def model_build(path=os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "res", "train"), feature=PCA(), dist_metric=EuclideanDistance(), k=1, sz=None): model_fn = os.path.join(path, "mdl.pkl") if not os.path.isfile(model_fn): [X,y] = read_images(path, sz=sz) classifier = NearestNeighbor(dist_metric=dist_metric, k=k) model = PredictableModel(feature=feature, classifier=classifier) model.compute(X, y) save_model(model_fn, model) return load_model(model_fn)
def get_model(numeric_dataset, model_filename=None): feature = ChainOperator(Resize((128,128)), Fisherfaces()) classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) inner_model = PredictableModel(feature=feature, classifier=classifier) model = PredictableModelWrapper(inner_model) model.set_data(numeric_dataset) model.compute() if not model_filename is None: save_model(model_filename, model) return model
def create_model_file(username, image_path, feature, classifier): # read images and set labels [X, y] = read_images(image_path) # Define the model as the combination model = PredictableModel(feature=feature.value, classifier=classifier.value) # Compute the Fisherfaces on the given data (in X) and labels (in y): model.compute(X, y) # We then save the model, which uses Pythons pickle module: model_name = username + "_model.pkl" save_model(model_name, model)
def computeAndSaveModel(path_to_database, path_for_model_output, size, model_type="Fisherfaces", num_components=0, classifier_neighbours=1): print "\n[+] Saving new model (confirmed below)." [X,y,names] = read_images(path_to_database, sz=size) if model_type == "Eigenfaces": model = PredictableModel(PCA(num_components=num_components), NearestNeighbor(k=classifier_neighbours), dimensions=size, namesDict=names) elif model_type == "Fisherfaces": model = PredictableModel(Fisherfaces(num_components=num_components), NearestNeighbor(k=classifier_neighbours), dimensions=size, namesDict=names) else: print "[-] specify the type of model you want to comput as either 'Fisherface' or 'Eigenface' in the computeAndSaveModel function." return False model.compute(X,y) save_model(path_for_model_output, model) print "\n[+] Saving confirmed. New model saved to:", path_for_model_output
def train(train_path): # Now read in the image data. This must be a valid path! [X, y, class_names] = read_images(train_path) print X, y, class_names # Then set up a handler for logging: handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # Add handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) # Define the model as the combination model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): model.compute(X, y) # Then turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in xrange(min(model.feature.eigenvectors.shape[1], 16)): e = model.feature.eigenvectors[:, i].reshape(X[0].shape) E.append(minmax_normalize(e, 0, 255, dtype=np.uint8)) # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png") # Perform a 10-fold cross validation cv = KFoldCrossValidation(model, k=10) cv.validate(X, y) # And print the result: cv.print_results() save_model('model.pkl', model, class_names) return [model, class_names]
def train(train_path): # Now read in the image data. This must be a valid path! [X,y,class_names] = read_images(train_path) print X,y,class_names # Then set up a handler for logging: handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # Add handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) # Define the model as the combination model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): model.compute(X, y) # Then turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in xrange(min(model.feature.eigenvectors.shape[1], 16)): e = model.feature.eigenvectors[:,i].reshape(X[0].shape) E.append(minmax_normalize(e,0,255, dtype=np.uint8)) # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png") # Perform a 10-fold cross validation cv = KFoldCrossValidation(model, k=10) cv.validate(X, y) # And print the result: cv.print_results() save_model('model.pkl', model, class_names) return [model,class_names]
'%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # Add handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = SVM() # Define the model as the combination model = PredictableModel(feature=feature, classifier=classifier) # Compute a model: model.compute(X, y) # Save the Model using joblib: save_model('model.pkl', model) # Perform a Grid Search for the Set of Parameters: tuned_parameters = [{ 'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000] }, { 'kernel': ['linear'], 'C': [1, 10, 100, 1000] }] # Find a good set of parameters: grid_search(model, X, y, tuned_parameters) # Perform a 10-fold cross validation cv = KFoldCrossValidation(model, k=10) cv.validate(X, y) # And print the result:
