コード例 #1
0
def range_search_preassigned(index_ivf, x, radius, list_nos, coarse_dis=None):
    """
    Perform a range search in the IVF index, with predefined lists to search into
    """
    n, d = x.shape
    if isinstance(index_ivf, faiss.IndexBinaryIVF):
        d *= 8
        dis_type = "int32"
    else:
        dis_type = "float32"

    # the coarse distances are used in IVFPQ with L2 distance and by_residual=True
    # otherwise we provide dummy coarse_dis
    if coarse_dis is None:
        coarse_dis = np.empty((n, index_ivf.nprobe), dtype=dis_type)
    else:
        assert coarse_dis.shape == (n, index_ivf.nprobe)

    assert d == index_ivf.d
    assert list_nos.shape == (n, index_ivf.nprobe)

    res = faiss.RangeSearchResult(n)
    sp = faiss.swig_ptr

    index_ivf.range_search_preassigned(
        n, sp(x), radius,
        sp(list_nos), sp(coarse_dis),
        res
    )
    # get pointers and copy them
    lims = faiss.rev_swig_ptr(res.lims, n + 1).copy()
    num_results = int(lims[-1])
    dist = faiss.rev_swig_ptr(res.distances, num_results).copy()
    indices = faiss.rev_swig_ptr(res.labels, num_results).copy()
    return lims, dist, indices
コード例 #2
0
    def torch_replacement_range_search(self, x, thresh):
        if type(x) is np.ndarray:
            # Forward to faiss __init__.py base method
            return self.range_search_numpy(x, thresh)

        assert type(x) is torch.Tensor
        n, d = x.shape
        assert d == self.d
        x_ptr = swig_ptr_from_FloatTensor(x)

        assert not x.is_cuda, 'Range search using GPU tensor not yet implemented'
        assert not hasattr(
            self, 'getDevice'), 'Range search on GPU index not yet implemented'

        res = faiss.RangeSearchResult(n)
        self.range_search_c(n, x_ptr, thresh, res)

        # get pointers and copy them
        # FIXME: no rev_swig_ptr equivalent for torch.Tensor, just convert
        # np to torch
        # NOTE: torch does not support np.uint64, just np.int64
        lims = torch.from_numpy(
            faiss.rev_swig_ptr(res.lims, n + 1).copy().astype('int64'))
        nd = int(lims[-1])
        D = torch.from_numpy(faiss.rev_swig_ptr(res.distances, nd).copy())
        I = torch.from_numpy(faiss.rev_swig_ptr(res.labels, nd).copy())

        return lims, D, I
コード例 #3
0
ファイル: combined_index.py プロジェクト: zz198808/milvus
    def ivf_range_search_preassigned(self, xq, list_nos, coarse_dis, radius):
        index_ivf = faiss.extract_index_ivf(self.index)
        n, d = xq.shape
        assert d == index_ivf.d
        n2, d2 = list_nos.shape
        assert list_nos.shape == coarse_dis.shape
        assert n2 == n
        assert d2 == index_ivf.nprobe
        res = faiss.RangeSearchResult(n)

        index_ivf.range_search_preassigned(n, faiss.swig_ptr(xq), radius,
                                           faiss.swig_ptr(list_nos),
                                           faiss.swig_ptr(coarse_dis), res)

        lims = faiss.rev_swig_ptr(res.lims, n + 1).copy()
        nd = int(lims[-1])
        D = faiss.rev_swig_ptr(res.distances, nd).copy()
        I = faiss.rev_swig_ptr(res.labels, nd).copy()
        return lims, D, I