def get_parser(desc, default_task="translation"): # Before creating the true parser, we need to import optional user module # in order to eagerly import custom tasks, optimizers, architectures, etc. usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False) usr_parser.add_argument("--user-dir", default=None) usr_args, _ = usr_parser.parse_known_args() utils.import_user_module(usr_args) parser = argparse.ArgumentParser(allow_abbrev=False) gen_parser_from_dataclass(parser, CommonConfig()) from fairseq.registry import REGISTRIES for registry_name, REGISTRY in REGISTRIES.items(): parser.add_argument( "--" + registry_name.replace("_", "-"), default=REGISTRY["default"], choices=REGISTRY["registry"].keys(), ) # Task definitions can be found under fairseq/tasks/ from fairseq.tasks import TASK_REGISTRY parser.add_argument( "--task", metavar="TASK", default=default_task, choices=TASK_REGISTRY.keys(), help="task", ) # fmt: on return parser
class InferConfig(FairseqDataclass): task: Any = None decoding: DecodingConfig = DecodingConfig() common: CommonConfig = CommonConfig() common_eval: CommonEvalConfig = CommonEvalConfig() checkpoint: CheckpointConfig = CheckpointConfig() generation: GenerationConfig = GenerationConfig() distributed_training: DistributedTrainingConfig = DistributedTrainingConfig( ) dataset: DatasetConfig = DatasetConfig()
class InferConfig(FairseqDataclass): task: Any = None decoding: DecodingConfig = DecodingConfig() common: CommonConfig = CommonConfig() common_eval: CommonEvalConfig = CommonEvalConfig() checkpoint: CheckpointConfig = CheckpointConfig() distributed_training: DistributedTrainingConfig = DistributedTrainingConfig() dataset: DatasetConfig = DatasetConfig() is_ax: bool = field( default=False, metadata={ "help": "if true, assumes we are using ax for tuning and returns a tuple for ax to consume" }, )