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # Add handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) # Define the model as the combination my_model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): my_model.compute(X, y) # We then save the model, which uses Pythons pickle module: save_model('model.pkl', my_model) model = load_model('model.pkl') # Then turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in xrange(min(model.feature.eigenvectors.shape[1], 16)): e = model.feature.eigenvectors[:,i].reshape(X[0].shape) E.append(minmax_normalize(e,0,255, dtype=np.uint8)) # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png") # Perform a 10-fold cross validation cv = KFoldCrossValidation(model, k=10) cv.validate(X, y) # And print the result: cv.print_results()
# Add handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) # Define the model as the combination model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): #--------------------------------------------- # print "Generating model" if(not os.path.exists("./temp/mymodel")): model.compute(X, y) save_model("./temp/mymodel", model) #saving model here - CHANGE THIS exit() # print "loading model" model = load_model("./temp/mymodel") # print "loaded model" urlForImage = sys.argv[2] tmpfilename = "./temp/"+str(urlForImage.split('/')[-1]) #saving image here - CHANGE THIS urllib.urlretrieve(urlForImage, tmpfilename) im = Image.open(tmpfilename) #add rotate of 90? Don't think so. im = im.resize((648,486), Image.ANTIALIAS) im = im.convert("L") # print "hello",str(im.size) im.show() to_predict_x = np.asarray(im, dtype=np.uint8) li=model.predict(to_predict_x)
handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) crossval = KFoldCrossValidation(model, k=options.numfolds) crossval.validate(images, labels) crossval.print_results() print "Computing the model..." model.compute(images, labels) print "Saving the model..." save_model(model_filename, model) else: print "Loading the model..." model = load_model(model_filename) if not isinstance(model, ExtendedPredictableModel): print "[Error] The given model is not of type '%s'." % "ExtendedPredictableModel" sys.exit() print "Starting application..." App(model=model, camera_id=options.camera_id, cascade_filename=options.cascade_filename).run()
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") handler.setFormatter(formatter) # Add handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) # Define the model as the combination my_model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): my_model.compute(X, y) # We then save the model, which uses Pythons pickle module: save_model("model.pkl", my_model) model = load_model("model.pkl") # Then turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in xrange(min(model.feature.eigenvectors.shape[1], 16)): e = model.feature.eigenvectors[:, i].reshape(X[0].shape) E.append(minmax_normalize(e, 0, 255, dtype=np.uint8)) # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" subplot( title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png" ) # Perform a 10-fold cross validation cv = KFoldCrossValidation(model, k=10) cv.validate(X, y) # And print the result:
def start(): from optparse import OptionParser # model.pkl is a pickled (hopefully trained) PredictableModel, which is # used to make predictions. You can learn a model yourself by passing the # parameter -d (or --dataset) to learn the model from a given dataset. usage = "usage: %prog [options] model_filename" # Add options for training, resizing, validation and setting the camera id: parser = OptionParser(usage=usage) parser.add_option("-r", "--resize", action="store", type="string", dest="size", default="100x100", help="Resizes the given dataset to a given size in format [width]x[height] (default: 100x100).") parser.add_option("-v", "--validate", action="store", dest="numfolds", type="int", default=None, help="Performs a k-fold cross validation on the dataset, if given (default: None).") parser.add_option("-t", "--train", action="store", dest="dataset", type="string", default=None, help="Trains the model on the given dataset.") parser.add_option("-i", "--id", action="store", dest="camera_id", type="int", default=0, help="Sets the Camera Id to be used (default: 0).") parser.add_option("-c", "--cascade", action="store", dest="cascade_filename", default="haarcascade_frontalface_alt2.xml", help="Sets the path to the Haar Cascade used for the face detection part (default: haarcascade_frontalface_alt2.xml).") # Show the options to the user: parser.print_help() print "Press [ESC] to exit the program!" print "Script output:" # Parse arguments: (options, args) = parser.parse_args() # Check if a model name was passed: dataset = "C:\\Users\\newbie\\PycharmProjects\\duinobot\\scripts\\test" cascade_filename = "C:\\Users\\newbie\\PycharmProjects\\duinobot\\scripts\\haarcascade_frontalface_alt2.xml" if len(args) == 0: print "[Error] No prediction model was given." sys.exit() # This model will be used (or created if the training parameter (-t, --train) exists: model_filename = args[0] # Check if the given model exists, if no dataset was passed: if (dataset is None) and (not os.path.exists(model_filename)): print "[Error] No prediction model found at '%s'." % model_filename sys.exit() # Check if the given (or default) cascade file exists: if not os.path.exists(cascade_filename): print "[Error] No Cascade File found at '%s'." % cascade_filename sys.exit() # We are resizing the images to a fixed size, as this is neccessary for some of # the algorithms, some algorithms like LBPH don't have this requirement. To # prevent problems from popping up, we resize them with a default value if none # was given: try: image_size = (int(options.size.split("x")[0]), int(options.size.split("x")[1])) except: print "[Error] Unable to parse the given image size '%s'. Please pass it in the format [width]x[height]!" % options.size sys.exit() # We have got a dataset to learn a new model from: if dataset: # Check if the given dataset exists: if not os.path.exists(dataset): print "[Error] No dataset found at '%s'." % dataset_path sys.exit() # Reads the images, labels and folder_names from a given dataset. Images # are resized to given size on the fly: print "Loading dataset..." [images, labels, subject_names] = read_images(dataset, image_size) # Zip us a {label, name} dict from the given data: list_of_labels = list(xrange(max(labels) + 1)) subject_dictionary = dict(zip(list_of_labels, subject_names)) # Get the model we want to compute: model = get_model(image_size=image_size, subject_names=subject_dictionary) # Sometimes you want to know how good the model may perform on the data # given, the script allows you to perform a k-fold Cross Validation before # the Detection & Recognition part starts: if options.numfolds: print "Validating model with %s folds..." % options.numfolds # We want to have some log output, so set up a new logging handler # and point it to stdout: handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # Add a handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Perform the validation & print results: crossval = KFoldCrossValidation(model, k=options.numfolds) crossval.validate(images, labels) crossval.print_results() # Compute the model: print "Computing the model..." model.compute(images, labels) # And save the model, which uses Pythons pickle module: print "Saving the model..." save_model(model_filename, model) else: print "Loading the model..." model = load_model(model_filename) # We operate on an ExtendedPredictableModel. Quit the application if this # isn't what we expect it to be: if not isinstance(model, ExtendedPredictableModel): print "[Error] The given model is not of type '%s'." % "ExtendedPredictableModel" sys.exit() # Now it's time to finally start the Application! It simply get's the model # and the image size the incoming webcam or video images are resized to: print "Starting application..." App(model=model, camera_id=options.camera_id, cascade_filename=cascade_filename).run()
'%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # Add a handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Perform the validation & print results: crossval = KFoldCrossValidation(model, k=options.numfolds) crossval.validate(images, labels) crossval.print_results() # Compute the model: print "Computing the model..." model.compute(images, labels) # And save the model, which uses Pythons pickle module: print "Saving the model..." save_model(model_filename, model) else: print "Loading the model..." model = load_model(model_filename) # We operate on an ExtendedPredictableModel. Quit the application if this # isn't what we expect it to be: if not isinstance(model, ExtendedPredictableModel): print "[Error] The given model is not of type '%s'." % "ExtendedPredictableModel" sys.exit() # Now it's time to finally start the Application! It simply get's the model # and the image size the incoming webcam or video images are resized to: print "Starting application..." App(_model=model, camera_id=options.camera_id, cascade_filename=options.cascade_filename).run()
