コード例 #1
0
def search_knn(xq, xb, k, distance_type=faiss.METRIC_L2):
    """ wrapper around the faiss knn functions without index """
    nq, d = xq.shape
    nb, d2 = xb.shape
    assert d == d2

    I = np.empty((nq, k), dtype='int64')
    D = np.empty((nq, k), dtype='float32')

    if distance_type == faiss.METRIC_L2:
        heaps = faiss.float_maxheap_array_t()
        heaps.k = k
        heaps.nh = nq
        heaps.val = faiss.swig_ptr(D)
        heaps.ids = faiss.swig_ptr(I)
        faiss.knn_L2sqr(faiss.swig_ptr(xq), faiss.swig_ptr(xb), d, nq, nb,
                        heaps)
    elif distance_type == faiss.METRIC_INNER_PRODUCT:
        heaps = faiss.float_minheap_array_t()
        heaps.k = k
        heaps.nh = nq
        heaps.val = faiss.swig_ptr(D)
        heaps.ids = faiss.swig_ptr(I)
        faiss.knn_inner_product(faiss.swig_ptr(xq), faiss.swig_ptr(xb), d, nq,
                                nb, heaps)
    return D, I
コード例 #2
0
ファイル: embeddings.py プロジェクト: MattesR/sentence-bert
 def __init__(self, nq, k):
     " nq: number of query vectors, k: number of results per query "
     self.I = np.zeros((nq, k), dtype='int64')
     self.D = np.zeros((nq, k), dtype='float32')
     self.nq, self.k = nq, k
     #  changed to minheap from maxheap. The reason is that using cosine-similarity, the most similar (e.g. closest)
     #  vectors have a score of 1, whereas with distances the closest score is 0.
     heaps = faiss.float_minheap_array_t()
     heaps.k = k
     heaps.nh = nq
     heaps.val = faiss.swig_ptr(self.D)
     heaps.ids = faiss.swig_ptr(self.I)
     heaps.heapify()
     self.heaps = heaps