コード例 #1
1
ファイル: train.py プロジェクト: gilmoright/SpanBERT
def main(args):
    dummy_batch_size = args.max_tokens
    if args.max_tokens is None:
        args.max_tokens = 4096
        dummy_batch_size = 1024
    #wandb.init(config=args, project="SbanBert", name="Try_1")
    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load dataset splits
    load_dataset_splits(task, ['train'] + args.valid_subset.split(','))

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    print('| model {}, criterion {}'.format(args.arch,
                                            criterion.__class__.__name__))
    print('| num. model params: {}'.format(
        sum(p.numel() for p in model.parameters())))
    # Make a dummy batch to (i) warm the caching allocator and (ii) as a
    # placeholder DistributedDataParallel when there's an uneven number of
    # batches per worker.
    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        model.max_positions(),
    )
    dummy_batch = task.dataset('train').get_dummy_batch(
        args.max_tokens, max_positions)
    # Build trainer
    trainer = Trainer(args, task, model, criterion, dummy_batch)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
    epoch_itr = task.get_batch_iterator(
        dataset=task.dataset(args.train_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=8,
        seed=args.seed,
        num_shards=args.distributed_world_size,
        shard_id=args.distributed_rank,
    )
    # Load the latest checkpoint if one is available
    if not load_checkpoint(args, trainer, epoch_itr):
        trainer.dummy_train_step([dummy_batch])

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_losses = [None]
    valid_subsets = args.valid_subset.split(',')
    while lr > args.min_lr and trainer.get_num_updates() < max_update:
        # train for one epoch
        train(args, trainer, task, epoch_itr)
        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr,
                                    valid_subsets)
        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        # save checkpoint
        if epoch_itr.epoch % args.save_interval == 0:
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])

    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))
コード例 #2
0
def main():
    parser = options.get_parser('Trainer')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--max-tokens',
                              default=0,
                              type=int,
                              metavar='N',
                              help='maximum number of tokens in a batch')
    dataset_args.add_argument('--batch-size',
                              default=32,
                              type=int,
                              metavar='N',
                              help='batch size')
    dataset_args.add_argument('--test-batch-size',
                              default=32,
                              type=int,
                              metavar='N',
                              help='batch size for test set')
    dataset_args.add_argument('--valid-batch-size',
                              default=32,
                              type=int,
                              metavar='N',
                              help='batch size for validation set')
    dataset_args.add_argument(
        '--train-subset',
        default='train',
        metavar='SPLIT',
        choices=['train', 'valid', 'test'],
        help='data subset to use for training (train, valid, test)')
    dataset_args.add_argument(
        '--valid-subset',
        default='valid',
        metavar='SPLIT',
        help='comma separated list ofdata subsets '
        ' to use for validation (train, valid, valid1,test, test1)')
    dataset_args.add_argument('--test-subset',
                              default='test',
                              metavar='SPLIT',
                              help='comma separated list ofdata subset '
                              'to use for testing (train, valid, test)')
    dataset_args.add_argument(
        '--valid-script',
        nargs='+',
        metavar='PATH',
        help='path to external validation script (optional).')

    options.add_optimization_args(parser)
    options.add_checkpoint_args(parser)
    options.add_model_args(parser)

    args = utils.parse_args_and_arch(parser)
    print(args)

    if args.no_progress_bar:
        progress_bar.enabled = False
        progress_bar.print_interval = args.log_interval

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    torch.manual_seed(args.seed)

    # Setting args.max_tokens to infinity(same as setting to None)
    if args.max_tokens == 0:
        args.max_tokens = None

    # Load dataset
    dataset = data.load_with_check(args.data, args.source_lang,
                                   args.target_lang)
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.source_lang, args.target_lang = dataset.src, dataset.dst

    print('| [{}] dictionary: {} types'.format(dataset.src,
                                               len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst,
                                               len(dataset.dst_dict)))
    for split in dataset.splits:
        print('| {} {} {} examples'.format(args.data, split,
                                           len(dataset.splits[split])))

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    num_gpus = torch.cuda.device_count()

    print('| using {} GPUs (with max tokens per GPU = {})'.format(
        num_gpus, args.max_tokens))

    # Build model
    print('| model {}'.format(args.arch))
    model = utils.build_model(args, dataset)
    criterion = utils.build_criterion(args, dataset)

    # Start multiprocessing
    trainer = MultiprocessingTrainer(args, model)

    # Load the latest checkpoint if one is available
    epoch, batch_offset = trainer.load_checkpoint(
        os.path.join(args.save_dir, args.restore_file))

    # Train until the learning rate gets too small
    val_loss = None
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch:
        # train for one epoch
        train(args, epoch, batch_offset, trainer, criterion, dataset, num_gpus)

        # evaluate on validate set
        for k, subset in enumerate(args.valid_subset.split(',')):
            val_loss = validate(args, epoch, trainer, criterion, dataset,
                                subset, num_gpus)
            if k == 0:
                if not args.no_save:
                    # save checkpoint
                    trainer.save_checkpoint(
                        args,
                        epoch,
                        0,
                        val_loss,
                        validation_script=args.valid_script)

                # only use first validation loss to update the learning schedule
                lr = trainer.lr_step(val_loss, epoch)

        epoch += 1
        batch_offset = 0
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))

    # Generate on test set and compute BLEU score
    for beam in [1, 5, 10, 20]:
        for subset in args.test_subset.split(','):
            scorer = score_test(args,
                                trainer.get_model(),
                                dataset,
                                subset,
                                beam,
                                cuda_device=(0 if num_gpus > 0 else None))
            print('| Test on {} with beam={}: {}'.format(
                subset, beam, scorer.result_string()))

    # Stop multiprocessing
    trainer.stop()
コード例 #3
0
def main(args, init_distributed=False):
    import_user_module(args)

    if args.max_tokens is None:
        args.max_tokens = 6000
    print(args)

    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load dataset splits
    load_dataset_splits(task, ['train', 'valid'])

    # Initialize distributed training (after data loading)
    if init_distributed:
        import socket
        args.distributed_rank = distributed_utils.distributed_init(args)
        print('| initialized host {} as rank {}'.format(
            socket.gethostname(), args.distributed_rank))

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    print(model)
    print('| model {}, criterion {}'.format(args.arch,
                                            criterion.__class__.__name__))
    print('| num. model params: {} (num. trained: {})'.format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    ))

    # Make a dummy batch to (i) warm the caching allocator and (ii) as a
    # placeholder DistributedDataParallel when there's an uneven number of
    # batches per worker.
    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        model.max_positions(),
    )
    dummy_batch = task.dataset('train').get_dummy_batch(
        args.max_tokens, max_positions)
    oom_batch = task.dataset('train').get_dummy_batch(1, max_positions)

    # Build trainer
    trainer = Trainer(args, task, model, criterion, dummy_batch, oom_batch)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
    epoch_itr = task.get_batch_iterator(
        dataset=task.dataset(args.train_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=args.required_batch_size_multiple,
        seed=args.seed,
        num_shards=args.distributed_world_size,
        shard_id=args.distributed_rank,
        num_workers=args.num_workers,
    )

    # Load the latest checkpoint if one is available
    if not load_checkpoint(args, trainer, epoch_itr):
        trainer.dummy_train_step([dummy_batch])

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_losses = [None]
    valid_subsets = args.valid_subset.split(',')
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates(
    ) < max_update:
        # train for one epoch
        train(args, trainer, task, epoch_itr)

        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr,
                                    valid_subsets)

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        # save checkpoint
        if epoch_itr.epoch % args.save_interval == 0:
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))
コード例 #4
0
ファイル: train.py プロジェクト: sdxshuai/fairseq-medical
def main(args, init_distributed=False):
    utils.import_user_module(args)

    assert args.max_tokens is not None or args.max_sentences is not None, \
        'Must specify batch size either with --max-tokens or --max-sentences'

    # Initialize CUDA and distributed training
    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)
    if init_distributed:
        args.distributed_rank = distributed_utils.distributed_init(args)

    # Print args
    print(args)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load dataset splits
    task.load_dataset(args.train_subset, combine=True, epoch=0)
    for valid_sub_split in args.valid_subset.split(','):
        task.load_dataset(valid_sub_split, combine=True, epoch=0)

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    print(model)
    print('| model {}, criterion {}'.format(args.arch,
                                            criterion.__class__.__name__))
    print('| num. model params: {} (num. trained: {})'.format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    ))

    # Build trainer
    trainer = Trainer(args, task, model, criterion)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        model.max_positions(),
    )
    # Initialize dataloader
    epoch_itr = task.get_batch_iterator(
        dataset=task.dataset(args.train_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=args.required_batch_size_multiple,
        seed=args.seed,
        num_shards=args.distributed_world_size,
        shard_id=args.distributed_rank,
        num_workers=args.num_workers,
    )

    # Load the latest checkpoint if one is available
    load_checkpoint(args, trainer, epoch_itr, max_positions, task)

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_losses = [None]
    valid_subsets = args.valid_subset.split(',')
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates(
    ) < max_update:
        # train for one epoch
        train(args, trainer, task, epoch_itr)

        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr,
                                    valid_subsets)

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        # save checkpoint
        if epoch_itr.epoch % args.save_interval == 0:
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])

        epoch_itr = reload_train(args, epoch_itr, max_positions, task)
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))
コード例 #5
0
ファイル: task6_train.py プロジェクト: Silent-Zebra/reproduce
def main(args):
    if args.max_tokens is None:
        args.max_tokens = 6000
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load dataset splits
    load_dataset_splits(task, ['train', 'valid'])

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    print('| model {}, criterion {}'.format(args.arch,
                                            criterion.__class__.__name__))
    print('| num. model params: {}'.format(
        sum(p.numel() for p in model.parameters())))

    # Make a dummy batch to (i) warm the caching allocator and (ii) as a
    # placeholder DistributedDataParallel when there's an uneven number of
    # batches per worker.
    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        model.max_positions(),
    )
    dummy_batch = task.dataset('train').get_dummy_batch(
        args.max_tokens, max_positions)

    # Build trainer
    trainer = Trainer(args, task, model, criterion, dummy_batch)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))
    ## "Prune" heads (actually mask but shh...)
    #if len(args.transformer_mask_heads) > 0:
    #    # Determine which head to prune
    #    to_prune = parse_head_pruning_descriptors(
    #        args.transformer_mask_heads,
    #        reverse_descriptors=args.transformer_mask_all_but_one_head,
    #        n_heads=model.encoder.layers[0].self_attn.num_heads
    #    )
    #    print(to_prune)
    #    # Apply pruning
    #    mask_heads(model, to_prune, args.transformer_mask_rescale)

    # Save initial model
    initial = os.path.join(args.save_dir, "checkpoint_initial.pt")
    trainer.save_checkpoint(initial, {})

    # Initialize dataloader
    epoch_itr = task.get_batch_iterator(
        dataset=task.dataset(args.train_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=8,
        seed=args.seed,
        num_shards=args.distributed_world_size,
        shard_id=args.distributed_rank,
    )

    # Load the latest checkpoint if one is available
    if not load_checkpoint(args, trainer, epoch_itr):
        trainer.dummy_train_step([dummy_batch])

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_losses = [None]
    valid_subsets = args.valid_subset.split(',')
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates(
    ) < max_update:
        # train for one epoch
        train(args, trainer, task, epoch_itr)

        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr,
                                    valid_subsets)

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        #if epoch_itr.epoch % args.save_interval == 0:
        #    save_checkpoint(args, trainer, epoch_itr, valid_losses[0])

        # ***********************************Below Changed******************************
        # save checkpoint
        #if epoch_itr.epoch % args.save_interval == 0:
        save_interval = 5  # prune and save checkpoint for every five epoch
        if epoch_itr.epoch % save_interval == 0:  #****** changed
            # do prunning before saving
            prune2(args, task, model, trainer, epoch_itr)  #****** changed2
            # save checkpoint
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
    prune2(args, task, model, trainer, epoch_itr
           )  #****** changed2 do last prunning on the last chekcpoint saved
    # ***********************************Above Changed******************************
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))
コード例 #6
0
ファイル: task6_train.py プロジェクト: Silent-Zebra/reproduce
def prune2(args, task, model, trainer, epoch_itr):  # changed2
    if args.max_tokens is None:
        args.max_tokens = 6000
    print(args)

    # avoid aliasing
    task = copy.deepcopy(task)
    model = copy.deepcopy(model)
    trainer = copy.deepcopy(trainer)
    epoch_itr = copy.deepcopy(trainer)
    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)
    # Make a dummy batch to (i) warm the caching allocator and (ii) as a
    # placeholder DistributedDataParallel when there's an uneven number of
    # batches per worker.
    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        model.max_positions(),
    )
    dummy_batch = task.dataset('train').get_dummy_batch(
        args.max_tokens, max_positions)

    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))
    print('| Optimizer {}'.format(trainer.optimizer.__class__.__name__))

    # Train until the learning rate gets too small
    prune_meter = StopwatchMeter()
    prune_meter.start()
    # Estimate head importance scores
    head_importance, head_stats = estimate_head_importance(
        args, trainer, task, epoch_itr)
    prune_meter.stop()
    print('| done estimating head importance in {:.1f} seconds'.format(
        prune_meter.sum))
    torch.save(head_stats,
               f"{os.path.dirname(args.restore_file)}/heads_stats.bin")
    # Print
    print("Head importances")
    print("Encoder self attention")
    for layer in range(head_importance["encoder_self"].size(0)):
        print("\t".join(f"{x:.5f}"
                        for x in head_importance["encoder_self"][layer]))
    print("Encoder decoder attention")
    for layer in range(head_importance["encoder_decoder"].size(0)):
        print("\t".join(f"{x:.5f}"
                        for x in head_importance["encoder_decoder"][layer]))
    print("Decoder self attention")
    for layer in range(head_importance["decoder_self"].size(0)):
        print("\t".join(f"{x:.5f}"
                        for x in head_importance["decoder_self"][layer]))
    # Print sorted pruning profile
    encoder_self_profile = get_profile(head_importance["encoder_self"],
                                       prefix="E")
    encoder_decoder_profile = get_profile(head_importance["encoder_decoder"],
                                          prefix="A")
    decoder_self_profile = get_profile(head_importance["decoder_self"],
                                       prefix="D")
    # Join all
    all_profiles = {}
    if not (args.decoder_self_only or args.encoder_decoder_only):
        all_profiles.update(encoder_self_profile)
    if not (args.encoder_self_only or args.decoder_self_only):
        all_profiles.update(encoder_decoder_profile)
    if not (args.encoder_self_only or args.encoder_decoder_only):
        all_profiles.update(decoder_self_profile)
    sorted_profiles = sorted(all_profiles.items(),
                             key=lambda x: x[1],
                             reverse=args.one_minus)
    print("Heads sorted by importance:")
    print(" ".join(p for p, _ in sorted_profiles))
    print("Sorted head importance scores:")
    print(" ".join(f"{v.data:.5f}" for _, v in sorted_profiles))

    tot_n_heads = len(sorted_profiles)

    for i in range(0, 10):
        n_to_prune = int(ceil(tot_n_heads * i / 10))
        to_prune_profile = [p for p, _ in sorted_profiles[:n_to_prune]]
        to_prune = parse_head_pruning_descriptors(to_prune_profile,
                                                  reverse_descriptors=False)
        print(f"Evaluating following profile: \t{' '.join(to_prune_profile)}")
        # Apply pruning
        mask_heads(model, to_prune, args.transformer_mask_rescale)
        bleu = eval_bleu_score(
            model,
            task,
            task.dataset(args.valid_subset),
            beam=args.beam,
            replace_unk=args.replace_unk,
            lenpen=args.lenpen,
            buffer_size=100,
            use_cuda=torch.cuda.is_available() and not args.cpu,
            remove_bpe=args.remove_bpe,
            max_sentences=args.max_sentences,
            max_tokens=args.max_tokens,
            stop_early=not args.no_early_stop,
            normalize_scores=not args.unnormalized,
            min_len=args.min_len,
        )
        print(f"BLEU score: \t{bleu.score:.2f}")
        sys.stdout.flush()
コード例 #7
0
ファイル: generate.py プロジェクト: samlurye/fairseq
def main(args):
    assert args.path is not None, '--path required for generation!'
    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert args.replace_unk is None or args.raw_text, \
        '--replace-unk requires a raw text dataset (--raw-text)'

    import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    # translation using the cstm requires access to all of the datasets
    # during generation, since the test set has nearest neighbors in
    # both valid and train
    if args.task == "cstm_translation":
        task.load_dataset("train")
        task.load_dataset("valid")
        task.load_dataset("test")
    else:
        task.load_dataset(args.gen_subset)
    print('| {} {} {} examples'.format(args.data, args.gen_subset, len(task.dataset(args.gen_subset))))