def Init(self): from optparse import OptionParser # model.pkl is a pickled (hopefully trained) PredictableModel, which is # used to make predictions. You can learn a model yourself by passing the # parameter -d (or --dataset) to learn the model from a given dataset. usage = "usage: %prog [options] model_filename" # Add options for training, resizing, validation and setting the camera id: parser = OptionParser(usage=usage) parser.add_option( "-r", "--resize", action="store", type="string", dest="size", default="100x100", help= "Resizes the given dataset to a given size in format [width]x[height] (default: 100x100)." ) parser.add_option( "-v", "--validate", action="store", dest="numfolds", type="int", default=None, help= "Performs a k-fold cross validation on the dataset, if given (default: None)." ) parser.add_option("-t", "--train", action="store", dest="dataset", type="string", default=None, help="Trains the model on the given dataset.") parser.add_option("-i", "--id", action="store", dest="camera_id", type="int", default=0, help="Sets the Camera Id to be used (default: 0).") parser.add_option( "-c", "--cascade", action="store", dest="cascade_filename", default="haarcascade_frontalface_default.xml", help= "Sets the path to the Haar Cascade used for the face detection part (default: haarcascade_frontalface_alt2.xml)." ) # Show the options to the user: parser.print_help() print "Press [ESC] to exit the program!" print "Script output:" # Parse arguments: (options, args) = parser.parse_args() print(options, args) # Check if a model name was passed: my_model = 'my_model.pk' ''' if len(args) == 0: print "[Error] No prediction model was given." sys.exit() ''' # This model will be used (or created if the training parameter (-t, --train) exists: #model_filename = args[0] model_filename = my_model options.dataset = 'faces' # Check if the given model exists, if no dataset was passed: if (options.dataset is None) and (not os.path.exists(model_filename)): print "[Error] No prediction model found at '%s'." % model_filename sys.exit() # Check if the given (or default) cascade file exists: if not os.path.exists(options.cascade_filename): print "[Error] No Cascade File found at '%s'." % options.cascade_filename sys.exit() # We are resizing the images to a fixed size, as this is neccessary for some of # the algorithms, some algorithms like LBPH don't have this requirement. To # prevent problems from popping up, we resize them with a default value if none # was given: try: image_size = (int(options.size.split("x")[0]), int(options.size.split("x")[1])) except: print "[Error] Unable to parse the given image size '%s'. Please pass it in the format [width]x[height]!" % options.size sys.exit() # We have got a dataset to learn a new model from: if options.dataset: print('data set') print(options.dataset) # Check if the given dataset exists: if not os.path.exists(options.dataset): print "[Error] No dataset found at '%s'." % dataset_path sys.exit() # Reads the images, labels and folder_names from a given dataset. Images # are resized to given size on the fly: print "Loading dataset..." [images, labels, subject_names] = read_images(options.dataset, image_size) # Zip us a {label, name} dict from the given data: list_of_labels = list(xrange(max(labels) + 1)) subject_dictionary = dict(zip(list_of_labels, subject_names)) # Get the model we want to compute: model = get_model(image_size=image_size, subject_names=subject_dictionary) # Sometimes you want to know how good the model may perform on the data # given, the script allows you to perform a k-fold Cross Validation before # the Detection & Recognition part starts: if options.numfolds: print "Validating model with %s folds..." % options.numfolds # We want to have some log output, so set up a new logging handler # and point it to stdout: handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # Add a handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Perform the validation & print results: crossval = KFoldCrossValidation(model, k=options.numfolds) crossval.validate(images, labels) crossval.print_results() # Compute the model: print "Computing the model..." model.compute(images, labels) # And save the model, which uses Pythons pickle module: print "Saving the model..." save_model(model_filename, model) else: print "Loading the model..." model = load_model(model_filename) # We operate on an ExtendedPredictableModel. Quit the application if this # isn't what we expect it to be: if not isinstance(model, ExtendedPredictableModel): print "[Error] The given model is not of type '%s'." % "ExtendedPredictableModel" sys.exit() # Now it's time to finally start the Application! It simply get's the model # and the image size the incoming webcam or video images are resized to: print "Starting application..." self.__faceRecognizer = recognizer( model=model, camera_id=options.camera_id, cascade_filename=options.cascade_filename)
