def test_check_event_fiduciality(): fid_dimensions = VolumeDim(z_min=10. * units.mm, z_max=90. * units.mm, rad=90. * units.mm) min_VetoE = 8. * units.keV # Check 1: All voxels inside the fiducial volume Voxels = [ Voxel(x=20., y=20., z=20., E=5. * units.keV, size=(10., 10., 10.)), Voxel(x=30., y=30., z=50., E=10. * units.keV, size=(10., 10., 10.)), Voxel(x=40., y=30., z=80., E=20. * units.keV, size=(10., 10., 10.)) ] minZ, maxZ, maxRad = 20., 80., 50. vetoE = 0. fiducial = True assert (minZ, maxZ, maxRad, vetoE, fiducial) == \ check_event_fiduciality(Voxels, fid_dimensions, min_VetoE) # Check 2: Energy in veto lower than threshold Voxels = [ Voxel(x=20., y=20., z=5., E=5. * units.keV, size=(10., 10., 10.)), Voxel(x=30., y=30., z=50., E=10. * units.keV, size=(10., 10., 10.)), Voxel(x=40., y=30., z=80., E=20. * units.keV, size=(10., 10., 10.)) ] minZ, maxZ, maxRad = 5., 80., 50. vetoE = 5. * units.keV fiducial = True assert (minZ, maxZ, maxRad, vetoE, fiducial) == \ check_event_fiduciality(Voxels, fid_dimensions, min_VetoE) # Check 3: Energy in veto higher than threshold Voxels = [ Voxel(x=20., y=20., z=20., E=5. * units.keV, size=(10., 10., 10.)), Voxel(x=30., y=30., z=50., E=10. * units.keV, size=(10., 10., 10.)), Voxel(x=40., y=30., z=95., E=20. * units.keV, size=(10., 10., 10.)) ] minZ, maxZ, maxRad = 20., 95., 50. vetoE = 20. * units.keV fiducial = False assert (minZ, maxZ, maxRad, vetoE, fiducial) == \ check_event_fiduciality(Voxels, fid_dimensions, min_VetoE)
hit for hit in active_smHits if hit.Z < ACTIVE_ZMAX ] # Voxelizing using the active_smHits ... event_voxels = voxelize_hits(active_smHits, voxel_size, strict_voxel_size=True) eff_voxel_size = event_voxels[0].size # Storing voxels info for voxel in event_voxels: extend_voxels_reco_data(voxels_dict, event_number, voxel) # Check fiduciality voxels_minZ, voxels_maxZ, voxels_maxRad, veto_energy, fiducial_filter = \ check_event_fiduciality(event_voxels, FID_minZ, FID_maxZ, FID_maxRAD, MIN_VETO_ENERGY) # Storing data of NON smE_filter vents extend_events_reco_data(events_dict, event_number, evt_num_MChits=num_hits, evt_mcE=event_mcE, evt_smE=event_smE, evt_smE_filter=event_smE_filter, evt_num_voxels=len(event_voxels), evt_voxel_sizeX=eff_voxel_size[0], evt_voxel_sizeY=eff_voxel_size[1], evt_voxel_sizeZ=eff_voxel_size[2], evt_voxels_minZ=voxels_minZ, evt_voxels_maxZ=voxels_maxZ, evt_voxels_maxRad=voxels_maxRad,
def test_check_event_fiduciality(): ### General data for checks of assymetric detectors detname = DetName.next100 veto_width = 20. * units.mm min_VetoE = 3. * units.keV # Check 1: All voxels inside the fiducial volume voxels = [ Voxel(x=20., y=20., z=30., E=5. * units.keV, size=(10., 10., 10.)), Voxel(x=30., y=30., z=150., E=10. * units.keV, size=(10., 10., 10.)), Voxel(x=40., y=30., z=80., E=20. * units.keV, size=(10., 10., 10.)) ] minZ, maxZ, maxRad = 30., 150., 50. vetoE = 0. fiducial = True assert (minZ, maxZ, maxRad, vetoE, fiducial) == \ check_event_fiduciality(detname, veto_width, min_VetoE, voxels) # Check 2: Energy in veto lower than threshold voxels = [ Voxel(x=20., y=20., z=5., E=1. * units.keV, size=(10., 10., 10.)), Voxel(x=30., y=30., z=150., E=10. * units.keV, size=(10., 10., 10.)), Voxel(x=40., y=30., z=80., E=20. * units.keV, size=(10., 10., 10.)) ] minZ, maxZ, maxRad = 5., 150., 50. vetoE = 1. * units.keV fiducial = True assert (minZ, maxZ, maxRad, vetoE, fiducial) == \ check_event_fiduciality(detname, veto_width, min_VetoE, voxels) # Check 3: Energy in veto higher than threshold voxels = [ Voxel(x=20., y=20., z=5., E=17. * units.keV, size=(10., 10., 10.)), Voxel(x=30., y=30., z=50., E=10. * units.keV, size=(10., 10., 10.)), Voxel(x=40., y=30., z=95., E=20. * units.keV, size=(10., 10., 10.)) ] minZ, maxZ, maxRad = 5., 95., 50. vetoE = 17. * units.keV fiducial = False assert (minZ, maxZ, maxRad, vetoE, fiducial) == \ check_event_fiduciality(detname, veto_width, min_VetoE, voxels) ### General data for checks of assymetric detectors detname = DetName.next500 veto_width = 20. * units.mm min_VetoE = 3. * units.keV # Check 4: All voxels inside the fiducial volume voxels = [ Voxel(x=-200., y=100., z=-30., E=5. * units.keV, size=(10., 10., 10.)), Voxel(x=0., y=500., z=150., E=10. * units.keV, size=(10., 10., 10.)), Voxel(x=40., y=130., z=80., E=20. * units.keV, size=(10., 10., 10.)) ] minZ, maxZ, maxRad = -30., 150., 500. vetoE = 0. fiducial = True assert (minZ, maxZ, maxRad, vetoE, fiducial) == \ check_event_fiduciality(detname, veto_width, min_VetoE, voxels) # Check 5: Energy in central veto higher than threshold voxels = [ Voxel(x=120., y=220., z=-5., E=17. * units.keV, size=(10., 10., 10.)), Voxel(x=-30., y=-30., z=180., E=10. * units.keV, size=(10., 10., 10.)), Voxel(x=0., y=500., z=-95., E=20. * units.keV, size=(10., 10., 10.)) ] minZ, maxZ, maxRad = -95., 180., 500. vetoE = 17. * units.keV fiducial = False assert (minZ, maxZ, maxRad, vetoE, fiducial) == \ check_event_fiduciality(detname, veto_width, min_VetoE, voxels)
def fanal_reco(det_name, # Detector name: 'new', 'next100', 'next500' event_type, # Event type: 'bb0nu', 'Tl208', 'Bi214' fwhm, # FWHM at Qbb e_min, # Minimum smeared energy for energy filtering e_max, # Maximum smeared energy for energy filtering voxel_size, # Voxel size (x, y, z) voxel_Eth, # Voxel energy threshold veto_width, # Veto width for fiducial filtering min_veto_e, # Minimum energy in veto for fiducial filtering files_in, # Input files event_range, # Range of events to analyze: all, ... ?? file_out, # Output file compression, # Compression of output file: 'ZLIB1', 'ZLIB4', # 'ZLIB5', 'ZLIB9', 'BLOSC5', 'BLZ4HC5' verbosity_level): ### LOGGER logger = get_logger('FanalReco', verbosity_level) ### DETECTOR NAME & its ACTIVE dimensions det_name = getattr(DetName, det_name) ACTIVE_dimensions = get_active_size(det_name) fid_dimensions = get_fiducial_size(det_name, veto_width) ### RECONSTRUCTION DATA # Smearing energy settings fwhm_Qbb = fwhm * Qbb sigma_Qbb = fwhm_Qbb / 2.355 assert e_max > e_min, 'SmE_filter settings not valid. e_max must be higher than e_min.' ### PRINTING GENERAL INFO print('\n***********************************************************************************') print('***** Detector: {}'.format(det_name.name)) print('***** Reconstructing {} events'.format(event_type)) print('***** Energy Resolution: {:.2f}% fwhm at Qbb'.format(fwhm / units.perCent)) print('***** Voxel Size: ({}, {}, {}) mm'.format(voxel_size[0] / units.mm, voxel_size[1] / units.mm, voxel_size[2] / units.mm)) print('***********************************************************************************\n') print('* Sigma at Qbb: {:.3f} keV.