 0.9, use_nesterov=True) else: raise ValueError('Invalid optimization algorithm2') t_vars=tf.trainable_variables() varlog=open('tvar.txt','w') for var in t_vars: varlog.write(var.name+'\n') varlog.close() #variables d_vars=[var for var in t_vars if 'Discriminator' in var.name] g_vars=[var for var in t_vars if 'InceptionResnetV1' in var.name] #Generator? how to f_vars=[var for var in t_vars if 'InceptionResnetV2' in var.name] #Generator? how to #true loss for age discriminator and false loss for generator dt_grads = opt1.compute_gradients(total_loss_D, d_vars) df_grads = opt2.compute_gradients(total_loss_G, g_vars) di_grads = opt3.compute_gradients(total_loss_F, f_vars) dt_train_op = opt1.apply_gradients(dt_grads, global_step=global_step) df_train_op = opt2.apply_gradients(df_grads, global_step=global_step) di_train_op = opt3.apply_gradients(di_grads, global_step=global_step) for var in tf.trainable_variables(): tf.summary.histogram(var.op.name, var) # Add histograms for gradients. copy from train2 for grad, var in dt_grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) for grad, var in df_grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) for grad, var in di_grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) # Track the moving averages of all trainable variables. variable_averages = tf.train.ExponentialMovingAverage( args.moving_average_decay, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) with tf.control_dependencies([dt_train_op,df_train_op, variables_averages_op]): train_op = tf.no_op(name='train') # Create a saver saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) # save all variables++++++++++++++++++++++++++++++++++++0 saver_G = tf.train.Saver(g_vars, max_to_keep=3) #only save G variables0 saver_F = tf.train.Saver(f_vars, max_to_keep=3) #only save G variables0 # Build the summary operation based on the TF collection of Summaries. 1 summary_op = tf.summary.merge_all() # Start running operations on the Graph. 1 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) saver_G.restore(sess, pretrained_model) print('Running pretrain embeddings')#see embs********************************** len_all=len(label_list) #*****This is ok 397459 #print('len_all=') #print(len_all) emb_list=np.zeros((len_all,args.embedding_size)) print(len_all//(args.batch_size*args.epoch_size)+1) #obtain pretain feature for ii in range(0,len_all//(args.batch_size*args.epoch_size)+1): emb_list=first_train(args, sess, 0, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder, image_embeddings_placeholder,emb_list,embeddings,label_batch, learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, global_step, total_loss_D, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file) for ii in range(0,len_all): #print('pretrain embeddings') #print(np.sum(emb_list[ii,:]),file=f) #cannot be printed,why~~~~~~~~~~~~~~~~~~~~~~~~~~~~~! print(emb_list[ii,:],file=f) # Training and validation loop print('Running training') epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size//2 # Train for one epoch train(args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder, image_embeddings_placeholder,emb_list, learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, global_step, total_loss_D, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file, anchor, positive, negative, id_loss, consistency_loss_G, emb_loss) # Save variables and the metagraph if it doesn't exist already 1 save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW 1 if args.lfw_dir: evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, embeddings, label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer) return model_dir
def main(args): project_dir = os.path.dirname(os.getcwd()) network = importlib.import_module(args.model_def) with open(join(project_dir, 'config.yaml'), 'r') as f: cfg = yaml.load(f) if cfg['specs']['set_gpu']: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(cfg['base_conf']['gpu_num']) subdir = '%s_center_loss_factor_%1.2f' % (args.data_dir, args.center_loss_factor) # test = os.path.expanduser(args.logs_base_dir) log_dir = os.path.join(project_dir, 'fine_tuning_process', 'logs', subdir) if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(project_dir, 'fine_tuning_process', 'models', subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) random.seed(args.seed) data_dir = os.path.join(project_dir, 'fine_tuning_process', 'data', args.data_dir, 'train') train_set = facenet.get_dataset(data_dir) if args.filter_filename: train_set = filter_dataset(train_set, os.path.expanduser(args.filter_filename), args.filter_percentile, args.filter_min_nrof_images_per_class) nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.join(project_dir, 'fine_tuning_process', 'models', args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) lfw_dir = os.path.join(project_dir, 'fine_tuning_process', 'data', args.data_dir, 'test') print('LFW directory: %s' % lfw_dir) # Read the file containing the pairs used for testing lfw_pairs = os.path.join(project_dir, 'fine_tuning_process', 'data', args.data_dir, 'pairs.txt') pairs = lfw.read_pairs(lfw_pairs) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths_personal(lfw_dir, pairs) data_paths = tools.get_format_file(data_dir, 2, r'.+\.jpeg$') meta_data_path = os.path.join(model_dir, 'metadata.tsv') with open(meta_data_path, 'w') as f: f.write("Index\tLabel\n") for d in data_paths: tmp = os.path.split(d) t = os.path.split(tmp[0]) f.write("%s\t%s\n" % (tmp[1], t[1])) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # get soft labels with open(join(data_dir, 'soft_label.pk'), 'rb') as f: confidence_score = pickle.load(f) image_list, soft_labels_list = facenet.get_image_paths_and_soft_labels(train_set, confidence_score) soft_labels_array = np.array(soft_labels_list) soft_labels = ops.convert_to_tensor(soft_labels_array, dtype=tf.float32) assert len(image_list) > 0, 'The dataset should not be empty' # Create a queue that produces indices into the image_list and label_list range_size = array_ops.shape(soft_labels)[0] index_queue = tf.train.range_input_producer(range_size, num_epochs=None, shuffle=True, seed=None, capacity=32) index_dequeue_op = index_queue.dequeue_many(args.batch_size * args.epoch_size, 'index_dequeue') learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None, 1), name='image_paths') soft_labels_placeholder = tf.placeholder(tf.float32, shape=(None, nrof_classes), name='soft_labels') input_queue = data_flow_ops.FIFOQueue(capacity=100000, dtypes=[tf.string, tf.float32], shapes=[(1,), (nrof_classes,)], shared_name=None, name=None) enqueue_op = input_queue.enqueue_many([image_paths_placeholder, soft_labels_placeholder], name='enqueue_op') nrof_preprocess_threads = 4 images_and_softlabels = [] for _ in range(nrof_preprocess_threads): filenames, soft_labels = input_queue.dequeue() images = [] for filename in tf.unstack(filenames): file_contents = tf.read_file(filename) image = tf.image.decode_image(file_contents, channels=3) if args.random_rotate: image = tf.py_func(facenet.random_rotate_image, [image], tf.uint8) if args.random_crop: image = tf.random_crop(image, [args.image_size, args.image_size, 3]) else: image = tf.image.resize_image_with_crop_or_pad(image, args.image_size, args.image_size) if args.random_flip: image = tf.image.random_flip_left_right(image) # pylint: disable=no-member image.set_shape((args.image_size, args.image_size, 3)) images.append(tf.image.per_image_standardization(image)) images_and_softlabels.append([images, soft_labels]) image_batch, soft_label_batch = tf.train.batch_join( images_and_softlabels, batch_size=batch_size_placeholder) image_batch = tf.squeeze(image_batch, 1) image_batch = tf.identity(image_batch, 'image_batch') image_batch = tf.identity(image_batch, 'input') soft_label_batch = tf.identity(soft_label_batch, 'soft_label_batch') print('Total number of classes: %d' % nrof_classes) print('Total number of examples: %d' % len(image_list)) print('Building training graph') # Build the inference graph prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) # fine_tuning = slim.fully_connected(prelogits, args.embedding_size, activation_fn=None, # scope='FineTuning', reuse=False, trainable=True) logits = slim.fully_connected(prelogits, nrof_classes, activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') # Add center loss if args.center_loss_factor > 0.0: prelogits_center_loss, _ = facenet.fuzzy_center_loss(prelogits, soft_label_batch, args.center_loss_alfa, args.fuzzier, nrof_classes) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) tf.summary.scalar('prelogits_center_loss', prelogits_center_loss) learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2( labels=soft_label_batch, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # Calculate the total losses regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms) # Create a saver all_vars = tf.trainable_variables() var_to_restore = [v for v in all_vars if not v.name.startswith('Logits')] saver = tf.train.Saver(var_to_restore, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if args.pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) saver.restore(sess, pretrained_model) # result = sess.graph.get_tensor_by_name("InceptionResnetV1/Bottleneck/weights:0") # pre = sess.graph.get_tensor_by_name("InceptionResnetV1/Block8/Branch_1/Conv2d_0c_3x1/weights:0") # tf.stop_gradient(persisted_result) # print(result.eval()) # print("======") # print(pre.eval()) # Training and validation loop print('Running training') epoch = 0 pre_acc = -1 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, epoch, image_list, soft_labels_array, index_dequeue_op, enqueue_op, image_paths_placeholder, soft_labels_placeholder, learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file, logits) # print(result.eval()) # print("======") # print(pre.eval()) # Save variables and the metagraph if it doesn't exist already # Evaluate on LFW if args.lfw_dir: acc = evaluate(sess, enqueue_op, image_paths_placeholder, soft_labels_placeholder, phase_train_placeholder, batch_size_placeholder, embeddings, soft_label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer, nrof_classes, prelogits_center_loss) if acc > pre_acc: save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) pre_acc = acc return model_dir
def main(args): sleep(random.random()) output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir) print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) bounding_boxes_filename = os.path.join( output_dir, 'bounding_boxes_%05d.txt' % random_key) with open(bounding_boxes_filename, "w") as text_file: nrof_images_total = 0 nrof_successfully_aligned = 0 if args.random_order: random.shuffle(dataset) for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) if args.random_order: random.shuffle(cls.image_paths) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.png') print(image_path) if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim < 2: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2 or img.shape[2] < 3: img = facenet.to_rgb(img) img = img[:, :, 0:3] maxSize = 2000 if img.shape[0] > maxSize: img = misc.imresize( img, (maxSize, int((maxSize * img.shape[1]) / img.shape[0])), interp='bilinear') print('Image has been resized to the new shape: ', img.shape) if img.shape[1] > maxSize: img = misc.imresize(img, (int( (maxSize * img.shape[0]) / img.shape[1]), maxSize), interp='bilinear') print('Image has been resized to the new shape: ', img.shape) bounding_boxes, points = align.detect_face.detect_face( img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces > 0: index = 0 filename_split = os.path.splitext(output_filename) img_size = np.asarray(img.shape)[0:2] for i in range(nrof_faces): det = bounding_boxes[i, 0:4] det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - args.margin / 2, 0) bb[1] = np.maximum(det[1] - args.margin / 2, 0) bb[2] = np.minimum(det[2] + args.margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + args.margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] scaled = misc.imresize( cropped, (args.image_size, args.image_size), interp='bilinear') output_filename = filename_split[ 0] + '_' + str(i) + filename_split[1] misc.imsave(output_filename, scaled) nrof_successfully_aligned += 1 text_file.write( '%s %d %d %d %d\n' % (output_filename, bb[0], bb[1], bb[2], bb[3])) else: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) print('Total number of images: %d' % nrof_images_total) print('Number of successfully aligned images: %d' % nrof_successfully_aligned) return nrof_successfully_aligned
def main(args): network = importlib.import_module(args.model_def, 'inference') subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = facenet.get_dataset(args.data_dir) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths( os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(train_set) # Read data and apply label preserving distortions image_batch, label_batch = facenet.read_and_augument_data( image_list, label_list, args.image_size, args.batch_size, args.max_nrof_epochs, args.random_crop, args.random_flip, args.nrof_preprocess_threads) print('Total number of classes: %d' % len(train_set)) print('Total number of examples: %d' % len(image_list)) # Node for input images image_batch = tf.identity(image_batch, name='input') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') # Placeholder for phase_train phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') # Build the inference graph prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=phase_train_placeholder, weight_decay=args.weight_decay) with tf.variable_scope('Logits'): n = int(prelogits.get_shape()[1]) m = len(train_set) w = tf.get_variable( 'w', shape=[n, m], dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.1), regularizer=slim.l2_regularizer(args.weight_decay), trainable=True) b = tf.get_variable('b', [m], initializer=None, trainable=True) logits = tf.matmul(prelogits, w) + b # Add DeCov regularization loss if args.decov_loss_factor > 0.0: logits_decov_loss = facenet.decov_loss( logits) * args.decov_loss_factor tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, logits_decov_loss) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.scalar_summary('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits, label_batch, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # Calculate the total losses regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.all_variables()) # Create a saver save_variables = list(set(tf.all_variables()) - set([w]) - set([b])) saver = tf.train.Saver(save_variables, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) sess.run(tf.initialize_all_variables()) sess.run(tf.initialize_local_variables()) summary_writer = tf.train.SummaryWriter(log_dir, sess.graph) tf.train.start_queue_runners(sess=sess) with sess.as_default(): if pretrained_model: saver.restore(sess, pretrained_model) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, epoch, phase_train_placeholder, learning_rate_placeholder, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file) # Evaluate on LFW if args.lfw_dir: start_time = time.time() _, _, accuracy, val, val_std, far = lfw.validate( sess, lfw_paths, actual_issame, args.seed, args.batch_size, image_batch, phase_train_placeholder, embeddings, nrof_folds=args.lfw_nrof_folds) print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy))) print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) lfw_time = time.time() - start_time # Add validation loss and accuracy to summary summary = tf.Summary() #pylint: disable=maybe-no-member summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy)) summary.value.add(tag='lfw/val_rate', simple_value=val) summary.value.add(tag='time/lfw', simple_value=lfw_time) summary_writer.add_summary(summary, step) with open(os.path.join(log_dir, 'lfw_result.txt'), 'at') as f: f.write('%d\t%.5f\t%.5f\n' % (step, np.mean(accuracy), val)) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) return model_dir
def main(args): #此处导入的是:models.inception_resnet_v1模型,以后再看怎么更改模型 network = importlib.import_module(args.model_def) #用当前日期来命名模型 subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') #日志保存在c:\\users\\Administrator\logs\facenet\ 文件夹里 log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) #没有日志文件就创建一个 model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # 把参数写在日志文件中 facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) #arg_string:'E:/facenet/train_tripletloss.py' output_dir:'C:\\Users\\Administrator/logs/facenet\\20180314-181556' facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) #获取数据集,train_set是包含文件路径与标签的集合 #先输入一个父路径 path:'E:/facenet/data/lfw_160',接着输入每个子路径 # 输出:一个list,每个元素是一个ImageClass,里边包含图片地址的list(image_paths)以及对应的人名(name)[以后可能会直接调用这几个属性] train_set, class_indices = radar_io.get_h5dataset(args.data_dir, 7) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: #用在判断是否有预训练模型,但是如果有,怎么加载呢? print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths( os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) #建立图 #with语句适用于对资源进行访问的场合,确保使用过程中是否发生异常都会执行必要嘚瑟“清理”操作 with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # 学习率 Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') #用于判断是训练还是测试 phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') # batch 图像输入 image_placeholder = tf.placeholder(tf.float32, shape=(None, train_set.shape[1], train_set.shape[2], train_set.shape[3]), name='image_paths') # 图像标签 labels_placeholder = tf.placeholder(tf.int32, shape=(None), name='labels') # Build the inference (构造计算图) #其中prelogits是最后一层的输出 prelogits, end_points = network.inference( image_placeholder, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) #L2正则化(范化)函数 # embeddings = tf.nn.l2_normalize(输入向量, L2范化的维数(取0(列L2范化)或1(行L2范化)), 泛化的最小值边界, name='embeddings') embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') # Split embeddings into anchor, positive and negative and calculate triplet loss anchor, positive, negative = tf.unstack( tf.reshape(embeddings, [-1, 3, args.embedding_size]), 3, 1) triplet_loss = facenet.triplet_loss(anchor, positive, negative, args.alpha) #将指数衰减应用在学习率上 learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # 计算损失 regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) #构建L2正则化 total_loss = tf.add_n([triplet_loss] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters # 确定优化方法并根据损失函数求梯度,在这里,每更行一次参数,global_step会加1 train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables()) # Create a saver创建一个saver用来保存或者从内存中回复一个模型参数 saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph.能够在GPU上分配的最大内存 gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # Initialize variables sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder: True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder: True}) #写log文件 summary_writer = tf.summary.FileWriter(log_dir, sess.graph) #获取线程坐标 coord = tf.train.Coordinator() #将队列中的多用sunner开始执行 tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) facenet.load_model(args.pretrained_model) # Training and validation loop epoch = 0 #将所有数据过一遍的次数 默认500 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) #epoch_size是一个epoch中批的个数,这个epoch是全局的批处理个数以一个epoch中。。。这个epoch将用于求学习率 epoch = step // args.epoch_size # Train for one epoch train(args, sess, class_indices, train_set, epoch, image_placeholder, labels_placeholder, learning_rate_placeholder, phase_train_placeholder, global_step, embeddings, total_loss, train_op, summary_op, summary_writer, args.learning_rate_schedule_file, args.embedding_size, anchor, positive, negative, triplet_loss) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW if args.lfw_dir: evaluate(sess, lfw_paths, embeddings, image_placeholder, labels_placeholder, learning_rate_placeholder, phase_train_placeholder, actual_issame, args.batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer, args.embedding_size) return model_dir
def main(args): sleep(random.random()) output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir) print('Loading predictor model') # Create a HOG face detector using the built-in dlib class face_detector = dlib.get_frontal_face_detector() face_pose_predictor = dlib.shape_predictor(args.model) face_aligner = openface.AlignDlib(args.model) # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) nrof_images_total = 0 nrof_successfully_aligned = 0 nrof_unchanged_images = 0 print('Total number of classes:', len(dataset)) print('Number of classes to align:', args.num_classes) for cls in dataset[:args.num_classes]: print('Processing class:', cls.name) output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.png') if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim < 2: print('Unable to align "%s"' % image_path) continue if img.ndim == 2: img = facenet.to_rgb(img) img = img[:, :, 0:3] # Run the HOG face detector on the image data detected_face = face_detector(img, 1) if len(detected_face) > 0: # As face(s) detected is/ are stored in a list, we need to pull it out. face_rect = detected_face[0] # Get the the face's pose pose_landmarks = face_pose_predictor(img, face_rect) # Use openface to calculate and perform the face alignment alignedFace = face_aligner.align( 160, img, face_rect, landmarkIndices=openface.AlignDlib. OUTER_EYES_AND_NOSE) misc.imsave(output_filename, alignedFace) nrof_successfully_aligned += 1 else: filename_base, file_extension = os.path.splitext( output_filename) # Add 'fail' to indicates that dlib cannot detect face in this image. output_filename = "{}{}".format( filename_base + '_failed', file_extension) misc.imsave(output_filename, img) nrof_unchanged_images += 1 print('Total number of images:', nrof_images_total) print('Number of successfully aligned images:', nrof_successfully_aligned) print( 'Number of resized images (MTCNN cannot detect face in these images):', nrof_unchanged_images)
def main(args): network = importlib.import_module(args.model_def) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) random.seed(args.seed) train_set = facenet.get_dataset(args.data_dir) if args.filter_filename: train_set = filter_dataset(train_set, os.path.expanduser(args.filter_filename), args.filter_percentile, args.filter_min_nrof_images_per_class) nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths( os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(train_set) assert len(image_list) > 0, 'The dataset should not be empty' # Create a queue that produces indices into the image_list and label_list labels = ops.convert_to_tensor(label_list, dtype=tf.int32) range_size = array_ops.shape(labels)[0] index_queue = tf.train.range_input_producer(range_size, num_epochs=None, shuffle=True, seed=None, capacity=32) index_dequeue_op = index_queue.dequeue_many( args.batch_size * args.epoch_size, 'index_dequeue') learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None, 1), name='image_paths') labels_placeholder = tf.placeholder(tf.int64, shape=(None, 1), name='labels') input_queue = data_flow_ops.FIFOQueue(capacity=100000, dtypes=[tf.string, tf.int64], shapes=[(1, ), (1, )], shared_name=None, name=None) enqueue_op = input_queue.enqueue_many( [image_paths_placeholder, labels_placeholder], name='enqueue_op') nrof_preprocess_threads = 4 images_and_labels = [] for _ in range(nrof_preprocess_threads): filenames, label = input_queue.dequeue() images = [] for filename in tf.unstack(filenames): file_contents = tf.read_file(filename) image = tf.image.decode_image(file_contents, channels=3) if args.random_rotate: image = tf.py_func(facenet.random_rotate_image, [image], tf.uint8) if args.random_crop: image = tf.random_crop( image, [args.image_size, args.image_size, 3]) else: image = tf.image.resize_image_with_crop_or_pad( image, args.image_size, args.image_size) if args.random_flip: image = tf.image.random_flip_left_right(image) # pylint: disable=no-member image.set_shape((args.image_size, args.image_size, 3)) images.append(tf.image.per_image_standardization(image)) images_and_labels.append([images, label]) image_batch, label_batch = tf.train.batch_join( images_and_labels, batch_size=batch_size_placeholder, shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True, capacity=4 * nrof_preprocess_threads * args.batch_size, allow_smaller_final_batch=True) image_batch = tf.identity(image_batch, 'image_batch') image_batch = tf.identity(image_batch, 'input') label_batch = tf.identity(label_batch, 'label_batch') print('Total number of classes: %d' % nrof_classes) print('Total number of examples: %d' % len(image_list)) print('Building training graph') # Build the inference graph prelogits, _ = network.inference( image_batch, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) logits = slim.fully_connected( prelogits, len(train_set), activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') # Add center loss if args.center_loss_factor > 0.0: prelogits_center_loss, _ = facenet.center_loss( prelogits, label_batch, args.center_loss_alfa, nrof_classes) tf.add_to_collection( tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=label_batch, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # Calculate the total losses regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms) # Create a saver saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) saver.restore(sess, pretrained_model) # Training and validation loop print('Running training') epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder, learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW if args.lfw_dir: evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, embeddings, label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer) return model_dir
