def query_doc_sim(): category = request.form['category'] in_type = request.form['type'] if in_type == 'doc': f1 = request.files['text1'] f2 = request.files['text2'] if save_file(f1) and save_file(f2): f_text1 = read_file(f1) f_text2 = read_file(f2) else: f_text1 = request.form['text1'].encode('utf-8').strip() f_text2 = request.form['text2'].encode('utf-8').strip() inference_engine_wrapper = InferenceEngineWrapper(get_model_dir(category), get_lda_conf(), get_emb_file(category)) doc1_seg = inference_engine_wrapper.tokenize(f_text1) doc2_seg = inference_engine_wrapper.tokenize(f_text2) distances = inference_engine_wrapper.cal_query_doc_similarity( doc1_seg, doc2_seg) return json.dumps( { "LDA Similarity": distances[0], "TWE Similarity": distances[1] }, ensure_ascii=False)
import sys from familia_wrapper import InferenceEngineWrapper if sys.version_info < (3, 0): input = raw_input if __name__ == '__main__': if len(sys.argv) < 4: sys.stderr.write("Usage:python {} {} {} {}.\n".format( sys.argv[0], "model_dir", "conf_file", "emb_file")) exit(-1) # 获取参数 model_dir = sys.argv[1] conf_file = sys.argv[2] emb_file = sys.argv[3] # 创建InferenceEngineWrapper对象 inference_engine_wrapper = InferenceEngineWrapper(model_dir, conf_file, emb_file) while True: # 输入短文本和长文本 query = input("Enter Query: ").strip() doc = input("Enter Document: ").strip() query_seg = inference_engine_wrapper.tokenize(query) doc_seg = inference_engine_wrapper.tokenize(doc) distances = inference_engine_wrapper.cal_query_doc_similarity( query_seg, doc_seg) # 打印结果 print("LDA Similarity = {}".format(distances[0])) print("TWE similarity = {}".format(distances[1]))
# found in the LICENSE file. # # Author: [email protected] import sys from familia_wrapper import InferenceEngineWrapper if sys.version_info < (3,0): input = raw_input if __name__ == '__main__': if len(sys.argv) < 4: sys.stderr.write("Usage:python {} {} {} {}.\n".format( sys.argv[0], "model_dir", "conf_file", "emb_file")) exit(-1) # 获取参数 model_dir = sys.argv[1] conf_file = sys.argv[2] emb_file = sys.argv[3] # 创建InferenceEngineWrapper对象 inference_engine_wrapper = InferenceEngineWrapper(model_dir, conf_file, emb_file) while True: # 输入短文本和长文本 query = input("Enter Query: ").strip() doc = input("Enter Document: ").strip() distances = inference_engine_wrapper.cal_query_doc_similarity(query, doc) # 打印结果 print("LDA Similarity = {}".format(distances[0])) print("TWE similarity = {}".format(distances[1]))