    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    models, _model_args = utils.load_ensemble_for_inference(
        args.path.split(':'), task, model_arg_overrides=eval(args.model_overrides),
    )

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]
        ),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(args)

    # Generate and compute BLEU score
    if args.sacrebleu:
        scorer = bleu.SacrebleuScorer()
    else:
        scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
    num_sentences = 0
    has_target = True
    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        for sample in t:
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            if 'net_input' not in sample:
                continue

            prefix_tokens = None
            if args.prefix_size > 0:
                prefix_tokens = sample['target'][:, :args.prefix_size]

            gen_timer.start()
            hypos = task.inference_step(generator, models, sample, prefix_tokens)
            num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
            gen_timer.stop(num_generated_tokens)

            for i, sample_id in enumerate(sample['id'].tolist()):
                has_target = sample['target'] is not None

                # Remove padding
                src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :], tgt_dict.pad())
                target_tokens = None
                if has_target:
                    target_tokens = utils.strip_pad(sample['target'][i, :], tgt_dict.pad()).int().cpu()

                # Either retrieve the original sentences or regenerate them from tokens.
                if align_dict is not None:
                    src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id)
                    target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id)
                else:
                    if src_dict is not None:
                        src_str = src_dict.string(src_tokens, args.remove_bpe)
                    else:
                        src_str = ""
                    if has_target:
                        target_str = tgt_dict.string(target_tokens, args.remove_bpe, escape_unk=True)

                if not args.quiet:
                    if src_dict is not None:
                        print('S-{}\t{}'.format(sample_id, src_str))
                    if has_target:
                        print('T-{}\t{}'.format(sample_id, target_str))

                # Process top predictions
                for i, hypo in enumerate(hypos[i][:min(len(hypos), args.nbest)]):
                    hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                        hypo_tokens=hypo['tokens'].int().cpu(),
                        src_str=src_str,
                        alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None,
                        align_dict=align_dict,
                        tgt_dict=tgt_dict,
                        remove_bpe=args.remove_bpe,
                    )

                    if not args.quiet:
                        print('H-{}\t{}\t{}'.format(sample_id, hypo['score'], hypo_str))
                        print('P-{}\t{}'.format(
                            sample_id,
                            ' '.join(map(
                                lambda x: '{:.4f}'.format(x),
                                hypo['positional_scores'].tolist(),
                            ))
                        ))

                        if args.print_alignment:
                            print('A-{}\t{}'.format(
                                sample_id,
                                ' '.join(map(lambda x: str(utils.item(x)), alignment))
                            ))

                    # Score only the top hypothesis
                    if has_target and i == 0:
                        if align_dict is not None or args.remove_bpe is not None:
                            # Convert back to tokens for evaluation with unk replacement and/or without BPE
                            target_tokens = tgt_dict.encode_line(target_str, add_if_not_exist=True)
                        if hasattr(scorer, 'add_string'):
                            scorer.add_string(target_str, hypo_str)
                        else:
                            scorer.add(target_tokens, hypo_tokens)

            wps_meter.update(num_generated_tokens)
            t.log({'wps': round(wps_meter.avg)})
            num_sentences += sample['nsentences']

    print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
        num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()))
    return scorer
コード例 #8
0
def main(args):
    if args.max_tokens is None:
        args.max_tokens = 6000
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load dataset splits
    load_dataset_splits(args, task, ['train', 'valid'])

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
    print('| num. model params: {}'.format(sum(p.numel() for p in model.parameters())))

    # Build trainer
    if args.fp16:
        trainer = FP16Trainer(args, task, model, criterion)
    else:
        if torch.cuda.get_device_capability(0)[0] >= 7:
            print('| NOTICE: your device may support faster training with --fp16')
        trainer = Trainer(args, task, model, criterion)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
    max_positions = trainer.get_model().max_positions()
    epoch_itr = data.EpochBatchIterator(
        dataset=task.dataset(args.train_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences_valid,
        max_positions=max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=8,
        seed=args.seed,
        num_shards=args.distributed_world_size,
        shard_id=args.distributed_rank,
    )

    # Load the latest checkpoint if one is available
    load_checkpoint(args, trainer, epoch_itr)

    # Send a dummy batch to warm the caching allocator
    dummy_batch = task.dataset('train').get_dummy_batch(args.max_tokens, max_positions)
    trainer.dummy_train_step(dummy_batch)

    # print summary
    print("-" * 80)
    print("| model parameters:")
    total_param, total_size = 0, 0
    for idx, (_name, _param) in enumerate(model.named_parameters()):
        print("|    var {:3}: {:60}  shape {:16}  size {}".format(
            idx, _name, str(list(_param.data.shape)), _param.data.numel()))
        total_param += 1
        total_size += _param.data.numel()
    print("| total parameters: {}, total size: {}".format(total_param, total_size))
    print("-" * 80)

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_losses = [None]
    valid_subsets = args.valid_subset.split(',')
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update:
        # train for one epoch
        train(args, trainer, task, epoch_itr)

        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        # save checkpoint
        if epoch_itr.epoch % args.save_interval == 0:
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
        print('Done %d Epochs' % epoch_itr.epoch)
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))
コード例 #9
0
def _main(args, output_file):
    logging.basicConfig(
        format='%(asctime)s | %(levelname)s | %(name)s | %(message)s',
        datefmt='%Y-%m-%d %H:%M:%S',
        level=logging.INFO,
        stream=output_file,
    )
    logger = logging.getLogger('fairnr_cli.render')

    utils.import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    logger.info(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(os.pathsep),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    # Optimize ensemble for generation
    for model in models:
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    logging.info(model)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        seed=args.seed,
        num_workers=args.num_workers).next_epoch_itr(shuffle=False)

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(args)
    shard_id, world_size = args.distributed_rank, args.distributed_world_size
    output_files = []
    if generator.test_poses is not None:
        total_frames = generator.test_poses.shape[0]
        _frames = int(np.floor(total_frames / world_size))
        step = shard_id * _frames
        frames = _frames if shard_id < (world_size -
                                        1) else total_frames - step
    else:
        step = shard_id * args.render_num_frames
        frames = args.render_num_frames

    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        for i, sample in enumerate(t):
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            gen_timer.start()

            step, _output_files = task.inference_step(generator, models,
                                                      [sample, step, frames])
            output_files += _output_files

            gen_timer.stop(500)
            wps_meter.update(500)
            t.log({'wps': round(wps_meter.avg)})

    timestamp = generator.save_images(
        output_files,
        steps='shard{}'.format(shard_id),
        combine_output=args.render_combine_output)

    # join videos from all GPUs and delete temp files
    try:
        timestamps = distributed_utils.all_gather_list(timestamp)
    except:
        timestamps = [timestamp]

    if shard_id == 0:
        generator.merge_videos(timestamps)
コード例 #10
0
def main():
    parser = options.get_parser('Trainer')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--max-tokens',
                              default=6000,
                              type=int,
                              metavar='N',
                              help='maximum number of tokens in a batch')
    dataset_args.add_argument(
        '--train-subset',
        default='train',
        metavar='SPLIT',
        choices=['train', 'valid', 'test'],
        help='data subset to use for training (train, valid, test)')
    dataset_args.add_argument(
        '--valid-subset',
        default='valid',
        metavar='SPLIT',
        help='comma separated list ofdata subsets '
        ' to use for validation (train, valid, valid1,test, test1)')
    options.add_optimization_args(parser)
    options.add_checkpoint_args(parser)
    options.add_model_args(parser)

    args = utils.parse_args_and_arch(parser)
    print(args)

    if args.no_progress_bar:
        progress_bar.enabled = False
        progress_bar.print_interval = args.log_interval

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    torch.manual_seed(args.seed)

    # Load dataset
    dataset = data.load_with_check(args.data, ['train', 'valid'],
                                   args.source_lang, args.target_lang)
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.source_lang, args.target_lang = dataset.src, dataset.dst

    print('| [{}] dictionary: {} types'.format(dataset.src,
                                               len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst,
                                               len(dataset.dst_dict)))
    for split in ['train', 'valid']:
        print('| {} {} {} examples'.format(args.data, split,
                                           len(dataset.splits[split])))

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    num_gpus = torch.cuda.device_count()

    print('| using {} GPUs (with max tokens per GPU = {})'.format(
        num_gpus, args.max_tokens))

    # Build model and criterion
    model = utils.build_model(args, dataset.src_dict, dataset.dst_dict)
    criterion = utils.build_criterion(args, dataset.src_dict, dataset.dst_dict)
    print('| model {}, criterion {}'.format(args.arch,
                                            criterion.__class__.__name__))

    # Start multiprocessing
    trainer = MultiprocessingTrainer(args, model, criterion)

    # Load the latest checkpoint if one is available
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    extra_state = trainer.load_checkpoint(checkpoint_path)
    if extra_state is not None:
        epoch = extra_state['epoch']
        batch_offset = extra_state['batch_offset']
        print('| loaded checkpoint {} (epoch {})'.format(
            checkpoint_path, epoch))
        if batch_offset == 0:
            epoch += 1
    else:
        epoch, batch_offset = 1, 0

    # Train until the learning rate gets too small
    val_loss = None
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch:
        # train for one epoch
        train(args, epoch, batch_offset, trainer, dataset, num_gpus)

        # evaluate on validate set
        for k, subset in enumerate(args.valid_subset.split(',')):
            val_loss = validate(args, epoch, trainer, dataset, subset,
                                num_gpus)
            if k == 0:
                if not args.no_save:
                    # save checkpoint
                    save_checkpoint(trainer, args, epoch, 0, val_loss)
                # only use first validation loss to update the learning schedule
                lr = trainer.lr_step(val_loss, epoch)

        epoch += 1
        batch_offset = 0
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))

    # Stop multiprocessing
    trainer.stop()
コード例 #11
0
ファイル: train_hvd.py プロジェクト: zomux/redistill
def main(args, init_distributed=False):
    utils.import_user_module(args)

    assert args.max_tokens is not None or args.max_sentences is not None, \
        'Must specify batch size either with --max-tokens or --max-sentences'

    # Initialize CUDA and distributed training
    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)
    if init_distributed:
        args.distributed_rank = distributed_init_hvd(args)

    # Print args
    print(args)

    # if not HAS_NSML:
    #     args.data[0] = args.data[0].replace("/train", "")

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load valid dataset (we load training data below, based on the latest checkpoint)
    for valid_sub_split in args.valid_subset.split(','):
        task.load_dataset(valid_sub_split, combine=False, epoch=0)

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)

    if args.train_decoder_only:
        for name, param in model.named_parameters():
            if "decoder" not in name:
                param.requires_grad_(False)

    print(model)
    print('| model {}, criterion {}'.format(args.arch,
                                            criterion.__class__.__name__))
    print('| num. model params: {} (num. trained: {})'.format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    ))

    # Setup session
    if HAS_WANDB and distributed_utils.is_master(args):
        wandb.init(project="cmlm", config=args)
        wandb.watch(model)

    # Load pre-trained model
    data_token = args.data[0].split("/")[-1]
    if "bert" in args.arch:
        pretrained_path = "{}/train/pretrained_models/maskPredict_{}/checkpoint_best.pt".format(
            DATASET_PATH,
            data_token.split(".")[-1].replace("-", "_"))
        if not HAS_NSML:
            pretrained_path = pretrained_path.replace("/train", "")
        print("| loading", pretrained_path)
        state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_path)
        model.load_state_dict(state["model"], strict=True)
        baseline_model = task.build_model(args)
        baseline_model.load_state_dict(state["model"], strict=True)
        if torch.cuda.is_available():
            baseline_model.cuda()
        task.set_baseline_model(baseline_model)

    if not args.masking and HAS_NSML:

        def nsml_bind(model):
            def save(dir_path):
                state = {
                    'model': model.state_dict(),
                }
                torch.save(state, os.path.join(dir_path, 'best.pt'))

            def load(dir_path):
                state = torch.load(os.path.join(dir_path, 'best.pt'),
                                   map_location="cpu")
                model.load_state_dict(state['model'], strict=False)
                model.cuda()
                print('model loaded!')

            nsml.bind(save=save, load=load)

        nsml_bind(model)

    if args.load:
        print("loading model from session", args.load)
        if args.load.startswith("nsml://"):
            session = args.load.replace("nsml://", "")
        if ".pt" in session:
            session = session.replace(".pt", "")
            session, checkpoint_name = session.rsplit("/", 1)
        else:
            checkpoint_name = "best"
        if "-" in checkpoint_name:
            start, end = checkpoint_name.replace("epoch", "").split("-")
            checkpoints = [
                "epoch{}".format(i) for i in range(int(start),
                                                   int(end) + 1)
            ]
            print("| checkpoint average:", checkpoints)
            state_dict = None

            def load(dir_path):
                nonlocal state_dict, checkpoints
                state = torch.load(os.path.join(dir_path, 'best.pt'))
                model_state = state["model"]
                for k in model_state:
                    model_state[k] = model_state[k] / float(len(checkpoints))
                if state_dict is None:
                    state_dict = model_state
                else:
                    for k in state_dict:
                        state_dict[k] += model_state[k]
                print("checkpoint loaded")

            for checkpoint_name in checkpoints:
                nsml.load(checkpoint_name, load_fn=load, session=session)
            model.load_state_dict(state_dict)
        else:

            def load(dir_path):
                state = torch.load(os.path.join(dir_path, 'best.pt'))
                state_dict = state["model"]
                model.load_state_dict(state_dict)
                print("loaded")

            nsml.load(checkpoint_name, load_fn=load, session=session)

    # Prepare for decoder wise training
    if args.decoder_wise_training:
        print("| Decoder wise training, start refinement step 0")
        progressive_training_step = 0
        assert args.ddp_backend == "c10d"
    else:
        progressive_training_step = None

    # Build trainer
    trainer = Trainer(args, task, model, criterion)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer)

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_losses = [None]
    valid_subsets = args.valid_subset.split(',')
    if hasattr(args, "progressive") and args.progressive:
        for i in range(args.refinetot if not getattr(args, "pnet", False) else
                       args.refinetot - 1):
            print("validating for refine step", i)
            validate(args,
                     trainer,
                     task,
                     epoch_itr,
                     valid_subsets,
                     force_refine_step=i)
        print("---")
    validate(args, trainer, task, epoch_itr, valid_subsets)
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates(
    ) < max_update:
        # train for one epoch
        train(args,
              trainer,
              task,
              epoch_itr,
              force_refine_step=progressive_training_step)
        if not args.disable_validation and epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(
                args,
                trainer,
                task,
                epoch_itr,
                valid_subsets,
                force_refine_step=progressive_training_step)
        else:
            valid_losses = [None]

        if args.decoder_wise_training:
            progressive_training_step = update_num_to_refine_step(
                trainer.get_num_updates())

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        # save checkpoint
        if epoch_itr.epoch % args.save_interval == 0:
            if HAS_NSML:
                if distributed_utils.is_master(args):
                    print("nsml save for epoch", epoch_itr.epoch)
                    nsml.save("epoch{}".format(epoch_itr.epoch))
            else:
                torch.save({"model": trainer.get_model().state_dict()},
                           "/tmp/epoch{}.pt".format(epoch_itr.epoch))
                if HAS_WANDB:
                    wandb.save("/tmp/epoch{}.pt".format(epoch_itr.epoch))
                # checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0])

        if ':' in getattr(args, 'data', ''):
            # sharded data: get train iterator for next epoch
            epoch_itr = trainer.get_train_iterator(epoch_itr.epoch)
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))
コード例 #12
0
def main(args):
    assert args.path is not None, '--path required for generation!'
    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert args.replace_unk is None or args.raw_text, \
        '--replace-unk requires a raw text dataset (--raw-text)'

    utils.import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(':'),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    torch.manual_seed(args.seed)