def main(args): network = importlib.import_module(args.model_def, 'inference') subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Store some git revision info in a text file in the log directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = facenet.get_dataset(args.data_dir) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Placeholder for input images images_placeholder = tf.placeholder(tf.float32, shape=(None, args.image_size, args.image_size, 3), name='input') # Placeholder for phase_train phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') # Build the inference graph prelogits, _ = network.inference(images_placeholder, args.keep_probability, phase_train=True, weight_decay=args.weight_decay) pre_embeddings = slim.fully_connected(prelogits, 128, activation_fn=None, scope='Embeddings', reuse=False) # Split example embeddings into anchor, positive and negative and calculate triplet loss embeddings = tf.nn.l2_normalize(pre_embeddings, 1, 1e-10, name='embeddings') anchor, positive, negative = tf.split(0, 3, embeddings) triplet_loss = facenet.triplet_loss(anchor, positive, negative, args.alpha) learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.scalar_summary('learning_rate', learning_rate) # Calculate the total losses regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([triplet_loss] + regularization_losses, name='total_loss') # Create list with variables to restore restore_vars = [] update_gradient_vars = [] if args.pretrained_model: for var in tf.all_variables(): if not 'Embeddings/' in var.op.name: restore_vars.append(var) else: update_gradient_vars.append(var) else: restore_vars = tf.all_variables() update_gradient_vars = tf.all_variables() # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, update_gradient_vars) # Create a saver restore_saver = tf.train.Saver(restore_vars) saver = tf.train.Saver(tf.all_variables(), max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Start running operations on the Graph. gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # Initialize variables sess.run(tf.initialize_all_variables()) sess.run(tf.initialize_local_variables()) summary_writer = tf.train.SummaryWriter(log_dir, sess.graph) tf.train.start_queue_runners(sess=sess) with sess.as_default(): if args.pretrained_model: restore_saver.restore(sess, os.path.expanduser(args.pretrained_model)) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch step = train(args, sess, train_set, epoch, images_placeholder, learning_rate_placeholder, global_step, embeddings, total_loss, train_op, summary_op, summary_writer) if args.lfw_dir: _, _, accuracy, val, val_std, far = lfw.validate(sess, lfw_paths, actual_issame, args.seed, 60, images_placeholder, phase_train_placeholder, embeddings, nrof_folds=args.lfw_nrof_folds) print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy))) print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) # Add validation loss and accuracy to summary summary = tf.Summary() #pylint: disable=maybe-no-member summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy)) summary.value.add(tag='lfw/val_rate', simple_value=val) summary_writer.add_summary(summary, step) # Save the model checkpoint print('Saving checkpoint') checkpoint_path = os.path.join(model_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) return model_dir
def main(args): sleep(random.random()) output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = get_dataset(args.input_dir) print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) minsize = 20 # minimum size of face threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold factor = 0.709 # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) bounding_boxes_filename = os.path.join(output_dir, 'bounding_boxes_%05d.txt' % random_key) start = time.time() with open(bounding_boxes_filename, "w") as text_file: nrof_images_total = 0 nrof_successfully_aligned = 0 if args.random_order: random.shuffle(dataset) for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) if args.random_order: random.shuffle(cls.videoset) for video in cls.videoset: output_video_dir=os.path.join(output_class_dir, video.name) if not os.path.exists(output_video_dir): os.makedirs(output_video_dir) for video in cls.videoset: output_video_dir = os.path.join(output_class_dir, video.name) for image_path in video.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_video_dir, filename+'.png') if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim<2: # 如果图像小于二维 print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2: # 如果图像是二维的,将其转换成rgb格式 img = facenet.to_rgb(img) img = img[:,:,0:3] # img是一个三维数组,其中第一二维表示长宽,第三维表示rgb bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] if nrof_faces>0: det = bounding_boxes[:,0:4] det_arr = [] img_size = np.asarray(img.shape)[0:2] if nrof_faces>1: # print("There are %d faces" % nrof_faces) if args.detect_multiple_faces: temp_arr = [] for i in range(nrof_faces): temp_arr.append(np.squeeze(det[i])) # 从数组的形状中删除单维条目,即把shape中为1的维度去掉 det_arr.append(temp_arr) else: bounding_box_size = (det[:,2]-det[:,0])*(det[:,3]-det[:,1]) img_center = img_size / 2 offsets = np.vstack([ (det[:,0]+det[:,2])/2-img_center[1], (det[:,1]+det[:,3])/2-img_center[0] ]) offset_dist_squared = np.sum(np.power(offsets,2.0),0) index = np.argmax(bounding_box_size-offset_dist_squared*2.0) # some extra weight on the centering det_arr.append(det[index,:]) else: det_arr.append(np.squeeze(det)) for i, det in enumerate(det_arr): raw_pic = Image.open(image_path) draw_pic = ImageDraw.Draw(raw_pic) if isinstance(det,list): for eachfacedet in det: eachfacedet=np.squeeze(eachfacedet) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(eachfacedet[0] - args.margin / 2, 0) bb[1] = np.maximum(eachfacedet[1] - args.margin / 2, 0) bb[2] = np.minimum(eachfacedet[2] + args.margin / 2, img_size[1]) bb[3] = np.minimum(eachfacedet[3] + args.margin / 2, img_size[0]) draw_pic.line((bb[0], bb[1], bb[2], bb[1]), "red", width=2) draw_pic.line((bb[0], bb[1], bb[0], bb[3]), "red", width=2) draw_pic.line((bb[2], bb[3], bb[2], bb[1]), "red", width=2) draw_pic.line((bb[2], bb[3], bb[0], bb[3]), "red", width=2) else: det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0]-args.margin/2, 0) bb[1] = np.maximum(det[1]-args.margin/2, 0) bb[2] = np.minimum(det[2]+args.margin/2, img_size[1]) bb[3] = np.minimum(det[3]+args.margin/2, img_size[0]) # draw the boxing of the face # draw four lines to make a rectangle draw_pic.line((bb[0], bb[1], bb[2], bb[1]), "red", width=2) draw_pic.line((bb[0], bb[1], bb[0], bb[3]), "red", width=2) draw_pic.line((bb[2], bb[3], bb[2], bb[1]), "red", width=2) draw_pic.line((bb[2], bb[3], bb[0], bb[3]), "red", width=2) # 人脸检测的结果,人脸所在范围为cropped范围 cropped = img[bb[1]:bb[3],bb[0]:bb[2],:] scaled = misc.imresize(cropped, (args.image_size, args.image_size), interp='bilinear') nrof_successfully_aligned += 1 # 保存的文件名字 filename_base, file_extension = os.path.splitext(output_filename) output_filename_n = "{}{}".format(filename_base, file_extension) # raw_pic.save(output_filename_n) misc.imsave(output_filename_n, scaled) text_file.write('%s %d %d %d %d\n' % (output_filename_n, bb[0], bb[1], bb[2], bb[3])) else: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) end = time.time() print('Total time of processing : %d, which means %g pictures per second' % (end-start, nrof_images_total/(end-start))) print('Total number of images: %d' % nrof_images_total) print('Number of successfully aligned images: %d' % nrof_successfully_aligned)
def main(args): network = importlib.import_module(args.model_def, 'inference') subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = facenet.get_dataset(args.data_dir) nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths( os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(train_set) # Read data and apply label preserving distortions image_batch, label_batch = facenet.read_and_augument_data( image_list, label_list, args.image_size, args.batch_size, args.max_nrof_epochs, args.random_crop, args.random_flip, args.nrof_preprocess_threads) print('Total number of classes: %d' % nrof_classes) print('Total number of examples: %d' % len(image_list)) print('Building training graph') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') # Build the inference graph prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=True, weight_decay=args.weight_decay) logits = slim.fully_connected( prelogits, len(train_set), activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) # Add DeCov regularization loss if args.decov_loss_factor > 0.0: logits_decov_loss = facenet.decov_loss( logits) * args.decov_loss_factor tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, logits_decov_loss) # Add center loss update_centers = tf.no_op('update_centers') if args.center_loss_factor > 0.0: prelogits_center_loss, update_centers = facenet.center_loss( prelogits, label_batch, args.center_loss_alfa) tf.add_to_collection( tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.scalar_summary('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits, label_batch, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # Calculate the total losses regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.all_variables(), args.log_histograms) # Evaluation print('Building evaluation graph') lfw_label_list = range(0, len(lfw_paths)) assert ( len(lfw_paths) % args.lfw_batch_size == 0 ), "The number of images in the LFW test set need to be divisible by the lfw_batch_size" eval_image_batch, eval_label_batch = facenet.read_and_augument_data( lfw_paths, lfw_label_list, args.image_size, args.lfw_batch_size, None, False, False, args.nrof_preprocess_threads, shuffle=False) # Node for input images eval_image_batch.set_shape((None, args.image_size, args.image_size, 3)) eval_image_batch = tf.identity(eval_image_batch, name='input') eval_prelogits, _ = network.inference(eval_image_batch, 1.0, phase_train=False, weight_decay=0.0, reuse=True) eval_embeddings = tf.nn.l2_normalize(eval_prelogits, 1, 1e-10, name='embeddings') # Create a saver saver = tf.train.Saver(tf.all_variables(), max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) sess.run(tf.initialize_all_variables()) sess.run(tf.initialize_local_variables()) summary_writer = tf.train.SummaryWriter(log_dir, sess.graph) tf.train.start_queue_runners(sess=sess) with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) saver.restore(sess, pretrained_model) # Training and validation loop print('Running training') epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, epoch, learning_rate_placeholder, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file, update_centers) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW if args.lfw_dir: evaluate(sess, eval_embeddings, eval_label_batch, actual_issame, args.lfw_batch_size, args.seed, args.lfw_nrof_folds, log_dir, step, summary_writer) return model_dir
