def cli_main(): """ MODIFIED: task defaults to gec """ parser = options.get_generation_parser(default_task='gec') args = options.parse_args_and_arch(parser) main(args)
def generate_main(data_dir, extra_flags=None): generate_parser = options.get_generation_parser() generate_args = options.parse_args_and_arch( generate_parser, [ data_dir, '--path', os.path.join(data_dir, 'checkpoint_last.pt'), '--beam', '3', '--batch-size', '64', '--max-len-b', '5', '--gen-subset', 'valid', '--no-progress-bar', '--print-alignment', ] + (extra_flags or []), ) # evaluate model in batch mode generate.main(generate_args) # evaluate model interactively generate_args.buffer_size = 0 generate_args.input = '-' generate_args.max_sentences = None orig_stdin = sys.stdin sys.stdin = StringIO('h e l l o\n') interactive.main(generate_args) sys.stdin = orig_stdin
def train_translation_model(data_dir, arch, extra_flags=None): train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ '--task', 'translation', data_dir, '--save-dir', data_dir, '--arch', arch, '--optimizer', 'nag', '--lr', '0.05', '--max-tokens', '500', '--max-epoch', '1', '--no-progress-bar', '--distributed-world-size', '1', '--source-lang', 'in', '--target-lang', 'out', ] + (extra_flags or []), ) train.main(train_args)
def cli_main(): parser = options.get_training_parser() args = options.parse_args_and_arch(parser) if args.distributed_init_method is None: distributed_utils.infer_init_method(args) if args.distributed_init_method is not None: # distributed training distributed_main(args.device_id, args) elif args.distributed_world_size > 1: # fallback for single node with multiple GPUs port = random.randint(10000, 20000) args.distributed_init_method = 'tcp://localhost:{port}'.format(port=port) args.distributed_rank = None # set based on device id if max(args.update_freq) > 1 and args.ddp_backend != 'no_c10d': print('| NOTE: you may get better performance with: --ddp-backend=no_c10d') torch.multiprocessing.spawn( fn=distributed_main, args=(args, ), nprocs=args.distributed_world_size, ) else: # single GPU training main(args)
def eval_lm_main(data_dir): eval_lm_parser = options.get_eval_lm_parser() eval_lm_args = options.parse_args_and_arch( eval_lm_parser, [ data_dir, '--path', os.path.join(data_dir, 'checkpoint_last.pt'), '--no-progress-bar', ], ) eval_lm.main(eval_lm_args)
def train_language_model(data_dir, arch): train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ '--task', 'language_modeling', data_dir, '--arch', arch, '--optimizer', 'nag', '--lr', '0.1', '--criterion', 'adaptive_loss', '--adaptive-softmax-cutoff', '5,10,15', '--decoder-layers', '[(850, 3)] * 2 + [(1024,4)]', '--decoder-embed-dim', '280', '--max-tokens', '500', '--tokens-per-sample', '500', '--save-dir', data_dir, '--max-epoch', '1', '--no-progress-bar', '--distributed-world-size', '1', '--ddp-backend', 'no_c10d', ], ) train.main(train_args)
def cli_main(): parser = options.get_eval_lm_parser() args = options.parse_args_and_arch(parser) main(args)
def cli_main(): parser = options.get_generation_parser(interactive=True) args = options.parse_args_and_arch(parser) main(args)
def cli_main(): parser = options.get_generation_parser() args = options.parse_args_and_arch(parser) main(args)
def cli_main(): parser = get_lm_scorer_parser() args = options.parse_args_and_arch(parser) main(args)