    # Optimize ensemble for generation
    for model in models:
        if use_cuda:
            model.cuda()

        config = utils.get_subtransformer_config(args)

        model.set_sample_config(config)
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()
        print(model, file=sys.stderr)
        print(args.path, file=sys.stderr)

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(args)

    num_sentences = 0
    has_target = True
    decoder_times_all = []
    input_len_all = []
    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        for sample in t:

            sample = utils.move_to_cuda(sample) if use_cuda else sample
            if 'net_input' not in sample:
                continue

            prefix_tokens = None
            if args.prefix_size > 0:
                prefix_tokens = sample['target'][:, :args.prefix_size]

            gen_timer.start()
            hypos, decoder_times = task.inference_step(generator, models,
                                                       sample, prefix_tokens)
            input_len_all.append(
                np.mean(sample['net_input']['src_lengths'].cpu().numpy()))

            print(decoder_times)
            decoder_times_all.append(decoder_times)
            num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
            gen_timer.stop(num_generated_tokens)

            for i, sample_id in enumerate(sample['id'].tolist()):
                has_target = sample['target'] is not None

                # Remove padding
                src_tokens = utils.strip_pad(
                    sample['net_input']['src_tokens'][i, :], tgt_dict.pad())
                target_tokens = None
                if has_target:
                    target_tokens = utils.strip_pad(
                        sample['target'][i, :], tgt_dict.pad()).int().cpu()

                # Either retrieve the original sentences or regenerate them from tokens.
                if align_dict is not None:
                    src_str = task.dataset(
                        args.gen_subset).src.get_original_text(sample_id)
                    target_str = task.dataset(
                        args.gen_subset).tgt.get_original_text(sample_id)
                else:
                    if src_dict is not None:
                        src_str = src_dict.string(src_tokens, args.remove_bpe)
                    else:
                        src_str = ""
                    if has_target:
                        target_str = tgt_dict.string(target_tokens,
                                                     args.remove_bpe,
                                                     escape_unk=True)

                if not args.quiet:
                    if src_dict is not None:
                        print('S-{}\t{}'.format(sample_id, src_str))
                    if has_target:
                        print('T-{}\t{}'.format(sample_id, target_str))

                # Process top predictions
                for j, hypo in enumerate(hypos[i][:args.nbest]):
                    hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                        hypo_tokens=hypo['tokens'].int().cpu(),
                        src_str=src_str,
                        alignment=hypo['alignment'].int().cpu()
                        if hypo['alignment'] is not None else None,
                        align_dict=align_dict,
                        tgt_dict=tgt_dict,
                        remove_bpe=args.remove_bpe,
                    )

                    if not args.quiet:
                        print('H-{}\t{}\t{}'.format(sample_id, hypo['score'],
                                                    hypo_str))
                        print('P-{}\t{}'.format(
                            sample_id, ' '.join(
                                map(
                                    lambda x: '{:.4f}'.format(x),
                                    hypo['positional_scores'].tolist(),
                                ))))

                        if args.print_alignment:
                            print('A-{}\t{}'.format(
                                sample_id, ' '.join(
                                    map(lambda x: str(utils.item(x)),
                                        alignment))))

            wps_meter.update(num_generated_tokens)
            t.log({'wps': round(wps_meter.avg)})
            num_sentences += sample['nsentences']
コード例 #13
0
ファイル: train.py プロジェクト: Averroes/translate
def train(
    args,
    extra_state: Dict[str, Any],
    trainer,
    task,
    epoch_itr,
    output_queue: Optional[mp_queues.Queue] = None,
    **train_step_kwargs,
):
    # offset for current epoch (may be different from checkpoint offset)
    starting_offset = extra_state["batch_offset"]

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    stop_training_mid_epoch = False
    stop_training_end_of_epoch = False

    do_prune = args.pruning_percentile > 0
    if do_prune:
        prune_masks = create_prune_masks(args, trainer)
        apply_prune_masks(prune_masks, trainer)

    while lr > args.min_lr and extra_state["epoch"] <= max_epoch:
        """Train the model for one epoch."""

        itr, progress, extra_meters = setup_epoch(
            args=args, epoch_itr=epoch_itr, trainer=trainer
        )

        for i, samples in enumerate(progress, start=starting_offset):
            clear_per_step_extra_state(extra_state)
            extra_state["num_iterations"] = extra_state.get("num_iterations", 0) + 1
            if (
                train_step_kwargs is not None
                and "augment_adv" in train_step_kwargs.keys()
            ):
                train_step_kwargs["augment_adv"] = (
                    extra_state["num_iterations"] > args.warmup_steps
                )
            try:
                log_output = trainer.train_step(samples, **train_step_kwargs)
            # Fairseq's fp16_trainer raises this uncommon error to indicate
            # that we should stop training.
            except FloatingPointError as e:
                print(f"Stopping training due to: {e}.")
                stop_training_mid_epoch = True
                break

            if do_prune:
                apply_prune_masks(prune_masks, trainer)

            if i == starting_offset:
                # ignore the first mini-batch in words-per-second calculation
                trainer.get_meter("wps").reset()

            num_iterations = extra_state["num_iterations"]
            do_eval_tune_loss = (
                args.subepoch_validate_interval > 0
                and num_iterations % args.subepoch_validate_interval == 0
            )
            do_save = (
                not args.no_save
                and args.save_interval_updates > 0
                and num_iterations % args.save_interval_updates == 0
            )
            do_eval_bleu = (
                # We can only do BLEU eval when we have a new checkpoint to load.
                do_save
                and args.generate_bleu_eval_interval > 0
                and num_iterations - extra_state["tune_bleu"]["last_eval_step"]
                >= args.generate_bleu_eval_interval
            )
            if do_eval_bleu:
                extra_state["tune_bleu"]["last_eval_step"] = num_iterations

            extra_state["batch_offset"] = i + 1
            (extra_state, stop_training_mid_epoch, translation_samples) = save_and_eval(
                args=args,
                trainer=trainer,
                task=task,
                extra_state=extra_state,
                do_eval_tune_loss=do_eval_tune_loss,
                do_save=do_save,
                do_eval_bleu=do_eval_bleu,
            )

            # This should come after save_and_eval. Even if log_output is None,
            # meaning that there was an overflow,  We should still run
            # save_and_eval to sync all_reduce and then skip the batch.
            if log_output is None:
                # This indicates that the batch was skipped, typically
                # because of OOM or FP16 overflow.
                continue

            train_stats = log_mid_epoch_stats(
                trainer=trainer,
                progress=progress,
                extra_meters=extra_meters,
                log_output=log_output,
            )

            if distributed_utils.is_master(args) and output_queue is not None:
                output_queue.put_nowait(
                    (
                        trainer.get_num_updates(),
                        {
                            "train_ppl": train_stats["ppl"],
                            "tune_ppl": extra_state["tune_eval"]["perplexity"],
                            "tune_bleu": extra_state["tune_bleu"]["current"],
                            "translation_samples": translation_samples,
                        },
                    )
                )

            if (
                do_eval_bleu
                and args.shrink_lr_no_best_bleu_eval > 0
                and extra_state["tune_bleu"]["num_since_best"]
                > args.shrink_lr_no_best_bleu_eval
            ):
                current_lr = trainer.optimizer.get_lr()
                trainer.optimizer.set_lr(current_lr * args.lr_shrink)
                lr = trainer.optimizer.get_lr()
                print(f"Decayed lr from {current_lr} to {lr}.")

            stop_training_mid_epoch = (
                stop_training_mid_epoch
                or is_training_over_time_limit(
                    extra_state["start_time"], args.stop_time_hr
                )
            )
            if stop_training_mid_epoch:
                break

        # log end-of-epoch stats
        train_stats = log_end_epoch_stats(
            trainer=trainer, progress=progress, extra_meters=extra_meters
        )

        # Run a training step if not stopping mid-epoch.
        if not stop_training_mid_epoch:
            # batch_offset being None denotes the end of an epoch.
            extra_state["batch_offset"] = None
            (
                extra_state,
                stop_training_end_of_epoch,
                translation_samples,
            ) = save_and_eval(
                args=args,
                trainer=trainer,
                task=task,
                extra_state=extra_state,
                do_eval_tune_loss=True,
                do_save=not args.no_save and not args.no_end_of_epoch_checkpoints,
                do_eval_bleu=args.generate_bleu_eval_per_epoch,
            )
            if distributed_utils.is_master(args) and output_queue is not None:
                output_queue.put_nowait(
                    (
                        trainer.get_num_updates(),
                        {
                            "train_ppl": train_stats["ppl"],
                            "tune_ppl": extra_state["tune_eval"]["perplexity"],
                            "tune_bleu": extra_state["tune_bleu"]["current"],
                            "translation_samples": translation_samples,
                        },
                    )
                )

        if stop_training_mid_epoch or stop_training_end_of_epoch:
            break

        lr = trainer.lr_step(extra_state["epoch"], extra_state["tune_eval"]["loss"])
        extra_state["epoch"] += 1
        extra_state["batch_offset"] = 0
        starting_offset = 0

    train_meter.stop()
    print(f"| done training in {train_meter.sum:.1f} seconds")
    print(
        f"| Best BLEU score of {extra_state['tune_bleu']['best']} was from "
        f"epoch {extra_state['tune_bleu']['best_epoch']}"
    )
コード例 #14
0
ファイル: eval_lm.py プロジェクト: oriyor/shrinked_knnlm
def main(parsed_args):
    assert parsed_args.path is not None, '--path required for evaluation!'

    utils.import_user_module(parsed_args)

    logger.info(parsed_args)

    use_cuda = torch.cuda.is_available() and not parsed_args.cpu

    task = tasks.setup_task(parsed_args)

    # Load ensemble
    logger.info('loading model(s) from {}'.format(parsed_args.path))
    models, args = checkpoint_utils.load_model_ensemble(
        parsed_args.path.split(os.pathsep),
        arg_overrides=eval(parsed_args.model_overrides),
        task=task,
    )

    for arg in vars(parsed_args).keys():
        if arg not in {
                'self_target',
                'future_target',
                'past_target',
                'tokens_per_sample',
                'output_size_dictionary',
                'add_bos_token',
        }:
            setattr(args, arg, getattr(parsed_args, arg))

    # reduce tokens per sample by the required context window size
    args.tokens_per_sample -= args.context_window
    task = tasks.setup_task(args)

    # Load dataset splits
    task.load_dataset(args.gen_subset)
    dataset = task.dataset(args.gen_subset)
    if args.context_window > 0:
        dataset = LMContextWindowDataset(
            dataset=dataset,
            tokens_per_sample=args.tokens_per_sample,
            context_window=args.context_window,
            pad_idx=task.source_dictionary.pad(),
        )
    logger.info('{} {} {} examples'.format(args.data, args.gen_subset,
                                           len(dataset)))

    # Optimize ensemble for generation and set the source and dest dicts on the model (required by scorer)
    for model in models:
        model.make_generation_fast_()
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    assert len(models) > 0

    logger.info('num. model params: {}'.format(
        sum(p.numel() for p in models[0].parameters())))

    itr = task.get_batch_iterator(
        dataset=dataset,
        max_tokens=args.max_tokens or 36000,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            *[model.max_positions() for model in models]),
        ignore_invalid_inputs=True,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)

    gen_timer = StopwatchMeter()
    scorer = SequenceScorer(task.target_dictionary,
                            args.softmax_batch,
                            args=args)

    score_sum = 0.
    count = 0

    if args.remove_bpe is not None:
        if args.remove_bpe == 'sentencepiece':
            raise NotImplementedError
        else:
            bpe_cont = args.remove_bpe.rstrip()
            bpe_toks = {
                i
                for i in range(len(task.source_dictionary))
                if task.source_dictionary[i].endswith(bpe_cont)
            }
        bpe_len = len(bpe_cont)
    else:
        bpe_toks = None
        bpe_len = 0

    word_stats = dict()

    if args.knnlm and args.save_knnlm_dstore:
        raise ValueError(
            "Cannot use knnlm while trying to build the datastore!")

    if args.knnlm:
        knn_dstore = KNN_Dstore(args)

    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()

        if args.save_knnlm_dstore:
            print('keytype being saved:', args.knn_keytype)
            if args.dstore_fp16:
                print('Saving fp16')
                dstore_keys = np.memmap(args.dstore_mmap + '_keys.npy',
                                        dtype=np.float16,
                                        mode='w+',
                                        shape=(args.dstore_size,
                                               args.decoder_embed_dim))
                dstore_vals = np.memmap(args.dstore_mmap + '_vals.npy',
                                        dtype=np.int16,
                                        mode='w+',
                                        shape=(args.dstore_size, 1))
            else:
                print('Saving fp32')
                dstore_keys = np.memmap(args.dstore_mmap + '_keys.npy',
                                        dtype=np.float32,
                                        mode='w+',
                                        shape=(args.dstore_size,
                                               args.decoder_embed_dim))
                dstore_vals = np.memmap(args.dstore_mmap + '_vals.npy',
                                        dtype=np.int,
                                        mode='w+',
                                        shape=(args.dstore_size, 1))

        dstore_idx = 0
        for ex_i, sample in enumerate(t):
            if 'net_input' not in sample:
                continue

            sample = utils.move_to_cuda(sample) if use_cuda else sample

            gen_timer.start()
            if args.knnlm:
                hypos = scorer.generate(models, sample, knn_dstore=knn_dstore)
            else:
                hypos = scorer.generate(models, sample)
            gen_timer.stop(sample['ntokens'])

            for i, hypos_i in enumerate(hypos):
                hypo = hypos_i[0]
                if args.save_knnlm_dstore:
                    shape = hypo['dstore_keys'].shape
                    if shape[0] == args.tokens_per_sample:
                        if dstore_idx + shape[0] > args.dstore_size:
                            shape = [args.dstore_size - dstore_idx]
                            hypo['dstore_keys'] = hypo[
                                'dstore_keys'][:shape[0]]
                        if args.dstore_fp16:
                            dstore_keys[dstore_idx:shape[0] +
                                        dstore_idx] = hypo['dstore_keys'].view(
                                            -1, args.decoder_embed_dim).cpu(
                                            ).numpy().astype(np.float16)
                            dstore_vals[dstore_idx:shape[0] +
                                        dstore_idx] = hypo['tokens'].view(
                                            -1,
                                            1).cpu().numpy().astype(np.int16)
                        else:
                            dstore_keys[dstore_idx:shape[0] +
                                        dstore_idx] = hypo['dstore_keys'].view(
                                            -1, args.decoder_embed_dim).cpu(
                                            ).numpy().astype(np.float32)
                            dstore_vals[dstore_idx:shape[0] +
                                        dstore_idx] = hypo['tokens'].view(
                                            -1, 1).cpu().numpy().astype(np.int)

                        dstore_idx += shape[0]
                    else:
                        print('Skipping this one with shape', shape)

                sample_id = sample['id'][i]

                tokens = hypo['tokens']
                tgt_len = tokens.numel()
                pos_scores = hypo['positional_scores'].float()

                if args.add_bos_token:
                    assert hypo['tokens'][0].item(
                    ) == task.target_dictionary.bos()
                    tokens = tokens[1:]
                    pos_scores = pos_scores[1:]

                skipped_toks = 0
                if bpe_toks is not None:
                    for i in range(tgt_len - 1):
                        if tokens[i].item() in bpe_toks:
                            skipped_toks += 1
                            pos_scores[i + 1] += pos_scores[i]
                            pos_scores[i] = 0

                #inf_scores = pos_scores.eq(float('inf')) | pos_scores.eq(float('-inf'))
                #if inf_scores.any():
                #    logger.info(
                #        'skipping tokens with inf scores:',
                #        task.target_dictionary.string(tokens[inf_scores.nonzero()])
                #    )
                #    pos_scores = pos_scores[(~inf_scores).nonzero()]
                score_sum += pos_scores.sum().cpu()
                count += pos_scores.numel() - skipped_toks

                if args.output_word_probs or args.output_word_stats:
                    w = ''
                    word_prob = []
                    is_bpe = False
                    for i in range(len(tokens)):
                        w_ind = tokens[i].item()
                        w += task.source_dictionary[w_ind]
                        if bpe_toks is not None and w_ind in bpe_toks:
                            w = w[:-bpe_len]
                            is_bpe = True
                        else:
                            word_prob.append((w, pos_scores[i].item()))