def main(args): network = importlib.import_module(args.model_def) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = facenet.get_dataset(args.data_dir) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths( os.path.expanduser(args.lfw_dir), pairs) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None, 3), name='image_paths') labels_placeholder = tf.placeholder(tf.int64, shape=(None, 3), name='labels') input_queue = data_flow_ops.FIFOQueue(capacity=100000, dtypes=[tf.string, tf.int64], shapes=[(3, ), (3, )], shared_name=None, name=None) enqueue_op = input_queue.enqueue_many( [image_paths_placeholder, labels_placeholder]) nrof_preprocess_threads = 4 images_and_labels = [] for _ in range(nrof_preprocess_threads): filenames, label = input_queue.dequeue() images = [] for filename in tf.unstack(filenames): file_contents = tf.read_file(filename) image = tf.image.decode_image(file_contents, channels=3) if args.random_crop: image = tf.random_crop( image, [args.image_size, args.image_size, 3]) else: image = tf.image.resize_image_with_crop_or_pad( image, args.image_size, args.image_size) if args.random_flip: image = tf.image.random_flip_left_right(image) #pylint: disable=no-member image.set_shape((args.image_size, args.image_size, 3)) images.append(tf.image.per_image_standardization(image)) images_and_labels.append([images, label]) image_batch, labels_batch = tf.train.batch_join( images_and_labels, batch_size=batch_size_placeholder, shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True, capacity=4 * nrof_preprocess_threads * args.batch_size, allow_smaller_final_batch=True) image_batch = tf.identity(image_batch, 'image_batch') image_batch = tf.identity(image_batch, 'input') labels_batch = tf.identity(labels_batch, 'label_batch') # Build the inference graph prelogits, _ = network.inference( image_batch, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') # Split embeddings into anchor, positive and negative and calculate triplet loss anchor, positive, negative = tf.unstack( tf.reshape(embeddings, [-1, 3, args.embedding_size]), 3, 1) triplet_loss = facenet.triplet_loss(anchor, positive, negative, args.alpha) learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the total losses regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([triplet_loss] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables()) # Create a saver saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # Initialize variables sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder: True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder: True}) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) saver.restore( sess, 'C:\\Users\\fengmaniu/models/facenet\\20180701-003604\\model-20180701-003604.ckpt-29344' ) # saver.restore(sess, os.path.expanduser(args.pretrained_model)) # facenet.load_model(args.pretrained_model) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, train_set, epoch, image_paths_placeholder, labels_placeholder, labels_batch, batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, input_queue, global_step, embeddings, total_loss, train_op, summary_op, summary_writer, args.learning_rate_schedule_file, args.embedding_size, anchor, positive, negative, triplet_loss) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW if args.lfw_dir: evaluate(sess, lfw_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder, batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, actual_issame, args.batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer, args.embedding_size) return model_dir
def main(args): sleep(random.random()) output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir) print('Creating networks and loading parameters') thresh = 0.8 gpuid = 0 detector = RetinaFace('/content/insightface/models/R50', 0, gpuid, 'net3') # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) bounding_boxes_filename = os.path.join( output_dir, 'bounding_boxes_%05d.txt' % random_key) with open(bounding_boxes_filename, "w") as text_file: nrof_images_total = 0 nrof_successfully_aligned = 0 if args.random_order: random.shuffle(dataset) for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) if args.random_order: random.shuffle(cls.image_paths) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.png') print(image_path) if not os.path.exists(output_filename): try: img = cv2.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim < 2: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) continue if img.ndim == 2: img = facenet.to_rgb(img) img = img[:, :, 0:3] im_shape = img.shape scales = [1024, 1980] target_size = scales[0] max_size = scales[1] im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) im_scale = float(target_size) / float(im_size_min) if np.round(im_scale * im_size_max) > max_size: im_scale = float(max_size) / float(im_size_max) scales = [im_scale] flip = False bounding_boxes, _ = detector.detect(img, thresh, scales=scales, do_flip=flip) nrof_faces = bounding_boxes.shape[0] if nrof_faces > 0: det = bounding_boxes[:, 0:4] det_arr = [] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: if args.detect_multiple_faces: for i in range(nrof_faces): det_arr.append(np.squeeze(det[i])) else: bounding_box_size = ( det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack([ (det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0] ]) offset_dist_squared = np.sum( np.power(offsets, 2.0), 0) index = np.argmax( bounding_box_size - offset_dist_squared * 2.0 ) # some extra weight on the centering det_arr.append(det[index, :]) else: det_arr.append(np.squeeze(det)) for i, det in enumerate(det_arr): det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - args.margin / 2, 0) bb[1] = np.maximum(det[1] - args.margin / 2, 0) bb[2] = np.minimum(det[2] + args.margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + args.margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] scaled = cv2.resize( cropped, (args.image_size, args.image_size), interpolation=cv2.INTER_LINEAR) nrof_successfully_aligned += 1 filename_base, file_extension = os.path.splitext( output_filename) if args.detect_multiple_faces: output_filename_n = "{}_{}{}".format( filename_base, i, file_extension) else: output_filename_n = "{}{}".format( filename_base, file_extension) cv2.imwrite(output_filename_n, scaled) text_file.write('%s %d %d %d %d\n' % (output_filename_n, bb[0], bb[1], bb[2], bb[3])) else: print('Unable to align "%s"' % image_path) text_file.write('%s\n' % (output_filename)) print('Total number of images: %d' % nrof_images_total) print('Number of successfully aligned images: %d' % nrof_successfully_aligned)
