def do_classification(sleep_time, n_classes): output = classification(G["frame"], sleep_time, n_classes) np.copyto(G["output_classification"], output)
def process(frame, base_sleep_time, n_classes): rs1 = segmentation1(frame, base_sleep_time * 0.03) rs2 = segmentation2(frame, base_sleep_time * 0.04) rs3 = classification(frame, base_sleep_time * 0.05, n_classes) return rs1, rs2, rs3
def process(self, x): return classification(x, self.sleep_time, self.n_classes)
def class_target(x): return classification(x, 0.05 * g_dict["coef"], g_dict["n_classes"])
def class_target(x): return classification(x, 0.05 * coef, n_classes)