                            next_prob = None
                            ind = i + 1
                            while ind < len(tokens):
                                if pos_scores[ind].item() != 0:
                                    next_prob = pos_scores[ind]
                                    break
                                ind += 1

                            word_stats.setdefault(w, WordStat(w, is_bpe)).add(
                                pos_scores[i].item(), next_prob)
                            is_bpe = False
                            w = ''
                    if args.output_word_probs:
                        logger.info(
                            str(int(sample_id)) + " " +
                            ('\t'.join('{} [{:2f}]'.format(x[0], x[1])
                                       for x in word_prob)))

            wps_meter.update(sample['ntokens'])
            t.log({'wps': round(wps_meter.avg)})

    if args.save_knnlm_dstore:
        print("dstore_idx", dstore_idx, "final shape", shape)
        print("Keys", dstore_keys.shape, dstore_keys.dtype)
        print("Vals", dstore_vals.shape, dstore_vals.dtype)

    avg_nll_loss = -score_sum / count / math.log(2)  # convert to base 2
    logger.info('Evaluated {} tokens in {:.1f}s ({:.2f} tokens/s)'.format(
        gen_timer.n, gen_timer.sum, 1. / gen_timer.avg))
    logger.info('Loss (base 2): {:.4f}, Perplexity: {:.2f}'.format(
        avg_nll_loss, 2**avg_nll_loss))

    if args.output_word_stats:
        for ws in sorted(word_stats.values(),
                         key=lambda x: x.count,
                         reverse=True):
            logger.info(ws)
コード例 #15
0
def main_tpu(args):

  def log_step(step_type, device, step, tracker=None, metrics_debug=False):
    msg = '{}/ {}, device {}, step {}'.format(step_type, utils.now(), device,
                                              step)
    if tracker:
      rates = tracker.rate(), tracker.global_rate()
      msg += ', Rate={:.2f}, Global Rate={:.2f}'.format(*rates)
    return msg

  def train_loop_fn(model, loader, device, context):
    trainer = trainers[str(device)]
    stats = None
    tracker = xm.RateTracker()
    for i, samples in loader:
      if i and not (i % args.log_steps):
        print(
            log_step(
                'training',
                device,
                i,
                tracker=tracker,
                metrics_debug=args.metrics_debug))
      _log_output = trainer.train_step(samples)
      xm.optimizer_step(trainer.optimizer)
      tracker.add(len(samples) * args.max_sentences)  # n_batches * batch_size
    stats = fairseq_train.get_training_stats(trainer)
    return tracker, stats

  def valid_loop_fn(model, loader, device, context):
    trainer = trainers[str(device)]
    # reset validation loss meters
    for k in ['valid_loss', 'valid_nll_loss']:
      meter = trainer.get_meter(k)
      if meter is not None:
        meter.reset()
    extra_meters = collections.defaultdict(lambda: AverageMeter())
    for i, sample in loader:
      if not (i % args.log_steps):
        print(
            log_step(
                'validation',
                device,
                i,
                tracker=None,
                metrics_debug=args.metrics_debug))
      log_output = trainer.valid_step(sample)
      for k, v in log_output.items():
        if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
          continue
        extra_meters[k].update(v)
    stats = fairseq_train.get_valid_stats(trainer)
    for k, meter in extra_meters.items():
      stats[k] = meter.avg
    return stats

  def validate_subset(args, trainers, task, epoch_itr, subset):
    print('Validating the subset "{}"'.format(subset))
    # Initialize data iterator
    itr = task.get_batch_iterator(
        dataset=task.dataset(subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences_valid,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            list(trainers.values())[0].get_model().max_positions(),
        ),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        seed=args.seed,
        num_workers=args.num_workers).next_epoch_itr(shuffle=False)
    progress = progress_bar.build_progress_bar(
        args,
        itr,
        epoch_itr.epoch,
        prefix='valid on \'{}\' subset'.format(subset),
        no_progress_bar='simple')
    stats_per_device = model_parallel(valid_loop_fn, progress)
    valid_losses = [stats['loss'].avg for stats in stats_per_device]
    print('validation stats on subset "{}" - {}'.format(subset, utils.now()))
    for stats in stats_per_device:
      progress.print(stats, tag=subset, step=trainer.get_num_updates())
    return valid_losses

  def validate(args, trainers, task, epoch_itr, subsets):
    valid_losses = {
        subset: validate_subset(args, trainers, task, epoch_itr, subset)
        for subset in subsets
    }
    return valid_losses

  def initialize_loader_for_epoch(args, epoch_itr):
    if epoch_itr.epoch <= len(args.update_freq):
      update_freq = args.update_freq[epoch_itr.epoch - 1]
    else:
      update_freq = args.update_freq[-1]

    # Initialize data iterator
    itr = epoch_itr.next_epoch_itr(
        fix_batches_to_gpus=False, shuffle=(epoch_itr.epoch >= args.curriculum))
    itr = iterators.GroupedIterator(itr, update_freq)
    progress = progress_bar.build_progress_bar(
        args, itr, epoch_itr.epoch, no_progress_bar='simple')
    return progress

  def keep_training(lr, epoch_itr, trainers):
    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = min(trainer.get_lr() for trainer in trainers.values())
    n_updates = max(trainer.get_num_updates() for trainer in trainers.values())
    return ((lr > FLAGS.min_lr) and (epoch_itr.epoch < max_epoch) and
            (n_updates < max_update))

  xu.eprint('Args')
  for key, val in args.__dict__.items():
    xu.eprint('\t{} {}'.format(key, val))
  xu.eprint('---------')

  devices = xm.get_xla_supported_devices(max_devices=args.num_cores)
  task, trainers, model_parallel, epoch_itr, lr, valid_subsets = prepare_task(
      args, devices)

  train_meter = StopwatchMeter()
  train_meter.start()
  while keep_training(lr, epoch_itr, trainers):
    # TRAINING
    print('Epoch {} begin {}'.format(epoch_itr.epoch + 1, utils.now()))
    progress = initialize_loader_for_epoch(args, epoch_itr)
    out = model_parallel(train_loop_fn, progress)
    trackers, stats_ = zip(*out)
    print('Epoch {} Training stats:'.format(epoch_itr.epoch))
    for device, trainer in trainers.items():
      stats = fairseq_train.get_training_stats(trainer)
      print('device {}'.format(device))
      progress.print(stats, tag=device)
    print('Epoch {} Tracker Rates:'.format(epoch_itr.epoch))
    for tracker in trackers:
      rates = tracker.rate(), tracker.global_rate()
      print('\tRate={:.2f}, Global Rate={:.2f}'.format(*rates))
    print('Epoch {} end {}'.format(epoch_itr.epoch, utils.now()))
    if args.metrics_debug:
      print(torch_xla._XLAC._xla_metrics_report())

    # VALIDATION
    if not args.disable_validation and epoch_itr.epoch % args.validate_interval == 0:
      valid_losses = validate(args, trainers, task, epoch_itr, valid_subsets)

      # only use average first validation loss from the first device
      # to update the learning rate
      vloss = valid_losses[valid_subsets[0]][0]
      print('old learning rate: {}'.format(lr))
      lr = trainers[devices[0]].lr_step(epoch_itr.epoch, vloss)
      print('new learning rate: {}'.format(lr))

      # save checkpoint
      if epoch_itr.epoch % args.save_interval == 0:
        checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, vloss)

    if args.metrics_debug:
      print(torch_xla._XLAC._xla_metrics_report())

  train_meter.stop()
  print('| done training in {:.1f} seconds'.format(train_meter.sum))
コード例 #16
0
def main(args):
    if args.max_tokens is None:
        args.max_tokens = 6000
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load dataset splits
    load_dataset_splits(task, ['train', 'valid'])

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
    print('| num. model params: {}'.format(sum(p.numel() for p in model.parameters())))

    # Make a dummy batch to (i) warm the caching allocator and (ii) as a
    # placeholder DistributedDataParallel when there's an uneven number of
    # batches per worker.
    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        model.max_positions(),
    )
    dummy_batch = task.dataset('train').get_dummy_batch(args.max_tokens, max_positions)

    # Build trainer
    trainer = Trainer(args, task, model, criterion, dummy_batch)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
    epoch_itr = task.get_batch_iterator(
        dataset=task.dataset(args.train_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=8,
        seed=args.seed,
        num_shards=args.distributed_world_size,
        shard_id=args.distributed_rank,
    )

    # Load the latest checkpoint if one is available
    if not load_checkpoint(args, trainer, epoch_itr):
        trainer.dummy_train_step([dummy_batch])

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_losses = [None]
    valid_subsets = args.valid_subset.split(',')
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update:
        # train for one epoch
        train(args, trainer, task, epoch_itr)

        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        # save checkpoint
        if epoch_itr.epoch % args.save_interval == 0:
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))
コード例 #17
0
def train(args, extra_state, trainer, task, epoch_itr):
    # offset for current epoch (may be different from checkpoint offset)
    starting_offset = extra_state["batch_offset"]

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    stop_training_mid_epoch = False
    stop_training_end_of_epoch = False

    do_prune = args.pruning_percentile > 0
    if do_prune:
        prune_masks = create_prune_masks(args, trainer)
        apply_prune_masks(prune_masks, trainer)

    while lr > args.min_lr and extra_state["epoch"] <= max_epoch:
        """Train the model for one epoch."""

        itr, progress, extra_meters = setup_epoch(args=args,
                                                  epoch_itr=epoch_itr,
                                                  trainer=trainer)

        for i, sample in enumerate(progress, start=starting_offset):
            log_output = trainer.train_step(
                sample, augment_adv=extra_state["epoch"] > args.warmup_epochs)

            if do_prune:
                apply_prune_masks(prune_masks, trainer)

            train_stats = log_mid_epoch_stats(
                trainer=trainer,
                progress=progress,
                extra_meters=extra_meters,
                log_output=log_output,
            )

            if i == starting_offset:
                # ignore the first mini-batch in words-per-second calculation
                trainer.get_meter("wps").reset()

            num_updates = trainer.get_num_updates()
            do_validate = (args.subepoch_validate_interval > 0 and
                           num_updates % args.subepoch_validate_interval == 0)
            do_save = (not args.no_save and args.save_interval_updates > 0
                       and num_updates % args.save_interval_updates == 0)
            do_eval_bleu = (
                # We can only do BLEU eval when we have a new checkpoint to load.
                do_save and args.generate_bleu_eval_interval > 0 and
                num_updates - extra_state["last_bleu_eval"] >=
                args.generate_bleu_eval_interval)
            if do_eval_bleu:
                extra_state["last_bleu_eval"] = num_updates

            extra_state["batch_offset"] = i + 1

            (
                _,
                val_ppl,
                val_bleu,
                stop_training_mid_epoch,
                translation_samples,
                lr,
            ) = validate_save_and_evaluate_bleu(
                args=args,
                trainer=trainer,
                task=task,
                extra_state=extra_state,
                do_validate=do_validate,
                do_save=do_save,
                do_eval_bleu=do_eval_bleu,
            )
            yield (
                trainer.get_num_updates(),
                {
                    "train_ppl": train_stats["ppl"],
                    "tune_ppl": val_ppl,
                    "tune_bleu": val_bleu,
                    "translation_samples": translation_samples,
                },
            )

            stop_training_mid_epoch = (stop_training_mid_epoch
                                       or is_training_over_time_limit(
                                           extra_state["start_time"],
                                           args.stop_time_hr))
            if stop_training_mid_epoch:
                break

        # log end-of-epoch stats
        train_stats = log_end_epoch_stats(trainer=trainer,
                                          progress=progress,
                                          extra_meters=extra_meters)

        # Run a training step if not stopping mid-epoch.
        if not stop_training_mid_epoch:
            # batch_offset being None denotes the end of an epoch.
            extra_state["batch_offset"] = None
            (
                val_loss,
                val_ppl,
                val_bleu,
                stop_training_end_of_epoch,
                translation_samples,
                lr,
            ) = validate_save_and_evaluate_bleu(
                args=args,
                trainer=trainer,
                task=task,
                extra_state=extra_state,
                do_validate=True,
                do_save=not args.no_save
                and not args.no_end_of_epoch_checkpoints,
                do_eval_bleu=args.generate_bleu_eval_per_epoch,
            )
            extra_state["val_loss"] = val_loss
            yield (
                trainer.get_num_updates(),
                {
                    "train_ppl": train_stats["ppl"],
                    "tune_ppl": val_ppl,
                    "tune_bleu": val_bleu,
                    "translation_samples": translation_samples,
                },
            )
        if stop_training_mid_epoch or stop_training_end_of_epoch:
            break

        lr = trainer.lr_step(extra_state["epoch"], val_loss)
        extra_state["epoch"] += 1
        extra_state["batch_offset"] = 0
        starting_offset = 0

    train_meter.stop()
    print(f"| done training in {train_meter.sum:.1f} seconds")
    print(
        f"| Best BLEU score of {extra_state['evaluate_bleu']['best']} was from "
        f"epoch {extra_state['evaluate_bleu']['best_epoch']}")
コード例 #18
0
ファイル: train.py プロジェクト: steventan0110/NMT_RL_Filter
def main(args, init_distributed=False):
    utils.import_user_module(args)

    assert args.max_tokens is not None or args.max_sentences is not None, \
        'Must specify batch size either with --max-tokens or --max-sentences'

    # Initialize CUDA and distributed training
    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if init_distributed:
        args.distributed_rank = distributed_utils.distributed_init(args)

    if distributed_utils.is_master(args):
        checkpoint_utils.verify_checkpoint_directory(args.save_dir)

    # Print args
    print(args)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load valid dataset (we load training data below, based on the latest checkpoint)
    for valid_sub_split in args.valid_subset.split(','):
        task.load_dataset(valid_sub_split, combine=False, epoch=0)

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    print(model)
    print('| model {}, criterion {}'.format(args.arch,
                                            criterion.__class__.__name__))
    print('| num. model params: {} (num. trained: {})'.format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    ))

    # Build trainer
    trainer = Trainer(args, task, model, criterion)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr, filtered_maxpos_indices = checkpoint_utils.load_checkpoint(
        args, trainer)

    # pretrain data actor
    # only the language actor model can be pretrained

    if args.pretrain_laser and args.pretrain_data_actor and args.data_actor == 'ave':
        # pretrain the agent with LASER score
        # epoch_itr, indices = trainer.get_train_iterator(1)
        path = '/home/wtan12/multiDDS/'
        trainer.pretrain_LASER('en-ps.laser-score', epoch_itr)

    if args.compare_laser:
        epoch_itr, indices = trainer.get_train_iterator(1)
        print('Number of Indices: ', len(indices))
        scores = collections.defaultdict(float)
        # compare with laser label using R^2 Score, only used after model is trained
        # itr = epoch_itr.next_epoch_itr(fix_batches_to_gpus=False, shuffle=False)
        data_actor = trainer.data_actor
        itr = epoch_itr.next_epoch_itr(
            fix_batches_to_gpus=args.fix_batches_to_gpus,
            shuffle=False,
            offset=0,
            datasize=-1,
        )
        for i, sample in enumerate(itr):
            sample = trainer._prepare_sample(sample)
            sample = list(sample.values())[0]
            score = data_actor(sample).cpu().detach().numpy().tolist()
            indices = sample['id'].data.cpu().numpy().ravel().tolist()
            for k, v in zip(indices, score):
                scores[k] = float(v[0])

        scores = sorted(scores.items(), key=lambda x: x[0])
        print('Number of Indices in Scoring file: ', len(scores))
        path = '/home/wtan12/multiDDS/'
        with open(path + 'en-ps.laser-score', 'r') as r:
            data = r.read()
        laser_score = []
        for i, item in enumerate(data.split('\n')):
            laser_score.append(item)
        laser_score.pop()
        r2 = 0.0
        with open(path + 'en-ps.dds_score', 'w') as f:
            for k, v in scores:
                f.write(str(v) + '\n')
                truth = float(laser_score[k])
                r2 += (truth - v)**2
        print('R2 Score compared to LASER file: ', r2)
        return