\n'.format(sigma_Qbb / units.keV)) print('* Voxel_size: ({}, {}, {}) mm'.format(voxel_size[0] / units.mm, voxel_size[1] / units.mm, voxel_size[2] / units.mm)) print(' Voxel Eth: {:4.1f} keV\n'.format(voxel_Eth/units.keV)) print('* Detector-Active dimensions [mm]: Zmin: {:7.1f} Zmax: {:7.1f} Rmax: {:7.1f}' .format(ACTIVE_dimensions.z_min, ACTIVE_dimensions.z_max, ACTIVE_dimensions.rad)) print(' ... fiducial limits [mm]: Zmin: {:7.1f} Zmax: {:7.1f} Rmax: {:7.1f}\n' .format(fid_dimensions.z_min, fid_dimensions.z_max, fid_dimensions.rad)) print('* {0} {1} input files:'.format(len(files_in), event_type)) for iFileName in files_in: print(' ', iFileName) ### OUTPUT FILE, ITS GROUPS & ATTRIBUTES # Output file oFile = tb.open_file(file_out, 'w', filters = tbl_filters(compression)) # Reco group Name reco_group_name = get_reco_group_name(fwhm/units.perCent, voxel_size) oFile.create_group('/', 'FANALIC') oFile.create_group('/FANALIC', reco_group_name[9:]) print('\n* Output file name:', file_out) print(' Reco group name: {}\n'.format(reco_group_name)) # Attributes oFile.set_node_attr(reco_group_name, 'input_sim_files', files_in) oFile.set_node_attr(reco_group_name, 'event_type', event_type) oFile.set_node_attr(reco_group_name, 'energy_resolution', fwhm/units.perCent) oFile.set_node_attr(reco_group_name, 'voxel_sizeX', voxel_size[0]) oFile.set_node_attr(reco_group_name, 'voxel_sizeY', voxel_size[1]) oFile.set_node_attr(reco_group_name, 'voxel_sizeZ', voxel_size[2]) oFile.set_node_attr(reco_group_name, 'voxel_Eth', voxel_Eth) oFile.set_node_attr(reco_group_name, 'smE_filter_Emin', e_min) oFile.set_node_attr(reco_group_name, 'smE_filter_Emax', e_max) oFile.set_node_attr(reco_group_name, 'fiducial_filter_VetoWidth', veto_width) oFile.set_node_attr(reco_group_name, 'fiducial_filter_MinVetoE', min_veto_e) ### DATA TO STORE # Event counters simulated_events = 0 stored_events = 0 analyzed_events = 0 toUpdate_events = 1 # Dictionaries for events & voxels data events_dict = get_events_reco_dict() voxels_dict = get_voxels_reco_dict() ### RECONSTRUCTION PROCEDURE # Looping through all the input files for iFileName in files_in: # Updating simulated and stored event counters configuration_df = pd.read_hdf(iFileName, '/MC/configuration', mode='r') simulated_events += int(configuration_df[configuration_df.param_key == 'num_events'].param_value) stored_events += int(configuration_df[configuration_df.param_key == 'saved_events'].param_value) # Getting event numbers file_extents = pd.read_hdf(iFileName, '/MC/extents', mode='r') file_event_numbers = file_extents.evt_number print('* Processing {0} ({1} events) ...'.format(iFileName, len(file_event_numbers))) # Getting mc hits file_mcHits = load_mc_hits(iFileName) # Looping through all the events in iFile for event_number in file_event_numbers: # Updating counter of analyzed events analyzed_events += 1 logger.info('Reconstructing event Id: {0} ...'.format(event_number)) # Getting event data event_data = get_event_reco_data() event_data['event_id'] = event_number event_mcHits = file_mcHits.loc[event_number, :] active_mcHits = event_mcHits[event_mcHits.label == 'ACTIVE'].copy() event_data['num_MCparts'] = get_num_mc_particles(file_extents, event_number) event_data['num_MChits'] = len(active_mcHits) # The event mc energy is the sum of the energy of all the hits except # for Bi214 events, in which the number of S1 in the event is considered if (event_type == 'Bi214'): event_data['mcE'] = get_mc_energy(active_mcHits) else: event_data['mcE'] = active_mcHits.E.sum() # Smearing the event energy