print "I/O error({0}): {1}".format(errno, strerror) except: print "Unexpected error:", sys.exc_info()[0] raise c = c + 1 return [X, y] if __name__ == "__main__": # This is where we write the images, if an output_dir is given # in command line: out_dir = None # You'll need at least a path to your image data, please see # the tutorial coming with this source code on how to prepare # your image data: if len(sys.argv) < 2: print "USAGE: facerec_demo.py </path/to/images>" sys.exit() # Now read in the image data. This must be a valid path! [X, y] = read_images(sys.argv[1]) # Define the Fisherfaces as Feature Extraction method: feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=3) # Define the model as the combination my_model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): my_model.compute(X, y) # We then save the model, which uses Pythons pickle module: save_model('myModel.pkl', my_model)
#feature = PCA() # Define the Fisherfaces as Feature Extraction method: feature = Fisherfaces() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) # Define the model as the combination my_model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): my_model.compute(X, y) # We then save the model, which uses Pythons pickle module: save_model('model_like.pkl', my_model) #model = load_model('model.pkl') # Then turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) ''' E = [] for i in xrange(min(model.feature.eigenvectors.shape[1], 122)): e = model.feature.eigenvectors[:, i].reshape(X[0].shape) E.append(minmax_normalize(e, 0, 255, dtype=np.uint8)) # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png") # Perform a 10-fold cross validation cv = KFoldCrossValidation(model, k=10)
def cameraStack(self): model_filename = "model_gender_working.pkl" image_size = (200,200) [images, labels, subject_names] = read_images("gender/", image_size) list_of_labels = list(xrange(max(labels)+1)) subject_dictionary = dict(zip(list_of_labels, subject_names)) model = get_model(image_size=image_size, subject_names=subject_dictionary) model.compute(images, labels) print "save model" save_model(model_filename, model) self.model_gender = load_model(model_filename) model_filename = "model_emotion.pkl" image_size = (200, 200) [images, labels, subject_names] = read_images("emotion/", image_size) list_of_labels = list(xrange(max(labels) + 1)) subject_dictionary = dict(zip(list_of_labels, subject_names)) model = get_model(image_size=image_size, subject_names=subject_dictionary) model.compute(images, labels) print "save model" save_model(model_filename, model) self.model_emotion = load_model(model_filename) faceCascade = 'haarcascade_frontalface_alt2.xml' print self.model_gender.image_size print "Starting the face detection" self.detector = CascadedDetector(cascade_fn=faceCascade, minNeighbors=5, scaleFactor=1.1) self.video_capture = cv2.VideoCapture(0) while True: ret, frame = self.video_capture.read() img = cv2.resize(frame, (frame.shape[1] / 2, frame.shape[0] / 2), interpolation=cv2.INTER_CUBIC) imgout = img.copy() for i, r in enumerate(self.detector.detect(img)): x0, y0, x1, y1 = r self.x0 = x0 self.y0 = y0 self.x1 = x1 self.y1 = y1 # (1) Get face, (2) Convert to grayscale & (3) resize to image_size: face = img[y0:y1, x0:x1] face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY) face = cv2.resize(face, self.model_gender.image_size, interpolation=cv2.INTER_CUBIC) # Get a prediction from the model: prediction = self.model_gender.predict(face)[0] emotion = self.model_emotion.predict(face)[0] # Draw the face area in image: cv2.rectangle(imgout, (x0, y0), (x1, y1), (0, 255, 0), 2) # Draw the predicted name (folder name...): self.distance = str(np.asscalar(np.int16(self.y0))) draw_str(imgout, (x0 - 20, y0 - 5), self.model_emotion.subject_names[emotion]) draw_str(imgout, (x0 - 20, y0 - 20), self.model_gender.subject_names[prediction]) draw_str(imgout, (x0 - 20, y0 - 35), "distance: " + self.distance + "cm") self.gender = self.model_gender.subject_names[prediction] self.changeSetting(self.currently_playing_button) self.changeSetting(self.notifications_button) self.changeSetting(self.likes_button) self.changeSetting(self.collections_button) cv2.imshow('video', imgout) ch = cv2.waitKey(10) if ch == 27: break