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_subsets = args.valid_subset.split(',')
    if args.eval_bleu:
        generator = task.build_generator(args)
        args.maximize_best_checkpoint_metric = True
    else:
        generator = None
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates(
    ) < max_update:
        # train for one epoch
        epoch_itr = train(args, trainer, task, epoch_itr, generator,
                          filtered_maxpos_indices)

        if not args.disable_validation and epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr,
                                    valid_subsets, generator)
        else:
            valid_losses = [None]

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        # save checkpoint
        if epoch_itr.epoch % args.save_interval == 0:
            checkpoint_utils.save_checkpoint(args, trainer, epoch_itr,
                                             valid_losses[0])

        if ':' in getattr(args, 'data', ''):
            # sharded data: get train iterator for next epoch
            epoch_itr = trainer.get_train_iterator(epoch_itr.epoch)[0]
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))
コード例 #19
0
def main(args, init_distributed=False):
    utils.import_user_module(args)

    assert args.max_tokens is not None or args.max_sentences is not None, \
        'Must specify batch size either with --max-tokens or --max-sentences'

    # Initialize CUDA and distributed training
    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if init_distributed:
        args.distributed_rank = distributed_utils.distributed_init(args)

    if distributed_utils.is_master(args):
        checkpoint_utils.verify_checkpoint_directory(args.save_dir)

    # Print args
    logger.info(args)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load valid dataset (we load training data below, based on the latest checkpoint)
    for valid_sub_split in args.valid_subset.split(','):
        task.load_dataset(valid_sub_split, combine=False, epoch=0)

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    logger.info(model)
    logger.info('model {}, criterion {}'.format(args.arch,
                                                criterion.__class__.__name__))
    logger.info('num. model params: {} (num. trained: {})'.format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    ))

    # Build trainer
    trainer = Trainer(args, task, model, criterion)
    logger.info('training on {} GPUs'.format(args.distributed_world_size))
    logger.info(
        'max tokens per GPU = {} and max sentences per GPU = {}'.format(
            args.max_tokens,
            args.max_sentences,
        ))

    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer)

    # Train until the learning rate gets too small
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_subsets = args.valid_subset.split(',')

    tokenize = sacrebleu.DEFAULT_TOKENIZER if not args.eval_tokenized_bleu else 'none'
    hyps, refs = validate(args, trainer, task, epoch_itr, valid_subsets)

    for h, r, split in zip(hyps, refs, args.valid_subset.split(',')):
        assert len(h) == len(r)

        sacrebleu_score, _, _ = sacrebleu.corpus_bleu(
            h, [r], tokenize=tokenize), hyps, refs
        bleu = compute_cvpr_bleu(h, r)
        rouge_score = rouge.rouge(h, r)

        print('{} set has {} samples,\n'
              'sacrebleu: {},\n'
              'CVPR BLEU scripts: {}\n'
              'CVPR ROUGE: {}'.format(split, len(h), sacrebleu_score, bleu,
                                      rouge_score))

        print('performance: {:.2f} {}'.format(
            rouge_score['rouge_l/f_score'] * 100,
            ' '.join([str(b) for b in bleu])))
コード例 #20
0
ファイル: train.py プロジェクト: dellhpc/mlperf-training
def main(args):
    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)

    mlperf_compliance.mlperf_log.LOGGER.propagate = False

    # framework = f'Pytorch NGC {os.environ["NVIDIA_PYTORCH_VERSION"]}'
    # mlperf_submission_log(
    #     benchmark=mlperf_compliance.constants.TRANSFORMER,
    #     framework=framework)

    mlperf_compliance.mlperf_log.setdefault(
        root_dir=os.path.dirname(os.path.abspath(__file__)),
        benchmark=mlperf_compliance.constants.TRANSFORMER,
        stack_offset=1,
        extra_print=False)

    mlperf_print(key=mlperf_compliance.constants.INIT_START,
                 log_all_ranks=True)

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    # preinit and warmup streams/groups for allreduce communicators
    allreduce_communicators = None
    if args.distributed_world_size > 1 and args.enable_parallel_backward_allred_opt:
        allreduce_groups = [
            torch.distributed.new_group()
            for _ in range(args.parallel_backward_allred_cuda_nstreams)
        ]
        allreduce_streams = [
            torch.cuda.Stream()
            for _ in range(args.parallel_backward_allred_cuda_nstreams)
        ]
        for group, stream in zip(allreduce_groups, allreduce_streams):
            with torch.cuda.stream(stream):
                torch.distributed.all_reduce(torch.cuda.FloatTensor(1),
                                             group=group)
        allreduce_communicators = (allreduce_groups, allreduce_streams)

    if args.max_tokens is None:
        args.max_tokens = 6000

    print(args)

    mlperf_print(key=mlperf_compliance.constants.GLOBAL_BATCH_SIZE,
                 value=args.max_tokens * args.distributed_world_size)
    mlperf_print(key=mlperf_compliance.constants.OPT_NAME,
                 value=args.optimizer)
    assert (len(args.lr) == 1)
    mlperf_print(key=mlperf_compliance.constants.OPT_BASE_LR,
                 value=args.lr[0] if len(args.lr) == 1 else args.lr)
    mlperf_print(key=mlperf_compliance.constants.OPT_LR_WARMUP_STEPS,
                 value=args.warmup_updates)
    assert (args.max_source_positions == args.max_target_positions)
    mlperf_print(key=mlperf_compliance.constants.MAX_SEQUENCE_LENGTH,
                 value=args.max_target_positions)
    mlperf_print(key=mlperf_compliance.constants.OPT_ADAM_BETA_1,
                 value=eval(args.adam_betas)[0])
    mlperf_print(key=mlperf_compliance.constants.OPT_ADAM_BETA_2,
                 value=eval(args.adam_betas)[1])
    mlperf_print(key=mlperf_compliance.constants.OPT_ADAM_EPSILON,
                 value=args.adam_eps)

    pValue = ctypes.cast((ctypes.c_int * 1)(), ctypes.POINTER(ctypes.c_int))
    result = torch.cuda.cudart().cudaDeviceSetLimit(ctypes.c_int(0x05),
                                                    ctypes.c_int(128))
    result = torch.cuda.cudart().cudaDeviceGetLimit(pValue, ctypes.c_int(0x05))

    #    torch.manual_seed(args.seed)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)

    print('| model {}, criterion {}'.format(args.arch,
                                            criterion.__class__.__name__))
    print('| num. model params: {}'.format(
        sum(p.numel() for p in model.parameters())))

    # Build trainer
    if args.fp16:
        trainer = FP16Trainer(args,
                              task,
                              model,
                              criterion,
                              allreduce_communicators=allreduce_communicators)
    else:
        if torch.cuda.get_device_capability(0)[0] >= 7:
            print(
                '| NOTICE: your device may support faster training with --fp16'
            )

        trainer = Trainer(args,
                          task,
                          model,
                          criterion,
                          allreduce_communicators=None)

    #if (args.online_eval or args.target_bleu) and not args.remove_bpe:
    #    args.remove_bpe='@@ '

    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
    max_positions = trainer.get_model().max_positions()

    # Send a dummy batch to warm the caching allocator
    dummy_batch = language_pair_dataset.get_dummy_batch_isolated(
        args.max_tokens, max_positions, 8)
    trainer.dummy_train_step(dummy_batch)

    # Train until the learning rate gets too small or model reaches target score
    max_epoch = args.max_epoch if args.max_epoch >= 0 else math.inf
    max_update = args.max_update or math.inf
    tgt_bleu = args.target_bleu or math.inf
    current_bleu = 0.0
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_losses = [None]
    valid_subsets = args.valid_subset.split(',')

    # mlperf compliance synchronization
    if args.distributed_world_size > 1:
        assert (torch.distributed.is_initialized())
        torch.distributed.all_reduce(torch.cuda.FloatTensor(1))
        torch.cuda.synchronize()

    mlperf_print(key=mlperf_compliance.constants.INIT_STOP, sync=True)

    mlperf_print(key=mlperf_compliance.constants.RUN_START, sync=True)
    # second sync after RUN_START tag is printed.
    # this ensures no rank touches data until after RUN_START tag is printed.
    barrier()

    # Load dataset splits
    load_dataset_splits(task, ['train', 'test'])

    ctr = 0

    class DummyEpochBatchIterator:
        def __init__(self, epoch=0):
            self.epoch = epoch

    epoch_itr = DummyEpochBatchIterator(0)

    # Main training loop
    while lr >= args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates(
    ) < max_update and current_bleu < tgt_bleu:
        first_epoch = epoch_itr.epoch + 1
        mlperf_print(key=mlperf_compliance.constants.BLOCK_START,
                     metadata={
                         'first_epoch_num': first_epoch,
                         'epoch_count': 1
                     },
                     sync=True)
        mlperf_print(key=mlperf_compliance.constants.EPOCH_START,
                     metadata={'epoch_num': first_epoch},
                     sync=True)
        start = time.time()

        gc.disable()

        epoch_itr = data.EpochBatchIterator(
            dataset=task.dataset(args.train_subset),
            dataloader_num_workers=args.dataloader_num_workers,
            dataloader_pin_memory=args.enable_dataloader_pin_memory,
            max_tokens=args.max_tokens,
            max_sentences=args.max_sentences_valid,
            max_positions=max_positions,
            ignore_invalid_inputs=True,
            required_batch_size_multiple=8,
            seed=args.seed,
            num_shards=args.distributed_world_size,
            shard_id=args.distributed_rank,
            epoch=epoch_itr.epoch if ctr is not 0 else 0,
            bucket_growth_factor=args.bucket_growth_factor,
            seq_len_multiple=args.seq_len_multiple,
            batching_scheme=args.batching_scheme,
            batch_multiple_strategy=args.batch_multiple_strategy,
        )

        print("got epoch iterator", time.time() - start)

        # Load the latest checkpoint if one is available
        if ctr is 0:
            load_checkpoint(args, trainer, epoch_itr)

        # train for one epoch
        start = time.time()
        #exit(1)
        train(args, trainer, task, epoch_itr)
        print("epoch time ", time.time() - start)

        start = time.time()
        mlperf_print(key=mlperf_compliance.constants.EPOCH_STOP,
                     metadata={'epoch_num': first_epoch},
                     sync=True)

        #if epoch_itr.epoch % args.validate_interval == 0:
        #    valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)

        # Eval BLEU score
        if args.online_eval or (not tgt_bleu is math.inf):
            current_bleu = score(args, trainer, task, epoch_itr,
                                 args.gen_subset)
            mlperf_print(key=mlperf_compliance.tags.EVAL_ACCURACY,
                         value=str(current_bleu),
                         metadata={'epoch_num': first_epoch})

        gc.enable()

        # Only use first validation loss to update the learning rate
        #lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        # Save checkpoint
        #if epoch_itr.epoch % args.save_interval == 0:
        #    save_checkpoint(args, trainer, epoch_itr, valid_losses[0])

        ctr = ctr + 1
        print("validation and scoring ", time.time() - start)
        mlperf_print(key=mlperf_compliance.constants.BLOCK_STOP,
                     metadata={'first_epoch_num': first_epoch},
                     sync=True)

    train_meter.stop()
    status = 'success' if current_bleu >= tgt_bleu else 'aborted'
    mlperf_print(key=mlperf_compliance.constants.RUN_STOP,
                 metadata={'status': status})
    print('| done training in {:.1f} seconds'.format(train_meter.sum))
コード例 #21
0
def main(args, init_distributed=False):
    utils.import_user_module(args)

    assert args.max_tokens is not None or args.max_sentences is not None, \
        'Must specify batch size either with --max-tokens or --max-sentences'

    # Initialize CUDA and distributed training
    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if init_distributed:
        args.distributed_rank = distributed_utils.distributed_init(args)

    if distributed_utils.is_master(args):
        checkpoint_utils.verify_checkpoint_directory(args.save_dir)

    # Print args
    print(args)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load valid dataset (we load training data below, based on the latest checkpoint)
    for valid_sub_split in args.valid_subset.split(','):
        task.load_dataset(valid_sub_split, combine=False, epoch=0)

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    print(model)
    print('| model {}, criterion {}'.format(args.arch,
                                            criterion.__class__.__name__))
    print('| num. model params: {} (num. trained: {})'.format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    ))

    # Build trainer
    trainer = Trainer(args, task, model, criterion)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer)

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_subsets = args.valid_subset.split(',')
    while (lr > args.min_lr and (epoch_itr.epoch < max_epoch or
                                 (epoch_itr.epoch == max_epoch
                                  and epoch_itr._next_epoch_itr is not None))
           and trainer.get_num_updates() < max_update):
        # train for one epoch
        train(args, trainer, task, epoch_itr)

        if not args.disable_validation and epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr,
                                    valid_subsets)
        else:
            valid_losses = [None]

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        # save checkpoint
        if epoch_itr.epoch % args.save_interval == 0:
            checkpoint_utils.save_checkpoint(args, trainer, epoch_itr,
                                             valid_losses[0])

        reload_dataset = ':' in getattr(args, 'data', '')
        # sharded data: get train iterator for next epoch
        epoch_itr = trainer.get_train_iterator(epoch_itr.epoch,
                                               load_dataset=reload_dataset)
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))
コード例 #22
0
ファイル: eval_lm.py プロジェクト: insop/pytorch-hackathon
def main(parsed_args):
    assert parsed_args.path is not None, '--path required for evaluation!'

    utils.import_user_module(parsed_args)

    print(parsed_args)

    use_cuda = torch.cuda.is_available() and not parsed_args.cpu

    task = tasks.setup_task(parsed_args)

    # Load ensemble
    print('| loading model(s) from {}'.format(parsed_args.path))
    models, args = checkpoint_utils.load_model_ensemble(
        parsed_args.path.split(':'),
        arg_overrides=eval(parsed_args.model_overrides),
        task=task,
    )

    for arg in vars(parsed_args).keys():
        if arg not in {
                'self_target',
                'future_target',
                'past_target',
                'tokens_per_sample',
                'output_size_dictionary',
                'add_bos_token',
        }:
            setattr(args, arg, getattr(parsed_args, arg))

    # reduce tokens per sample by the required context window size
    args.tokens_per_sample -= args.context_window
    task = tasks.setup_task(args)

    # Load dataset splits
    task.load_dataset(args.gen_subset)
    dataset = task.dataset(args.gen_subset)
    if args.context_window > 0:
        dataset = LMContextWindowDataset(
            dataset=dataset,
            tokens_per_sample=args.tokens_per_sample,
            context_window=args.context_window,
            pad_idx=task.source_dictionary.pad(),
        )
    print('| {} {} {} examples'.format(args.data, args.gen_subset,
                                       len(dataset)))

    # Optimize ensemble for generation and set the source and dest dicts on the model (required by scorer)
    for model in models:
        model.make_generation_fast_()
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    assert len(models) > 0

    print('num. model params: {}'.format(
        sum(p.numel() for p in models[0].parameters())))

    itr = task.get_batch_iterator(
        dataset=dataset,
        max_tokens=args.max_tokens or 36000,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            *[model.max_positions() for model in models]),
        ignore_invalid_inputs=True,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)

    gen_timer = StopwatchMeter()
    scorer = SequenceScorer(task.target_dictionary, args.softmax_batch)

    score_sum = 0.
    count = 0

    if args.remove_bpe is not None:
        if args.remove_bpe == 'sentencepiece':
            raise NotImplementedError
        else:
            bpe_cont = args.remove_bpe.rstrip()
            bpe_toks = set(i for i in range(len(task.source_dictionary))
                           if task.source_dictionary[i].endswith(bpe_cont))
        bpe_len = len(bpe_cont)
    else:
        bpe_toks = None
        bpe_len = 0

    word_stats = dict()