def main(args): align = align_dlib.AlignDlib(os.path.expanduser(args.dlib_face_predictor)) landmarkIndices = align_dlib.AlignDlib.OUTER_EYES_AND_NOSE output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir) random.shuffle(dataset) # Scale the image such that the face fills the frame when cropped to crop_size scale = float(args.face_size) / args.image_size nrof_images_total = 0 nrof_prealigned_images = 0 nrof_successfully_aligned = 0 for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) random.shuffle(cls.image_paths) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename+'.png') if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim == 2: img = facenet.to_rgb(img) if args.use_center_crop: scaled = misc.imresize(img, args.prealigned_scale, interp='bilinear') sz1 = scaled.shape[1]/2 sz2 = args.image_size/2 aligned = scaled[(sz1-sz2):(sz1+sz2),(sz1-sz2):(sz1+sz2),:] else: aligned = align.align(args.image_size, img, landmarkIndices=landmarkIndices, skipMulti=False, scale=scale) if aligned is not None: print(image_path) nrof_successfully_aligned += 1 misc.imsave(output_filename, aligned) elif args.prealigned_dir: # Face detection failed. Use center crop from pre-aligned dataset class_name = os.path.split(output_class_dir)[1] image_path_without_ext = os.path.join(os.path.expanduser(args.prealigned_dir), class_name, filename) # Find the extension of the image exts = ('jpg', 'png') for ext in exts: temp_path = image_path_without_ext + '.' + ext image_path = '' if os.path.exists(temp_path): image_path = temp_path break try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: scaled = misc.imresize(img, args.prealigned_scale, interp='bilinear') sz1 = scaled.shape[1]/2 sz2 = args.image_size/2 cropped = scaled[(sz1-sz2):(sz1+sz2),(sz1-sz2):(sz1+sz2),:] print(image_path) nrof_prealigned_images += 1 misc.imsave(output_filename, cropped) else: print('Unable to align "%s"' % image_path) print('Total number of images: %d' % nrof_images_total) print('Number of successfully aligned images: %d' % nrof_successfully_aligned) print('Number of pre-aligned images: %d' % nrof_prealigned_images)
def main(args): #sleep(random.random()) output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) #dataset = facenet.get_dataset(args.input_dir) align_dlib = AlignDlib( '/home/arthur/facenet.git/trunk/src/align/shape_predictor_68_face_landmarks.dat' ) DATA_BASE = "/home/arthur/caffe-master/data/lfw/" POSITIVE_TEST_FILE = "/home/arthur/facenet.git/trunk/src/align/positive_pairs_path.txt" NEGATIVE_TEST_FILE = "/home/arthur/facenet.git/trunk/src/align/negative_pairs_path.txt" with tf.Graph().as_default(): gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) print('Creating networks and loading parameters') ###################tensorflow predictor init############################# FLAGS = utils.load_tf_flags() facenet.load_model(FLAGS.model_dir) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) embeddings = tf.get_default_graph().get_tensor_by_name( "embeddings:0") phase_train_placeholder = tf.get_default_graph( ).get_tensor_by_name("phase_train:0") images_placeholder = tf.get_default_graph().get_tensor_by_name( "input:0") ########################################################### minsize = 10 # minimum size of face threshold = [0.5, 0.5, 0.7] # three steps's threshold factor = 0.709 # scale factor # Add a random key to the filename to allow alignment using multiple processes random_key = np.random.randint(0, high=99999) # Read video file frame #cap = cv2.VideoCapture('/home/wuqianliang/test/VID_20171013_121412.mp4') # start capture video print('start test on lfw dataset') def get_feature(image_x): img = cv2.imread(image_x) img = img[:, :, 0:3] bounding_boxes, _ = align.detect_face.detect_face( img, minsize, pnet, rnet, onet, threshold, factor) #print(bounding_boxes) nrof_faces = bounding_boxes.shape[0] if nrof_faces > 0 and len(bounding_boxes) == 1: bbox = bounding_boxes[0] det = bbox[0:5] detect_confidence = det[4] #print(detect_confidence) if detect_confidence > 0.8: #0.8: left = int(bbox[0]) top = int(bbox[1]) right = int(bbox[2]) bottom = int(bbox[3]) alignedFace = align_dlib.align( 160, # 96x96x3 img, dlib.rectangle(left, top, right, bottom), landmarkIndices=AlignDlib.OUTER_EYES_AND_NOSE) #print(alignedFace.shape) cropped = alignedFace.reshape((1, 160, 160, 3)) emb_dict = list( sess.run( [embeddings], feed_dict={ images_placeholder: np.array(cropped), phase_train_placeholder: False })[0]) return emb_dict return None for thershold in np.arange(0.25, 0.35, 0.01): True_Positive = 0 True_Negative = 0 False_Positive = 0 False_Negative = 0 # Positive Test f_positive = open(POSITIVE_TEST_FILE, "r") PositiveDataList = f_positive.readlines() f_positive.close() f_negative = open(NEGATIVE_TEST_FILE, "r") NegativeDataList = f_negative.readlines() f_negative.close() for index in range(len(PositiveDataList)): filepath_1 = PositiveDataList[index].split(' ')[0] filepath_2 = PositiveDataList[index].split(' ')[1][:-1] feature_1 = get_feature(DATA_BASE + filepath_1) feature_2 = get_feature(DATA_BASE + filepath_2) if feature_1 is None or feature_2 is None: print(filepath_1, filepath_2, 'not detected') continue result = compare_pic(feature_1, feature_2) if result >= thershold: print('Same Guy\n') True_Positive += 1 else: print('Wrong\n\n') False_Positive += 1 for index in range(len(NegativeDataList)): filepath_1 = NegativeDataList[index].split(' ')[0] filepath_2 = NegativeDataList[index].split(' ')[1][:-1] feature_1 = get_feature(DATA_BASE + filepath_1) feature_2 = get_feature(DATA_BASE + filepath_2) if feature_1 is None or feature_2 is None: print(filepath_1, filepath_2, 'not detected') continue result = compare_pic(feature_1, feature_2) if result >= thershold: print('Wrong Guy\n') False_Negative += 1 else: print('Correct\n') True_Negative += 1 print("thershold: " + str(thershold)) print("Accuracy: " + str(float(True_Positive + True_Negative) / TEST_SUM) + " %") print("True_Positive: " + str(float(True_Positive) / TEST_SUM) + " %") print("True_Negative: " + str(float(True_Negative) / TEST_SUM) + " %") print("False_Positive: " + str(float(False_Positive) / TEST_SUM) + " %") print("False_Negative: " + str(float(False_Negative) / TEST_SUM) + " %")
def main(args): network = importlib.import_module(args.model_def, 'inference') subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) # 创建模型文件夹 if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = facenet.get_dataset(args.data_dir) nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) if args.baihe_pack_file: print('load baihe dataset') lfw_paths, actual_issame = msgpack_numpy.load(open(args.baihe_pack_file)) with tf.Graph().as_default(): tf.set_random_seed(args.seed) # 迭代轮数, 不同的轮数可以使用不同的学习率 global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(train_set) # Read data and apply label preserving distortions image_batch, label_batch = facenet.read_and_augment_data(image_list, label_list, args.image_size, args.batch_size, args.max_nrof_epochs, args.random_crop, args.random_flip, args.random_rotate, args.nrof_preprocess_threads) print('Total number of classes: %d' % nrof_classes) print('Total number of examples: %d' % len(image_list)) print('Building training graph') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') # Build the inference graph, 返回的是网络结构 prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=True, weight_decay=args.weight_decay) # 初始化采用截断的正态分布噪声, 标准差为0.1 # tf.truncated_normal_initializer(stddev=0.1) logits = slim.fully_connected(prelogits, len(train_set), activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) # Add DeCov regularization loss if args.decov_loss_factor > 0.0: logits_decov_loss = facenet.decov_loss(logits) * args.decov_loss_factor # 将decov_loss加入到名字为tf.GraphKeys.REGULARIZATION_LOSSES的集合当中来 tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, logits_decov_loss) # Add center loss (center_loss作为一个正则项加入到collections) if args.center_loss_factor > 0.0: prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch, args.center_loss_alfa, nrof_classes) # 将center加入到名字为tf.GraphKeys.REGULARIZATION_LOSSES的集合当中来 tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) # 对学习率进行指数衰退 learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.scalar_summary('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch # 将softmax和交叉熵一起做,得到最后的损失函数,提高效率 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits, label_batch, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # Calculate the total losses # 获取正则loss regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.all_variables(), args.log_histograms) # Evaluation print('Building evaluation graph') lfw_label_list = range(0, len(lfw_paths)) assert (len(lfw_paths) % args.lfw_batch_size == 0), \ "The number of images in the LFW test set need to be divisible by the lfw_batch_size" eval_image_batch, eval_label_batch = facenet.read_and_augment_data(lfw_paths, lfw_label_list, args.image_size, args.lfw_batch_size, None, False, False, False, args.nrof_preprocess_threads, shuffle=False) # Node for input images eval_image_batch.set_shape((None, args.image_size, args.image_size, 3)) eval_image_batch = tf.identity(eval_image_batch, name='input') eval_prelogits, _ = network.inference(eval_image_batch, 1.0, phase_train=False, weight_decay=0.0, reuse=True) eval_embeddings = tf.nn.l2_normalize(eval_prelogits, 1, 1e-10, name='embeddings') # Create a saver saver = tf.train.Saver(tf.all_variables(), max_to_keep=10) # saver = tf.train.Saver(tf.global_variables(), max_to_keep=10) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Start running operations on the Graph. gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) # sess.run(tf.global_variables_initializer()) # sess.run(tf.local_variables_initializer()) sess.run(tf.initialize_all_variables()) sess.run(tf.initialize_local_variables()) summary_writer = tf.train.SummaryWriter(log_dir, sess.graph) tf.train.start_queue_runners(sess=sess) # 将队列runner启动,队列就开始运行,返回启动的线程 # 注意input_queue是先入列,再出列,由于入列的时候输入是place holder,因此到后的线程的时候,会阻塞, # 直到下train中sess run (enqueue_op)的时候, 会向队列中载入值,后面的出列才有对象,才在各自的队列中开始执行 with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) saver.restore(sess, pretrained_model) # Training and validation loop print('Running training') epoch = 0 while epoch < args.max_nrof_epochs: try: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, epoch, learning_rate_placeholder, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW if args.lfw_dir: evaluate(sess, eval_embeddings, eval_label_batch, actual_issame, args.lfw_batch_size, args.seed, args.lfw_nrof_folds, log_dir, step, summary_writer) # Evaluate on baihe_data if args.baihe_pack_file: evaluate(sess, eval_embeddings, eval_label_batch, actual_issame, args.lfw_batch_size, args.seed, args.lfw_nrof_folds, log_dir, step, summary_writer) except: traceback.print_exc() continue return model_dir