    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()

        for sample in t:
            if 'net_input' not in sample:
                continue

            sample = utils.move_to_cuda(sample) if use_cuda else sample

            gen_timer.start()
            hypos = scorer.generate(models, sample)
            gen_timer.stop(sample['ntokens'])

            for hypos_i in hypos:
                hypo = hypos_i[0]

                tokens = hypo['tokens']
                tgt_len = tokens.numel()
                pos_scores = hypo['positional_scores'].float()

                if args.add_bos_token:
                    assert hypo['tokens'][0].item(
                    ) == task.target_dictionary.bos()
                    tokens = tokens[1:]
                    pos_scores = pos_scores[1:]

                skipped_toks = 0
                if bpe_toks is not None:
                    for i in range(tgt_len - 1):
                        if tokens[i].item() in bpe_toks:
                            skipped_toks += 1
                            pos_scores[i + 1] += pos_scores[i]
                            pos_scores[i] = 0

                inf_scores = pos_scores.eq(float('inf')) | pos_scores.eq(
                    float('-inf'))
                if inf_scores.any():
                    print(
                        '| Skipping tokens with inf scores:',
                        task.target_dictionary.string(
                            tokens[inf_scores.nonzero()]))
                    pos_scores = pos_scores[(~inf_scores).nonzero()]
                score_sum += pos_scores.sum().cpu()
                count += pos_scores.numel() - skipped_toks

                if args.output_word_probs or args.output_word_stats:
                    w = ''
                    word_prob = []
                    is_bpe = False
                    for i in range(len(tokens)):
                        w_ind = tokens[i].item()
                        w += task.source_dictionary[w_ind]
                        if bpe_toks is not None and w_ind in bpe_toks:
                            w = w[:-bpe_len]
                            is_bpe = True
                        else:
                            word_prob.append((w, pos_scores[i].item()))

                            next_prob = None
                            ind = i + 1
                            while ind < len(tokens):
                                if pos_scores[ind].item() != 0:
                                    next_prob = pos_scores[ind]
                                    break
                                ind += 1

                            word_stats.setdefault(w, WordStat(w, is_bpe)).add(
                                pos_scores[i].item(), next_prob)
                            is_bpe = False
                            w = ''
                    if args.output_word_probs:
                        print('\t'.join('{} [{:2f}]'.format(x[0], x[1])
                                        for x in word_prob))

            wps_meter.update(sample['ntokens'])
            t.log({'wps': round(wps_meter.avg)})

    avg_nll_loss = -score_sum / count
    print('| Evaluated {} tokens in {:.1f}s ({:.2f} tokens/s)'.format(
        gen_timer.n, gen_timer.sum, 1. / gen_timer.avg))
    print('| Loss: {:.4f}, Perplexity: {:.2f}'.format(avg_nll_loss,
                                                      np.exp(avg_nll_loss)))

    if args.output_word_stats:
        for ws in sorted(word_stats.values(),
                         key=lambda x: x.count,
                         reverse=True):
            print(ws)
コード例 #23
0
ファイル: task6_train.py プロジェクト: Silent-Zebra/reproduce
def prune(args):
    if args.max_tokens is None:
        args.max_tokens = 6000
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load dataset splits
    load_dataset_splits(task, ['train', "valid"])

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    print('| model {}, criterion {},'.format(args.arch,
                                             criterion.__class__.__name__))
    print('| num. model params: {}'.format(
        sum(p.numel() for p in model.parameters())))

    # Make a dummy batch to (i) warm the caching allocator and (ii) as a
    # placeholder DistributedDataParallel when there's an uneven number of
    # batches per worker.
    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        model.max_positions(),
    )
    dummy_batch = task.dataset('train').get_dummy_batch(
        args.max_tokens, max_positions)

    # Build trainer
    trainer = Trainer(args, task, model, criterion, dummy_batch)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))
    print('| Optimizer {}'.format(trainer.optimizer.__class__.__name__))

    # Initialize dataloader
    epoch_itr = task.get_batch_iterator(
        dataset=task.dataset(args.train_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=8,
        seed=args.seed,
        num_shards=args.distributed_world_size,
        shard_id=args.distributed_rank,
    )
    # Load the latest checkpoint if one is available
    if not load_checkpoint(args, trainer, epoch_itr):
        trainer.dummy_train_step([dummy_batch])

    # Train until the learning rate gets too small
    prune_meter = StopwatchMeter()
    prune_meter.start()
    # Estimate head importance scores
    head_importance, head_stats = estimate_head_importance(
        args, trainer, task, epoch_itr)
    prune_meter.stop()
    print('| done estimating head importance in {:.1f} seconds'.format(
        prune_meter.sum))
    torch.save(head_stats,
               f"{os.path.dirname(args.restore_file)}/heads_stats.bin")
    # Print
    print("Head importances")
    print("Encoder self attention")
    for layer in range(head_importance["encoder_self"].size(0)):
        print("\t".join(f"{x:.5f}"
                        for x in head_importance["encoder_self"][layer]))
    print("Encoder decoder attention")
    for layer in range(head_importance["encoder_decoder"].size(0)):
        print("\t".join(f"{x:.5f}"
                        for x in head_importance["encoder_decoder"][layer]))
    print("Decoder self attention")
    for layer in range(head_importance["decoder_self"].size(0)):
        print("\t".join(f"{x:.5f}"
                        for x in head_importance["decoder_self"][layer]))
    # Print sorted pruning profile
    encoder_self_profile = get_profile(head_importance["encoder_self"],
                                       prefix="E")
    encoder_decoder_profile = get_profile(head_importance["encoder_decoder"],
                                          prefix="A")
    decoder_self_profile = get_profile(head_importance["decoder_self"],
                                       prefix="D")
    # Join all
    all_profiles = {}
    if not (args.decoder_self_only or args.encoder_decoder_only):
        all_profiles.update(encoder_self_profile)
    if not (args.encoder_self_only or args.decoder_self_only):
        all_profiles.update(encoder_decoder_profile)
    if not (args.encoder_self_only or args.encoder_decoder_only):
        all_profiles.update(decoder_self_profile)
    sorted_profiles = sorted(all_profiles.items(),
                             key=lambda x: x[1],
                             reverse=args.one_minus)
    print("Heads sorted by importance:")
    print(" ".join(p for p, _ in sorted_profiles))
    print("Sorted head importance scores:")
    print(" ".join(f"{v.data:.5f}" for _, v in sorted_profiles))

    if args.only_importance:
        return

    tot_n_heads = len(sorted_profiles)
    # Eval pruning
    if args.one_head:
        kept_layers = set()
        to_prune_profile = []
        for p, _ in reversed(sorted_profiles):
            layer_name = ":".join(p.split(":")[:-1])
            if layer_name not in kept_layers:
                kept_layers.add(layer_name)
                continue
            else:
                to_prune_profile.insert(0, p)
        to_prune = parse_head_pruning_descriptors(to_prune_profile,
                                                  reverse_descriptors=False)
        print(f"Evaluating following profile: \t{' '.join(to_prune_profile)}")
        # Apply pruning
        mask_heads(model, to_prune, args.transformer_mask_rescale)
        bleu = eval_bleu_score(
            model,
            task,
            task.dataset(args.valid_subset),
            beam=args.beam,
            replace_unk=args.replace_unk,
            lenpen=args.lenpen,
            buffer_size=100,
            use_cuda=torch.cuda.is_available() and not args.cpu,
            remove_bpe=args.remove_bpe,
            max_sentences=args.max_sentences,
            max_tokens=args.max_tokens,
            stop_early=not args.no_early_stop,
            normalize_scores=not args.unnormalized,
            min_len=args.min_len,
        )
        print(f"BLEU score: \t{bleu.score:.2f}")
        sys.stdout.flush()
        return

    for i in range(0, 10):
        n_to_prune = int(ceil(tot_n_heads * i / 10))
        to_prune_profile = [p for p, _ in sorted_profiles[:n_to_prune]]
        to_prune = parse_head_pruning_descriptors(to_prune_profile,
                                                  reverse_descriptors=False)
        print(f"Evaluating following profile: \t{' '.join(to_prune_profile)}")
        # Apply pruning
        mask_heads(model, to_prune, args.transformer_mask_rescale)
        bleu = eval_bleu_score(
            model,
            task,
            task.dataset(args.valid_subset),
            beam=args.beam,
            replace_unk=args.replace_unk,
            lenpen=args.lenpen,
            buffer_size=100,
            use_cuda=torch.cuda.is_available() and not args.cpu,
            remove_bpe=args.remove_bpe,
            max_sentences=args.max_sentences,
            max_tokens=args.max_tokens,
            stop_early=not args.no_early_stop,
            normalize_scores=not args.unnormalized,
            min_len=args.min_len,
        )
        print(f"BLEU score: \t{bleu.score:.2f}")
        sys.stdout.flush()
コード例 #24
0
def _main(args, output_file):
    logging.basicConfig(
        format='%(asctime)s | %(levelname)s | %(name)s | %(message)s',
        datefmt='%Y-%m-%d %H:%M:%S',
        level=logging.INFO,
        stream=output_file,
    )
    logger = logging.getLogger('fairseq_cli.generate')

    utils.import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    logger.info(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    logger.info('loading model(s) from {}'.format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(':'),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
            *[model.max_positions() for model in models]),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(args)

    # Generate and compute BLEU score
    if args.sacrebleu:
        scorer = bleu.SacrebleuScorer()
    else:
        scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
    num_sentences = 0
    has_target = True
    with progress_bar.build_progress_bar(args, itr) as t:
        wps_meter = TimeMeter()
        for sample in t:
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            if 'net_input' not in sample:
                continue

            prefix_tokens = None
            if args.prefix_size > 0:
                prefix_tokens = sample['target'][:, :args.prefix_size]

            gen_timer.start()
            hypos = task.inference_step(generator, models, sample,
                                        prefix_tokens)
            num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
            gen_timer.stop(num_generated_tokens)

            for i, sample_id in enumerate(sample['id'].tolist()):
                has_target = sample['target'] is not None

                # Remove padding
                src_tokens = utils.strip_pad(
                    sample['net_input']['src_tokens'][i, :], tgt_dict.pad())
                target_tokens = None
                if has_target:
                    target_tokens = utils.strip_pad(
                        sample['target'][i, :], tgt_dict.pad()).int().cpu()

                # Either retrieve the original sentences or regenerate them from tokens.
                if align_dict is not None:
                    src_str = task.dataset(
                        args.gen_subset).src.get_original_text(sample_id)
                    target_str = task.dataset(
                        args.gen_subset).tgt.get_original_text(sample_id)
                else:
                    if src_dict is not None:
                        src_str = src_dict.string(src_tokens, args.remove_bpe)
                    else:
                        src_str = ""
                    if has_target:
                        target_str = tgt_dict.string(target_tokens,
                                                     args.remove_bpe,
                                                     escape_unk=True)

                if not args.quiet:
                    if src_dict is not None:
                        print('S-{}\t{}'.format(sample_id, src_str),
                              file=output_file)
                    if has_target:
                        print('T-{}\t{}'.format(sample_id, target_str),
                              file=output_file)

                # Process top predictions
                for j, hypo in enumerate(hypos[i][:args.nbest]):
                    hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                        hypo_tokens=hypo['tokens'].int().cpu(),
                        src_str=src_str,
                        alignment=hypo['alignment'],
                        align_dict=align_dict,
                        tgt_dict=tgt_dict,
                        remove_bpe=args.remove_bpe,
                    )

                    if not args.quiet:
                        score = hypo['score'] / math.log(
                            2)  # convert to base 2
                        print('H-{}\t{}\t{}'.format(sample_id, score,
                                                    hypo_str),
                              file=output_file)
                        print(
                            'P-{}\t{}'.format(
                                sample_id,
                                ' '.join(
                                    map(
                                        lambda x: '{:.4f}'.format(x),
                                        # convert from base e to base 2
                                        hypo['positional_scores'].div_(
                                            math.log(2)).tolist(),
                                    ))),
                            file=output_file)

                        if args.print_alignment:
                            print('A-{}\t{}'.format(
                                sample_id, ' '.join([
                                    '{}-{}'.format(src_idx, tgt_idx)
                                    for src_idx, tgt_idx in alignment
                                ])),
                                  file=output_file)

                        if args.print_step:
                            print('I-{}\t{}'.format(sample_id, hypo['steps']),
                                  file=output_file)

                        if getattr(args, 'retain_iter_history', False):
                            for step, h in enumerate(hypo['history']):
                                _, h_str, _ = utils.post_process_prediction(
                                    hypo_tokens=h['tokens'].int().cpu(),
                                    src_str=src_str,
                                    alignment=None,
                                    align_dict=None,
                                    tgt_dict=tgt_dict,
                                    remove_bpe=None,
                                )
                                print('E-{}_{}\t{}'.format(
                                    sample_id, step, h_str),
                                      file=output_file)

                    # Score only the top hypothesis
                    if has_target and j == 0:
                        if align_dict is not None or args.remove_bpe is not None:
                            # Convert back to tokens for evaluation with unk replacement and/or without BPE
                            target_tokens = tgt_dict.encode_line(
                                target_str, add_if_not_exist=True)
                        if hasattr(scorer, 'add_string'):
                            scorer.add_string(target_str, hypo_str)
                        else:
                            scorer.add(target_tokens, hypo_tokens)

            wps_meter.update(num_generated_tokens)
            t.log({'wps': round(wps_meter.avg)})
            num_sentences += sample['nsentences']

    logger.info('NOTE: hypothesis and token scores are output in base 2')
    logger.info(
        'Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'
        .format(num_sentences, gen_timer.n, gen_timer.sum,
                num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        logger.info('Generate {} with beam={}: {}'.format(
            args.gen_subset, args.beam, scorer.result_string()))

    return scorer
コード例 #25
0
ファイル: train.py プロジェクト: warut-vijit/translate
def train(args, extra_state, trainer, dataset):
    # offset for current epoch (may be different from checkpoint offset)
    starting_offset = extra_state["batch_offset"]

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and extra_state["epoch"] <= max_epoch:
        """Train the model for one epoch."""

        itr, progress, extra_meters = setup_epoch(
            args=args,
            epoch=extra_state["epoch"],
            batch_offset=starting_offset,
            trainer=trainer,
            dataset=dataset,
        )

        for i, sample in enumerate(itr, start=starting_offset):
            log_output = trainer.train_step(sample)

            train_stats = log_mid_epoch_stats(
                trainer=trainer,
                progress=progress,
                extra_meters=extra_meters,
                log_output=log_output,
            )

            if (args.continuous_averaging_after_epochs >= 0
                    and extra_state["epoch"] >
                    args.continuous_averaging_after_epochs):
                model_param_dict = trainer.model.state_dict()
                if "param_totals" not in extra_state:
                    extra_state["param_totals"] = {}
                    for name, value in model_param_dict.items():
                        extra_state["param_totals"][name] = value.clone()
                    extra_state["param_accum_count"] = 1
                else:
                    for name, value in model_param_dict.items():
                        extra_state["param_totals"][name] += value
                    extra_state["param_accum_count"] += 1

            if i == starting_offset:
                # ignore the first mini-batch in words-per-second calculation
                trainer.get_meter("wps").reset()

            num_updates = trainer.get_num_updates()
            do_validate = (args.subepoch_validate_interval > 0 and
                           num_updates % args.subepoch_validate_interval == 0)
            do_save = (not args.no_save and args.save_interval > 0
                       and num_updates % args.save_interval == 0)
            do_eval_bleu = (
                # We can only do BLEU eval when we have a new checkpoint to load.
                do_save and args.generate_bleu_eval_interval > 0 and
                num_updates - extra_state["last_bleu_eval"] >=
                args.generate_bleu_eval_interval)
            if do_eval_bleu:
                extra_state["last_bleu_eval"] = num_updates

            extra_state["batch_offset"] = i + 1

            (
                _,
                val_ppl,
                val_bleu,
                stop_training_mid_epoch,
            ) = validate_save_and_evaluate_bleu(
                args=args,
                trainer=trainer,
                dataset=dataset,
                extra_state=extra_state,
                do_validate=do_validate,
                do_save=do_save,
                do_eval_bleu=do_eval_bleu,
            )
            yield (
                trainer.get_num_updates(),
                {
                    "train_ppl": train_stats["ppl"],
                    "tune_ppl": val_ppl,
                    "tune_bleu": val_bleu,
                },
            )

            if stop_training_mid_epoch:
                break

        # log end-of-epoch stats
        train_stats = log_end_epoch_stats(trainer=trainer,
                                          progress=progress,
                                          extra_meters=extra_meters)

        if stop_training_mid_epoch:
            break

        # batch_offset being None denotes the end of an epoch.
        extra_state["batch_offset"] = None
        (
            val_loss,
            val_ppl,
            val_bleu,
            stop_training_end_of_epoch,
        ) = validate_save_and_evaluate_bleu(
            args=args,
            trainer=trainer,
            dataset=dataset,
            extra_state=extra_state,
            do_validate=True,
            do_save=not args.no_save and not args.no_end_of_epoch_checkpoints,
            do_eval_bleu=args.generate_bleu_eval_per_epoch,
        )
        extra_state["val_loss"] = val_loss
        yield (
            trainer.get_num_updates(),
            {
                "train_ppl": train_stats["ppl"],
                "tune_ppl": val_ppl,
                "tune_bleu": val_bleu,
            },
        )
        if stop_training_end_of_epoch:
            break

        lr = trainer.lr_step(extra_state["epoch"], val_loss)
        extra_state["epoch"] += 1
        extra_state["batch_offset"] = 0
        starting_offset = 0

        if is_training_over_time_limit(extra_state["start_time"],
                                       args.stop_time_hr):
            break

    train_meter.stop()
    print(f"| done training in {train_meter.sum:.1f} seconds")

    if "evaluate_bleu" in extra_state:
        print(
            f"| Best BLEU score of {extra_state['evaluate_bleu']['best']} was from "
            f"epoch {extra_state['evaluate_bleu']['best_epoch']}")
コード例 #26
0
ファイル: train.py プロジェクト: dwraft/translate
def train(
    args,
    extra_state: Dict[str, Any],
    trainer,
    task,
    epoch_itr,
    checkpoint_manager: Optional[checkpoint.CheckpointManager],
    output_queue: Optional[mp_queues.Queue] = None,
    **train_step_kwargs,
):
    # offset for current epoch (may be different from checkpoint offset)
    starting_offset = extra_state["batch_offset"]