def main(args): align = align_dlib.AlignDlib(os.path.expanduser(args.dlib_face_predictor)) landmarkIndices = align_dlib.AlignDlib.OUTER_EYES_AND_NOSE output_dir = os.path.expanduser(args.output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv)) dataset = facenet.get_dataset(args.input_dir) random.shuffle(dataset) # Scale the image such that the face fills the frame when cropped to crop_size scale = float(args.face_size) / args.image_size nrof_images_total = 0 nrof_prealigned_images = 0 nrof_successfully_aligned = 0 nrof_not_successfully_aligned = 0 lfw_align_fail_list = open("lfw_align_fail_list.txt", "w") for cls in dataset: output_class_dir = os.path.join(output_dir, cls.name) if not os.path.exists(output_class_dir): os.makedirs(output_class_dir) random.shuffle(cls.image_paths) for image_path in cls.image_paths: nrof_images_total += 1 filename = os.path.splitext(os.path.split(image_path)[1])[0] output_filename = os.path.join(output_class_dir, filename + '.png') if not os.path.exists(output_filename): try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: if img.ndim == 2: img = facenet.to_rgb(img) if args.use_center_crop: scaled = misc.imresize(img, args.prealigned_scale, interp='bilinear') sz1 = scaled.shape[1] / 2 sz2 = args.image_size / 2 aligned = scaled[(sz1 - sz2):(sz1 + sz2), (sz1 - sz2):(sz1 + sz2), :] else: aligned = align.align(args.image_size, img, landmarkIndices=landmarkIndices, skipMulti=False, scale=scale) if aligned is not None: print(image_path) nrof_successfully_aligned += 1 misc.imsave(output_filename, aligned) elif args.prealigned_dir: # Face detection failed. Use center crop from pre-aligned dataset class_name = os.path.split(output_class_dir)[1] image_path_without_ext = os.path.join( os.path.expanduser(args.prealigned_dir), class_name, filename) # Find the extension of the image exts = ('jpg', 'png') for ext in exts: temp_path = image_path_without_ext + '.' + ext image_path = '' if os.path.exists(temp_path): image_path = temp_path break try: img = misc.imread(image_path) except (IOError, ValueError, IndexError) as e: errorMessage = '{}: {}'.format(image_path, e) print(errorMessage) else: scaled = misc.imresize(img, args.prealigned_scale, interp='bilinear') sz1 = scaled.shape[1] / 2 sz2 = args.image_size / 2 cropped = scaled[(sz1 - sz2):(sz1 + sz2), (sz1 - sz2):(sz1 + sz2), :] print(image_path) nrof_prealigned_images += 1 misc.imsave(output_filename, cropped) else: nrof_not_successfully_aligned += 1 print('Unable to align "%s"' % image_path) lfw_align_fail_list.write( "Case " + str(nrof_not_successfully_aligned) + ": unable to align " + image_path + "\n") print('Total number of images: %d' % nrof_images_total) print('Number of successfully aligned images: %d' % nrof_successfully_aligned) print('Number of pre-aligned images: %d' % nrof_prealigned_images) lfw_align_fail_list.close()
def main(args): network = importlib.import_module(args.model_def) image_size = (args.image_size, args.image_size) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) stat_file_name = os.path.join(log_dir, 'stat.h5') # Write arguments to a text file facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) random.seed(args.seed) dataset = facenet.get_dataset(args.data_dir) if args.filter_filename: dataset = filter_dataset(dataset, os.path.expanduser(args.filter_filename), args.filter_percentile, args.filter_min_nrof_images_per_class) if args.validation_set_split_ratio>0.0: train_set, val_set = facenet.split_dataset(dataset, args.validation_set_split_ratio, args.min_nrof_val_images_per_class, 'SPLIT_IMAGES') else: train_set, val_set = dataset, [] nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(train_set) assert len(image_list)>0, 'The training set should not be empty' val_image_list, val_label_list = facenet.get_image_paths_and_labels(val_set) # Create a queue that produces indices into the image_list and label_list labels = ops.convert_to_tensor(label_list, dtype=tf.int32) range_size = array_ops.shape(labels)[0] index_queue = tf.train.range_input_producer(range_size, num_epochs=None, shuffle=True, seed=None, capacity=32) index_dequeue_op = index_queue.dequeue_many(args.batch_size*args.epoch_size, 'index_dequeue') learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths') labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels') control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control') nrof_preprocess_threads = 4 input_queue = data_flow_ops.FIFOQueue(capacity=2000000, dtypes=[tf.string, tf.int32, tf.int32], shapes=[(1,), (1,), (1,)], shared_name=None, name=None) enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder, control_placeholder], name='enqueue_op') image_batch, label_batch = facenet.create_input_pipeline(input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder) image_batch = tf.identity(image_batch, 'image_batch') image_batch = tf.identity(image_batch, 'input') label_batch = tf.identity(label_batch, 'label_batch') print('Number of classes in training set: %d' % nrof_classes) print('Number of examples in training set: %d' % len(image_list)) print('Number of classes in validation set: %d' % len(val_set)) print('Number of examples in validation set: %d' % len(val_image_list)) print('Building training graph') # Build the inference graph prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) logits = slim.fully_connected(prelogits, len(train_set), activation_fn=None, weights_initializer=slim.initializers.xavier_initializer(), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') # Norm for the prelogits eps = 1e-4 prelogits_norm = tf.reduce_mean(tf.norm(tf.abs(prelogits)+eps, ord=args.prelogits_norm_p, axis=1)) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_norm * args.prelogits_norm_loss_factor) # Add center loss prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch, args.center_loss_alfa, nrof_classes) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=label_batch, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) correct_prediction = tf.cast(tf.equal(tf.argmax(logits, 1), tf.cast(label_batch, tf.int64)), tf.float32) accuracy = tf.reduce_mean(correct_prediction) # Calculate the total losses regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms) # Create a saver saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) saver.restore(sess, pretrained_model) # Training and validation loop print('Running training') nrof_steps = args.max_nrof_epochs*args.epoch_size nrof_val_samples = int(math.ceil(args.max_nrof_epochs / args.validate_every_n_epochs)) # Validate every validate_every_n_epochs as well as in the last epoch stat = { 'loss': np.zeros((nrof_steps,), np.float32), 'center_loss': np.zeros((nrof_steps,), np.float32), 'reg_loss': np.zeros((nrof_steps,), np.float32), 'xent_loss': np.zeros((nrof_steps,), np.float32), 'prelogits_norm': np.zeros((nrof_steps,), np.float32), 'accuracy': np.zeros((nrof_steps,), np.float32), 'val_loss': np.zeros((nrof_val_samples,), np.float32), 'val_xent_loss': np.zeros((nrof_val_samples,), np.float32), 'val_accuracy': np.zeros((nrof_val_samples,), np.float32), 'lfw_accuracy': np.zeros((args.max_nrof_epochs,), np.float32), 'lfw_valrate': np.zeros((args.max_nrof_epochs,), np.float32), 'learning_rate': np.zeros((args.max_nrof_epochs,), np.float32), 'time_train': np.zeros((args.max_nrof_epochs,), np.float32), 'time_validate': np.zeros((args.max_nrof_epochs,), np.float32), 'time_evaluate': np.zeros((args.max_nrof_epochs,), np.float32), 'prelogits_hist': np.zeros((args.max_nrof_epochs, 1000), np.float32), } for epoch in range(1,args.max_nrof_epochs+1): step = sess.run(global_step, feed_dict=None) # Train for one epoch t = time.time() cont = train(args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder, learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file, stat, cross_entropy_mean, accuracy, learning_rate, prelogits, prelogits_center_loss, args.random_rotate, args.random_crop, args.random_flip, prelogits_norm, args.prelogits_hist_max, args.use_fixed_image_standardization) stat['time_train'][epoch-1] = time.time() - t if not cont: break t = time.time() if len(val_image_list)>0 and ((epoch-1) % args.validate_every_n_epochs == args.validate_every_n_epochs-1 or epoch==args.max_nrof_epochs): validate(args, sess, epoch, val_image_list, val_label_list, enqueue_op, image_paths_placeholder, labels_placeholder, control_placeholder, phase_train_placeholder, batch_size_placeholder, stat, total_loss, regularization_losses, cross_entropy_mean, accuracy, args.validate_every_n_epochs, args.use_fixed_image_standardization) stat['time_validate'][epoch-1] = time.time() - t # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, epoch) # Evaluate on LFW t = time.time() if args.lfw_dir: evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, embeddings, label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer, stat, epoch, args.lfw_distance_metric, args.lfw_subtract_mean, args.lfw_use_flipped_images, args.use_fixed_image_standardization) stat['time_evaluate'][epoch-1] = time.time() - t print('Saving statistics') with h5py.File(stat_file_name, 'w') as f: for key, value in stat.iteritems(): f.create_dataset(key, data=value) return model_dir
def main(args): network = importlib.import_module(args.model_def, 'inference') if args.model_name: subdir = args.model_name preload_model = True else: subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') preload_model = False log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.mkdir(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.mkdir(model_dir) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = facenet.get_dataset(args.data_dir) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Placeholder for input images images_placeholder = tf.placeholder(tf.float32, shape=(None, args.image_size, args.image_size, 3), name='input') # Placeholder for phase_train phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') # Build the inference graph embeddings = network.inference(images_placeholder, args.pool_type, args.use_lrn, args.keep_probability, phase_train=phase_train_placeholder, weight_decay=args.weight_decay) # Split example embeddings into anchor, positive and negative anchor, positive, negative = tf.split(0, 3, embeddings) # Calculate triplet loss loss = facenet.triplet_loss(anchor, positive, negative, args.alpha) # Calculate the total loss regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([loss] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op, _ = facenet.train( total_loss, global_step, args.optimizer, args.learning_rate, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, args.moving_average_decay) # Create a saver saver = tf.train.Saver(tf.all_variables(), max_to_keep=0) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Build an initialization operation to run below. init = tf.initialize_all_variables() # Start running operations on the Graph. sess = tf.Session() sess.run(init) summary_writer = tf.train.SummaryWriter(log_dir, sess.graph) with sess.as_default(): if preload_model: ckpt = tf.train.get_checkpoint_state(model_dir) #pylint: disable=maybe-no-member if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) else: raise ValueError('Checkpoint not found') # Training and validation loop for epoch in range(args.max_nrof_epochs): # Train for one epoch step = train(args, sess, train_set, epoch, images_placeholder, phase_train_placeholder, global_step, embeddings, loss, train_op, summary_op, summary_writer) _, _, accuracy, val, val_std, far = lfw.validate( sess, paths, actual_issame, args.seed, args.batch_size, images_placeholder, phase_train_placeholder, embeddings, nrof_folds=args.lfw_nrof_folds) print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy))) print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) # Add validation loss and accuracy to summary summary = tf.Summary() #pylint: disable=maybe-no-member summary.value.add(tag='lfw/accuracy', simple_value=np.mean(accuracy)) summary.value.add(tag='lfw/val_rate', simple_value=val) summary_writer.add_summary(summary, step) if (epoch % args.checkpoint_period == 0) or (epoch == args.max_nrof_epochs - 1): # Save the model checkpoint print('Saving checkpoint') checkpoint_path = os.path.join(model_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) return model_dir
def main(args): network = importlib.import_module(args.model_def) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Store some git revision info in a text file in the log directory src_path,_ = os.path.split(os.path.realpath(__file__)) facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) random.seed(args.seed) train_set = facenet.get_dataset(args.data_dir) if args.filter_filename: train_set = filter_dataset(train_set, os.path.expanduser(args.filter_filename), args.filter_percentile, args.filter_min_nrof_images_per_class) nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) if args.lfw_dir: print('LFW directory: %s' % args.lfw_dir) # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False) # Get a list of image paths and their labels image_list, label_list = facenet.get_image_paths_and_labels(train_set) assert len(image_list)>0, 'The dataset should not be empty' # Create a queue that produces indices into the image_list and label_list labels = ops.convert_to_tensor(label_list, dtype=tf.int32) range_size = array_ops.shape(labels)[0] index_queue = tf.train.range_input_producer(range_size, num_epochs=None, shuffle=True, seed=None, capacity=32) index_dequeue_op = index_queue.dequeue_many(args.batch_size*args.epoch_size, 'index_dequeue') learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths') labels_placeholder = tf.placeholder(tf.int64, shape=(None,1), name='labels') input_queue = data_flow_ops.FIFOQueue(capacity=100000, dtypes=[tf.string, tf.int64], shapes=[(1,), (1,)], shared_name=None, name=None) enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder], name='enqueue_op') nrof_preprocess_threads = 4 images_and_labels = [] for _ in range(nrof_preprocess_threads): filenames, label = input_queue.dequeue() images = [] for filename in tf.unstack(filenames): file_contents = tf.read_file(filename) image = tf.image.decode_png(file_contents) if args.random_rotate: image = tf.py_func(facenet.random_rotate_image, [image], tf.uint8) if args.random_crop: image = tf.random_crop(image, [args.image_size, args.image_size, 3]) else: image = tf.image.resize_image_with_crop_or_pad(image, args.image_size, args.image_size) if args.random_flip: image = tf.image.random_flip_left_right(image) #pylint: disable=no-member image.set_shape((args.image_size, args.image_size, 3)) images.append(tf.image.per_image_standardization(image)) images_and_labels.append([images, label]) image_batch, label_batch = tf.train.batch_join( images_and_labels, batch_size=batch_size_placeholder, shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True, capacity=4 * nrof_preprocess_threads * args.batch_size, allow_smaller_final_batch=True) image_batch = tf.identity(image_batch, 'image_batch') image_batch = tf.identity(image_batch, 'input') label_batch = tf.identity(label_batch, 'label_batch') print('Total number of classes: %d' % nrof_classes) print('Total number of examples: %d' % len(image_list)) print('Building training graph') # Build the inference graph prelogits, _ = network.inference(image_batch, args.keep_probability, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) logits = slim.fully_connected(prelogits, len(train_set), activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=0.1), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') # Add center loss if args.center_loss_factor>0.0: prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch, args.center_loss_alfa, nrof_classes) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=label_batch, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # Calculate the total losses regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = facenet.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms) # Create a saver saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) saver.restore(sess, pretrained_model) # Training and validation loop print('Running training') epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder, learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW if args.lfw_dir: evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, embeddings, label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer) sess.close() return model_dir