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    stop_training_mid_epoch = False
    stop_training_end_of_epoch = False

    do_prune = args.pruning_percentile > 0
    if do_prune:
        prune_masks = create_prune_masks(args, trainer)
        apply_prune_masks(prune_masks, trainer)

    while lr > args.min_lr and extra_state["epoch"] <= max_epoch:
        """Train the model for one epoch."""

        itr, progress, extra_meters = setup_epoch(
            args=args, epoch_itr=epoch_itr, trainer=trainer
        )

        for i, samples in enumerate(progress, start=starting_offset):
            clear_per_step_extra_state(extra_state)
            extra_state["num_iterations"] = extra_state.get("num_iterations", 0) + 1
            if (
                train_step_kwargs is not None
                and "augment_adv" in train_step_kwargs.keys()
            ):
                train_step_kwargs["augment_adv"] = (
                    extra_state["num_iterations"] > args.warmup_steps
                )
            try:
                log_output = trainer.train_step(samples, **train_step_kwargs)
            # Fairseq's fp16_trainer raises this uncommon error to indicate
            # that we should stop training.
            except FloatingPointError as e:
                print(f"Stopping training due to: {e}.")
                stop_training_mid_epoch = True
                break

            if do_prune:
                apply_prune_masks(prune_masks, trainer)

            if i == starting_offset:
                # ignore the first mini-batch in words-per-second calculation
                trainer.get_meter("wps").reset()

            # Clear any remaining metrics from previous steps. This should already
            # have been done before, but just in case - to make sure we catch
            # any case where extra_case does not get populated correctly.
            extra_state = clear_per_step_extra_state(extra_state)
            extra_state["batch_offset"] = i + 1
            (
                extra_state,
                stop_training_mid_epoch,
                translation_samples,
            ) = evals.save_and_eval(
                args=args,
                trainer=trainer,
                task=task,
                extra_state=extra_state,
                checkpoint_manager=checkpoint_manager,
            )

            # This should come after save_and_eval. Even if log_output is None,
            # meaning that there was an overflow,  We should still run
            # save_and_eval to sync all_reduce and then skip the batch.
            if log_output is None:
                # This indicates that the batch was skipped, typically
                # because of OOM or FP16 overflow.
                continue

            train_stats = evals.log_mid_epoch_stats(
                trainer=trainer,
                progress=progress,
                extra_meters=extra_meters,
                log_output=log_output,
            )
            extra_state = update_output(
                args=args,
                extra_state=extra_state,
                output_queue=output_queue,
                num_updates=trainer.get_num_updates(),
                train_ppl=train_stats["ppl"],
                # We only report wps at the end of an epoch, since
                # the meter gets reset at the start of every epoch.
                wps=None,
            )

            if (
                args.save_interval_updates > 0
                and extra_state["num_iterations"] % args.save_interval_updates == 0
                and args.shrink_lr_no_best_bleu_eval > 0
                and extra_state["tune_bleu"]["num_since_best"]
                > args.shrink_lr_no_best_bleu_eval
            ):
                current_lr = trainer.optimizer.get_lr()
                trainer.optimizer.set_lr(current_lr * args.lr_shrink)
                lr = trainer.optimizer.get_lr()
                print(f"Decayed lr from {current_lr} to {lr}.")

            if stop_training_mid_epoch:
                break

        # log end-of-epoch stats
        train_stats = evals.log_end_epoch_stats(
            trainer=trainer, progress=progress, extra_meters=extra_meters
        )

        # batch_offset being None denotes the end of an epoch.
        extra_state["batch_offset"] = None
        (
            extra_state,
            stop_training_end_of_epoch,
            translation_samples,
        ) = evals.save_and_eval(
            args=args,
            trainer=trainer,
            task=task,
            extra_state=extra_state,
            end_of_epoch=True,
            checkpoint_manager=checkpoint_manager,
        )
        extra_state = update_output(
            args=args,
            extra_state=extra_state,
            output_queue=output_queue,
            num_updates=trainer.get_num_updates(),
            train_ppl=train_stats["ppl"],
            wps=train_stats["wps"],
        )

        if stop_training_mid_epoch or stop_training_end_of_epoch:
            break

        lr = trainer.lr_step(extra_state["epoch"], extra_state["tune_eval"]["loss"])
        extra_state["epoch"] += 1
        extra_state["batch_offset"] = 0
        starting_offset = 0

    train_meter.stop()
    print(f"| done training in {train_meter.sum:.1f} seconds")
    print(
        f"| Best BLEU score of {extra_state['tune_bleu']['best']} was from "
        f"epoch {extra_state['tune_bleu']['best_epoch']}"
    )
コード例 #27
0
ファイル: train.py プロジェクト: sdxshuai/fairseq-medical
def save_checkpoint(args, trainer, epoch_itr, val_loss):
    if args.no_save or not distributed_utils.is_master(args):
        return

    write_timer = StopwatchMeter()
    write_timer.start()

    epoch = epoch_itr.epoch
    end_of_epoch = epoch_itr.end_of_epoch()
    updates = trainer.get_num_updates()

    checkpoint_conds = collections.OrderedDict()
    checkpoint_conds['checkpoint{}.pt'.format(epoch)] = (
        end_of_epoch and not args.no_epoch_checkpoints
        and epoch % args.save_interval == 0)
    checkpoint_conds['checkpoint_{}_{}.pt'.format(
        epoch, updates)] = (not end_of_epoch and args.save_interval_updates > 0
                            and updates % args.save_interval_updates == 0)
    checkpoint_conds['checkpoint_best.pt'] = (
        val_loss is not None and (not hasattr(save_checkpoint, 'best')
                                  or val_loss < save_checkpoint.best))
    checkpoint_conds[
        'checkpoint_last.pt'] = True  # keep this last so that it's a symlink

    prev_best = getattr(save_checkpoint, 'best', val_loss)
    if val_loss is not None:
        save_checkpoint.best = min(val_loss, prev_best)
    extra_state = {
        'train_iterator': epoch_itr.state_dict(),
        'val_loss': val_loss,
    }
    if hasattr(save_checkpoint, 'best'):
        extra_state.update({'best': save_checkpoint.best})

    checkpoints = [
        os.path.join(args.save_dir, fn)
        for fn, cond in checkpoint_conds.items() if cond
    ]
    if len(checkpoints) > 0:
        trainer.save_checkpoint(checkpoints[0], extra_state)
        for cp in checkpoints[1:]:
            shutil.copyfile(checkpoints[0], cp)

        write_timer.stop()
        print(
            '| saved checkpoint {} (epoch {} @ {} updates) (writing took {} seconds)'
            .format(checkpoints[0], epoch, updates, write_timer.sum))

    if not end_of_epoch and args.keep_interval_updates > 0:
        # remove old checkpoints; checkpoints are sorted in descending order
        checkpoints = checkpoint_utils.checkpoint_paths(
            args.save_dir,
            pattern=r'checkpoint_\d+_(\d+)\.pt',
        )
        for old_chk in checkpoints[args.keep_interval_updates:]:
            if os.path.lexists(old_chk):
                os.remove(old_chk)

    if args.keep_last_epochs > 0:
        # remove old epoch checkpoints; checkpoints are sorted in descending order
        checkpoints = checkpoint_utils.checkpoint_paths(
            args.save_dir,
            pattern=r'checkpoint(\d+)\.pt',
        )
        for old_chk in checkpoints[args.keep_last_epochs:]:
            if os.path.lexists(old_chk):
                os.remove(old_chk)
コード例 #28
0
def main(args):
    if args.max_tokens is None:
        args.max_tokens = 6000
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load dataset splits
    load_dataset_splits(task, ['train', 'valid'])

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    print('| model {}, criterion {}'.format(args.arch,
                                            criterion.__class__.__name__))
    print('| num. model params: {}'.format(
        sum(p.numel() for p in model.parameters())))

    # Make a dummy batch to (i) warm the caching allocator and (ii) as a
    # placeholder DistributedDataParallel when there's an uneven number of
    # batches per worker.
    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        model.max_positions(),
    )
    dummy_batch = task.dataset('train').get_dummy_batch(
        args.max_tokens, max_positions)

    # Build trainer
    trainer = Trainer(args, task, model, criterion, dummy_batch)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    summary_writer = SummaryWriter(log_dir=args.save_dir,
                                   enable=args.distributed_rank == 0)

    # Initialize dataloader
    epoch_itr = task.get_batch_iterator(
        dataset=task.dataset(args.train_subset),
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=8,
        seed=args.seed,
        num_shards=args.distributed_world_size,
        shard_id=args.distributed_rank,
    )

    first_train = True
    # Load the latest checkpoint if one is available
    if not load_checkpoint(args, trainer, epoch_itr):
        trainer.dummy_train_step([dummy_batch])
        first_train = False

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_losses = [None]
    valid_subsets = args.valid_subset.split(',')

    if not hasattr(save_checkpoint, 'not_best'):
        save_checkpoint.not_best = 0

    if not args.no_first_valid and first_train:
        valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets,
                                True, summary_writer)

    if args.finetune_params != '':
        print("| train parameters.")
        for name, param in trainer.model.named_parameters():
            if trainer.should_train(name):
                print(name)

        print("| fixed parameters.")
        for name, param in trainer.model.named_parameters():
            if not trainer.should_train(name):
                print(name)

    if args.start_ckpt != '':
        save_checkpoint.not_best = 0
        save_checkpoint.best = 9999

    print("| train begin.")
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates(
    ) < max_update:
        # train for one epoch
        train(args, trainer, task, epoch_itr, summary_writer)

        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(
                args, trainer, task, epoch_itr, valid_subsets,
                epoch_itr.epoch % args.test_bleu_interval == 0, summary_writer)
            if args.early_stop > 0:
                if hasattr(save_checkpoint,
                           'best') and valid_losses[0] > save_checkpoint.best:
                    save_checkpoint.not_best += 1
                    print("| Not the best ckpt... not best:",
                          save_checkpoint.not_best)
                    if save_checkpoint.not_best > args.early_stop:
                        print("| Early stop...")
                        break
                else:
                    save_checkpoint.not_best = 0

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        # save checkpoint
        if epoch_itr.epoch % args.save_interval == 0:
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))
    os.system("ps aux | grep redis-server | awk '{print $2}' | xargs kill")

    if args.save_output:
        save_expert_outputs(args, task, trainer)
コード例 #29
0
def infer_onebyone(args, models, task, input):
    assert args.path is not None, '--path required for generation!'
    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert args.replace_unk is None or args.raw_text, \
        '--replace-unk requires a raw text dataset (--raw-text)'

    utils.import_user_module(args)

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu
    # Set dictionaries
    try:
        src_dict = getattr(task, 'source_dictionary', None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    input = ' '.join([i for i in input])
    src_tokens = tgt_dict.encode_line(input).type(torch.LongTensor)
    input_sample = {
        'id': torch.Tensor([0]),
        'nsentences': 1,
        'ntokens': len(src_tokens),
        'net_input': {
            'src_tokens': src_tokens.unsqueeze(0),
            'src_lengths': torch.tensor([len(src_tokens)]),
            'prev_output_tokens': torch.tensor([[tgt_dict.eos()]])
        },
        'target': src_tokens.unsqueeze(0),
    }

    # Load ensemble
    print('| loading model(s) from {}'.format(args.path))

    # Optimize ensemble for generation

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)

    # Initialize generator
    gen_timer = StopwatchMeter()
    generator = task.build_generator(args)

    # Generate and compute BLEU score
    if args.sacrebleu:
        scorer = bleu.SacrebleuScorer()
    else:
        scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
    num_sentences = 0
    has_target = True

    wps_meter = TimeMeter()

    sample = input_sample
    sample = utils.move_to_cuda(sample) if use_cuda else sample

    prefix_tokens = None
    if args.prefix_size > 0:
        prefix_tokens = sample['target'][:, :args.prefix_size]

    gen_timer.start()
    #pdb.set_trace()
    hypos = task.inference_step(generator, models, sample, prefix_tokens)
    num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
    gen_timer.stop(num_generated_tokens)

    for i, sample_id in enumerate(sample['id'].tolist()):
        has_target = sample['target'] is not None

        # Remove padding
        src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :],
                                     tgt_dict.pad())
        target_tokens = None
        if has_target:
            target_tokens = utils.strip_pad(sample['target'][i, :],
                                            tgt_dict.pad()).int().cpu()

        # Either retrieve the original sentences or regenerate them from tokens.
        if align_dict is not None:
            src_str = task.dataset(
                args.gen_subset).src.get_original_text(sample_id)
            target_str = task.dataset(
                args.gen_subset).tgt.get_original_text(sample_id)
        else:
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
            else:
                src_str = ""
            if has_target:
                target_str = tgt_dict.string(target_tokens,
                                             args.remove_bpe,
                                             escape_unk=True)

        if not args.quiet:
            if src_dict is not None:
                print('S-{}\t{}'.format(sample_id, src_str))
            if has_target:
                print('T-{}\t{}'.format(sample_id, target_str))

        # Process top predictions
        for j, hypo in enumerate(hypos[i][:args.nbest]):
            hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                hypo_tokens=hypo['tokens'].int().cpu(),
                src_str=src_str,
                alignment=hypo['alignment'],
                align_dict=align_dict,
                tgt_dict=tgt_dict,
                remove_bpe=args.remove_bpe,
            )

            if not args.quiet:
                output = ''.join(hypo_str.split(' '))
                print('H-{}\t{}\t{}'.format(sample_id, hypo['score'],
                                            hypo_str))
                print('P-{}\t{}'.format(
                    sample_id, ' '.join(
                        map(
                            lambda x: '{:.4f}'.format(x),
                            hypo['positional_scores'].tolist(),
                        ))))

                if args.print_alignment:
                    print('A-{}\t{}'.format(
                        sample_id, ' '.join([
                            '{}-{}'.format(src_idx, tgt_idx)
                            for src_idx, tgt_idx in alignment
                        ])))

                if args.print_step:
                    print('I-{}\t{}'.format(sample_id, hypo['steps']))

            # Score only the top hypothesis
            if has_target and j == 0:
                if align_dict is not None or args.remove_bpe is not None:
                    # Convert back to tokens for evaluation with unk replacement and/or without BPE
                    target_tokens = tgt_dict.encode_line(target_str,
                                                         add_if_not_exist=True)
                if hasattr(scorer, 'add_string'):
                    scorer.add_string(target_str, hypo_str)
                else:
                    scorer.add(target_tokens, hypo_tokens)

    wps_meter.update(num_generated_tokens)
    num_sentences += sample['nsentences']

    print(
        '| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'
        .format(num_sentences, gen_timer.n, gen_timer.sum,
                num_sentences / gen_timer.sum, 1. / gen_timer.avg))
    if has_target:
        print('| Generate {} with beam={}: {}'.format(args.gen_subset,
                                                      args.beam,
                                                      scorer.result_string()))

    return scorer, output
コード例 #30
0
def main(args):

    print(args)
    setup_logger(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    if args.distributed_world_size > 1:
        assert (torch.distributed.is_initialized())
        torch.distributed.broadcast(torch.tensor([1], device="cuda"), 0)
        torch.cuda.synchronize()
    if args.max_tokens is None:
        args.max_tokens = 6000
    pValue = ctypes.cast((ctypes.c_int * 1)(), ctypes.POINTER(ctypes.c_int))
    ctypes.CDLL('libcudart.so').cudaDeviceSetLimit(ctypes.c_int(0x05),
                                                   ctypes.c_int(128))
    ctypes.CDLL('libcudart.so').cudaDeviceGetLimit(pValue, ctypes.c_int(0x05))
    torch.manual_seed(args.seed)

    src_dict, tgt_dict = data_utils.load_dictionaries(args)
    add_extra_items_to_checkpoint({'src_dict': src_dict, 'tgt_dict': tgt_dict})
    datasets = load_dataset_splits(args, ['train', 'valid', 'test'], src_dict,
                                   tgt_dict)

    model = build_model(args)
    print('| num. model params: {}'.format(
        sum(p.numel() for p in model.parameters())))

    # Build trainer
    if torch.cuda.get_device_capability(0)[0] >= 7 and not args.amp:
        print('| NOTICE: your device may support faster training with --amp')
    trainer = DDPTrainer(args, model)
    print('| model {}, criterion {}'.format(
        args.arch, trainer.criterion.__class__.__name__))

    if (args.online_eval or args.target_bleu) and not args.remove_bpe:
        args.remove_bpe = '@@ '
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    epoch_itr = data.EpochBatchIterator(
        dataset=datasets[args.train_subset],
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences_valid,
        max_positions=args.max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=8,
        seed=args.seed,
        num_shards=args.distributed_world_size,
        shard_id=args.distributed_rank,
    )
    # Load the latest checkpoint if one is available
    load_checkpoint(args, trainer, epoch_itr)

    # Send a dummy batch to warm the caching allocator
    dummy_batch = data_utils.get_dummy_batch(args.max_tokens, src_dict,
                                             tgt_dict)
    trainer.dummy_train_step(dummy_batch)

    # Sanity check
    if args.do_sanity_check:
        print('Performing sanity check...')
        sanity_score = score(args, trainer, datasets['test'], src_dict,
                             tgt_dict, 'test.raw.de')
        DLLogger.log(step='SANITY_CHECK',
                     data={'sanity_check_score': sanity_score},
                     verbosity=1)

    # Train until the learning rate gets too small or model reaches target score
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    tgt_bleu = args.target_bleu or math.inf
    current_bleu = 0.0
    best_bleu = -1.0
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_losses = [None]
    valid_subsets = args.valid_subset.split(',')
    run_summary = {
        'loss': float('inf'),
        'val_loss': float('inf'),
        'speed': 0,
        'accuracy': 0
    }

    while lr >= args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates(
    ) < max_update and current_bleu < tgt_bleu:
        DLLogger.log(step=trainer.get_num_updates(),
                     data={'epoch': epoch_itr.epoch},
                     verbosity=0)
        # train for one epoch
        with torch.autograd.profiler.profile(enabled=args.profile,
                                             use_cuda=True) as prof:
            train(args, trainer, datasets, epoch_itr)
        if args.profile:
            print(prof.key_averages().table(sort_by="cuda_time_total"))
            if args.profiler_file:
                with open(os.path.join(args.save_dir, args.profiler_file),
                          'w') as f:
                    f.write(
                        prof.key_averages().table(sort_by="cuda_time_total"))
            exit(0)

        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, datasets, valid_subsets)
            valid_bleu = score(args, trainer, datasets[valid_subsets[0]],
                               src_dict, tgt_dict, 'valid.raw.de')
            DLLogger.log(step=trainer.get_num_updates(),
                         data={
                             'val_loss': valid_losses[0],
                             'val_bleu': valid_bleu
                         },
                         verbosity=1)

        # Eval BLEU score
        if args.online_eval or (not tgt_bleu is math.inf):
            current_bleu = score(args, trainer, datasets[args.gen_subset],
                                 src_dict, tgt_dict, 'test.raw.de')
            DLLogger.log(step=trainer.get_num_updates(),
                         data={'test_bleu': current_bleu},
                         verbosity=1)
            if current_bleu > best_bleu:
                best_bleu = current_bleu
                DLLogger.log(step='RUN', data={'BLEU': best_bleu}, verbosity=0)
                save_checkpoint(args, trainer, epoch_itr, valid_losses[0])

        if valid_losses[0] < run_summary['val_loss']:
            run_summary['val_loss'] = valid_losses[0]
            if best_bleu < 0:
                run_summary['accuracy'] = valid_bleu
            else:
                run_summary['accuracy'] = best_bleu
        run_summary['loss'] = valid_losses[0]
        run_summary['speed'] = trainer.throughput_meter.u_avg

        # Only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        # Save checkpoint
        if epoch_itr.epoch % args.save_interval == 0:
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])

    train_meter.stop()
    DLLogger.log(step=[], data=run_summary, verbosity=0)
    DLLogger.log(step='RUN', data={'walltime': train_meter.sum}, verbosity=0)
    print('| done training in {:.1f} seconds'.format(train_meter.sum))
コード例 #31
0
def main(args, init_distributed=False):
    utils.import_user_module(args)

    assert args.max_tokens is not None or args.max_sentences is not None, \
        'Must specify batch size either with --max-tokens or --max-sentences'

    # Initialize CUDA and distributed training
    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if init_distributed:
        args.distributed_rank = distributed_utils.distributed_init(args)

    if distributed_utils.is_master(args):
        checkpoint_utils.verify_checkpoint_directory(args.save_dir)

    # Print args
    logger.info(args)

    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)

    # Load valid dataset (we load training data below, based on the latest checkpoint)
    for valid_sub_split in args.valid_subset.split(','):
        task.load_dataset(valid_sub_split, combine=False, epoch=0)

    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
    logger.info(model)
    logger.info('model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
    logger.info('num. model params: {} (num. trained: {})'.format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    ))

    # Build trainer
    trainer = Trainer(args, task, model, criterion)
    logger.info('training on {} GPUs'.format(args.distributed_world_size))
    logger.info('max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer)

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    valid_subsets = args.valid_subset.split(',')

    print(args.multi_views)

    while (
        lr > args.min_lr
        and (
            epoch_itr.epoch < max_epoch
            # allow resuming training from the final checkpoint
            or epoch_itr._next_epoch_itr is not None
        )
        and trainer.get_num_updates() < max_update
    ):
        

        # train for one epoch
        train(args, trainer, task, epoch_itr)

        if not args.disable_validation and epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
        else:
            valid_losses = [None]

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])

        
        
        bart = BARTHubInterface(args, task, trainer.model).cuda()
        #print(bart.device)
        bart.eval()
        count = 1
        bsz = 8


        print("Test on val set: ")
        

        with open('../data/val_sent_trans_cons_label.source') as source, open('../data/val_sent_c99_label.source') as source2, open('./val_best_multi_attn_'+str(args.lr_weight)+'_.hypo', 'wt', encoding='utf-8') as fout:
            s1 = source.readlines()
            s2 = source2.readlines()
            
            slines = [s1[0].strip()]
            slines2 = [s2[0].strip()]
            
            for i in tqdm(range(1, len(s1))):
                if count % bsz == 0:
                    with torch.no_grad():
                        if args.multi_views:
                            hypotheses_batch = bart.sample(slines, sentences2 = slines2, balance = True, beam=4, lenpen=2.0, max_len_b=100, min_len=5, no_repeat_ngram_size=3)
                        else:
                            hypotheses_batch = bart.sample(slines, beam=4, lenpen=2.0, max_len_b=100, min_len=5, no_repeat_ngram_size=3)
                    for hypothesis in hypotheses_batch:
                        fout.write(hypothesis + '\n')
                        fout.flush()
                    slines = []
                    slines2 = []
                
                slines.append(s1[i].strip())
                slines2.append(s2[i].strip())
            
                count += 1
                
            if slines != []:
                if args.multi_views:
                    hypotheses_batch = bart.sample(slines, sentences2 = slines2, balance = True, beam=4, lenpen=2.0, max_len_b=100, min_len=5, no_repeat_ngram_size=3)
                else:
                    hypotheses_batch = bart.sample(slines, beam=4, lenpen=2.0, max_len_b=100, min_len=5, no_repeat_ngram_size=3)
                #hypotheses_batch = bart.sample(slines, sentences2 = slines2, balance = True, beam=4, lenpen=2.0, max_len_b=100, min_len=5, no_repeat_ngram_size=3)
                for hypothesis in hypotheses_batch:
                    fout.write(hypothesis + '\n')
                    fout.flush()
        hyp_path = './val_best_multi_attn_'+str(args.lr_weight)+'_.hypo'
        ref_path = '../data/val_sent_trans_cons_label.target'
        hypothesis = []
        with open(hyp_path, 'r') as f:
            lines = f.readlines()
            for l in lines:
                hypothesis.append(l[:-1])
        
        reference = []
        with open(ref_path, 'r') as f:
            lines = f.readlines()
            for l in lines:
                reference.append(l[:-1])

        rouge = Rouge()
        print("Val", rouge.get_scores(hypothesis, reference, avg = True))
        

        # save checkpoint
        if epoch_itr.epoch % args.save_interval == 0:
            checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
        
        
        print("Test on testing set: ")

        count = 1
        bsz = 8
        with open('../data/test_sent_trans_cons_label.source') as source, open('../data/test_sent_c99_label.source') as source2, open('./test_best_multi_attn_'+str(args.lr_weight)+'_.hypo', 'wt', encoding='utf-8') as fout:
            s1 = source.readlines()
            s2 = source2.readlines()
            
            slines = [s1[0].strip()]
            slines2 = [s2[0].strip()]
            
            for i in tqdm(range(1, len(s1))):
                if count % bsz == 0:
                    with torch.no_grad():
                        if args.multi_views:
                            hypotheses_batch = bart.sample(slines, sentences2 = slines2, balance = True, beam=4, lenpen=2.0, max_len_b=100, min_len=5, no_repeat_ngram_size=3)
                        else:
                            hypotheses_batch = bart.sample(slines, beam=4, lenpen=2.0, max_len_b=100, min_len=5, no_repeat_ngram_size=3)
                    for hypothesis in hypotheses_batch:
                        fout.write(hypothesis + '\n')
                        fout.flush()
                    slines = []
                    slines2 = []
                
                slines.append(s1[i].strip())
                slines2.append(s2[i].strip())
            
                count += 1
                
            if slines != []:
                if args.multi_views:
                    hypotheses_batch = bart.sample(slines, sentences2 = slines2, balance = True, beam=4, lenpen=2.0, max_len_b=100, min_len=5, no_repeat_ngram_size=3)
                else:
                    hypotheses_batch = bart.sample(slines, beam=4, lenpen=2.0, max_len_b=100, min_len=5, no_repeat_ngram_size=3)
                
                for hypothesis in hypotheses_batch:
                    fout.write(hypothesis + '\n')
                    fout.flush()
        hyp_path = './test_best_multi_attn_'+str(args.lr_weight)+'_.hypo'
        ref_path = '../data/test_sent_trans_cons_label.target'
        hypothesis = []
        with open(hyp_path, 'r') as f:
            lines = f.readlines()
            for l in lines:
                hypothesis.append(l[:-1])
        
        reference = []
        with open(ref_path, 'r') as f:
            lines = f.readlines()
            for l in lines:
                reference.append(l[:-1])

        rouge = Rouge()
        print('Test', rouge.get_scores(hypothesis, reference, avg = True))
        

        # early stop
        if should_stop_early(args, valid_losses[0]):
            logger.info('early stop since valid performance hasn\'t improved for last {} runs'.format(args.patience))
            break

        epoch_itr = trainer.get_train_iterator(
            epoch_itr.epoch,
            # sharded data: get train iterator for next epoch
            load_dataset=(os.pathsep in getattr(args, 'data', '')),
        )
    train_meter.stop()
    logger.info('done training in {:.1f} seconds'.format(train_meter.sum))
コード例 #32
0
ファイル: train.py プロジェクト: ahiroto/ParlAI
def main():
    parser = options.get_parser('Trainer')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--max-tokens', default=6000, type=int, metavar='N',
                              help='maximum number of tokens in a batch')
    dataset_args.add_argument('--max-sentences', type=int, metavar='N',
                              help='maximum number of sentences in a batch')
    dataset_args.add_argument('--train-subset', default='train', metavar='SPLIT',
                              choices=['train', 'valid', 'test'],
                              help='data subset to use for training (train, valid, test)')
    dataset_args.add_argument('--valid-subset', default='valid', metavar='SPLIT',
                              help='comma separated list of data subsets '
                                   ' to use for validation (train, valid, valid1,test, test1)')
    options.add_optimization_args(parser)
    options.add_checkpoint_args(parser)
    options.add_model_args(parser)

    args = utils.parse_args_and_arch(parser)

    if args.no_progress_bar and args.log_format is None:
        args.log_format = 'simple'

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    torch.manual_seed(args.seed)

    # Load dataset
    splits = ['train', 'valid']
    if data.has_binary_files(args.data, splits):
        dataset = data.load_dataset(args.data, splits, args.source_lang, args.target_lang)
    else:
        dataset = data.load_raw_text_dataset(args.data, splits, args.source_lang, args.target_lang)
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.source_lang, args.target_lang = dataset.src, dataset.dst

    print(args)
    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
    for split in splits:
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    num_gpus = torch.cuda.device_count()

    print('| using {} GPUs (with max tokens per GPU = {} and max sentences per GPU = {})'.format(
        num_gpus, args.max_tokens, args.max_sentences))

    # Build model and criterion
    model = utils.build_model(args, dataset.src_dict, dataset.dst_dict)
    criterion = utils.build_criterion(args, dataset.src_dict, dataset.dst_dict)
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))

    # The max number of positions can be different for train and valid
    # e.g., RNNs may support more positions at test time than seen in training
    max_positions_train = (args.max_source_positions, args.max_target_positions)
    max_positions_valid = (
        min(args.max_source_positions, model.max_encoder_positions()),
        min(args.max_target_positions, model.max_decoder_positions())
    )

    # Start multiprocessing
    trainer = MultiprocessingTrainer(args, model, criterion)

    # Load the latest checkpoint if one is available
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    extra_state = trainer.load_checkpoint(checkpoint_path)
    if extra_state is not None:
        epoch = extra_state['epoch']
        batch_offset = extra_state['batch_offset']
        print('| loaded checkpoint {} (epoch {})'.format(checkpoint_path, epoch))
        if batch_offset == 0:
            epoch += 1
    else:
        epoch, batch_offset = 1, 0

    # Train until the learning rate gets too small
    val_loss = None
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch:
        # train for one epoch
        train(args, epoch, batch_offset, trainer, dataset, max_positions_train, num_gpus)

        # evaluate on validate set
        for k, subset in enumerate(args.valid_subset.split(',')):
            val_loss = validate(args, epoch, trainer, dataset, max_positions_valid, subset, num_gpus)
            if k == 0:
                if not args.no_save:
                    # save checkpoint
                    save_checkpoint(trainer, args, epoch, 0, val_loss)
                # only use first validation loss to update the learning schedule
                lr = trainer.lr_step(val_loss, epoch)

        epoch += 1
        batch_offset = 0
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))

    # Stop multiprocessing
    trainer.stop()