event_data['smE'] = smear_evt_energy(event_data['mcE'], sigma_Qbb, Qbb) # Applying the smE filter event_data['smE_filter'] = (e_min <= event_data['smE'] <= e_max) # Verbosing logger.info(' Num mcHits: {0:3} mcE: {1:.1f} keV smE: {2:.1f} keV smE_filter: {3}' \ .format(event_data['num_MChits'], event_data['mcE']/units.keV, event_data['smE']/units.keV, event_data['smE_filter'])) # For those events passing the smE filter: if event_data['smE_filter']: # Smearing hit energies smearing_factor = event_data['smE'] / event_data['mcE'] active_mcHits['smE'] = active_mcHits['E'] * smearing_factor # Translating hit Z positions from delayed hits translate_hit_positions(det_name, active_mcHits, DRIFT_VELOCITY) # Creating the IChits with the smeared energies and translated Z positions # to be passed to paolina functions #IChits = [] #for i, hit in active_mcHits[active_mcHits.shifted_z < ACTIVE_dimensions.z_max].iterrows(): # IChit = MCHit((hit.x, hit.y, hit.shifted_z), hit.time, hit.smE, 'ACTIVE') # IChits.append(IChit) IChits = active_mcHits[(active_mcHits.shifted_z < ACTIVE_dimensions.z_max) & (active_mcHits.shifted_z > ACTIVE_dimensions.z_min)] \ .apply(lambda hit: MCHit((hit.x, hit.y, hit.shifted_z), hit.time, hit.smE, 'ACTIVE'), axis=1).tolist() # Voxelizing using the IChits ... event_voxels = voxelize_hits(IChits, voxel_size, strict_voxel_size=False) event_data['num_voxels'] = len(event_voxels) eff_voxel_size = event_voxels[0].size event_data['voxel_sizeX'] = eff_voxel_size[0] event_data['voxel_sizeY'] = eff_voxel_size[1] event_data['voxel_sizeZ'] = eff_voxel_size[2] # Storing voxels info for voxel_id in range(len(event_voxels)): extend_voxels_reco_dict(voxels_dict, event_number, voxel_id, event_voxels[voxel_id], voxel_Eth) # Check fiduciality event_data['voxels_minZ'], event_data['voxels_maxZ'], \ event_data['voxels_maxRad'], event_data['veto_energy'], \ event_data['fid_filter'] = \ check_event_fiduciality(det_name, veto_width, min_veto_e, event_voxels) # Verbosing logger.info(' NumVoxels: {:3} minZ: {:.1f} mm maxZ: {:.1f} mm maxR: {:.1f} mm veto_E: {:.1f} keV fid_filter: {}' \ .format(event_data['num_voxels'], event_data['voxels_minZ'], event_data['voxels_maxZ'], event_data['voxels_maxRad'], event_data['veto_energy'] / units.keV, event_data['fid_filter'])) for voxel in event_voxels: logger.debug(' Voxel pos: ({:5.1f}, {:5.1f}, {:5.1f}) mm E: {:5.1f} keV'\ .format(voxel.X/units.mm, voxel.Y/units.mm, voxel.Z/units.mm, voxel.E/units.keV)) # Storing event_data extend_events_reco_dict(events_dict, event_data) # Verbosing if (not(analyzed_events % toUpdate_events)): print('* Num analyzed events: {}'.format(analyzed_events)) if (analyzed_events == (10 * toUpdate_events)): toUpdate_events *= 10 ### STORING RECONSTRUCTION DATA # Storing events and voxels dataframes print('\n* Storing data in the output file: {}'.format(file_out)) store_events_reco_dict(file_out, reco_group_name, events_dict) store_voxels_reco_dict(file_out, reco_group_name, voxels_dict) # Storing event counters as attributes smE_filter_events = sum(events_dict['smE_filter']) fid_filter_events = sum(events_dict['fid_filter']) store_events_reco_counters(oFile, reco_group_name, simulated_events, stored_events, smE_filter_events, fid_filter_events) oFile.close() print('* Reconstruction done !!\n') # Printing reconstruction numbers print('* Event counters ...') print(''' Simulated events: {0:9} Stored events: {1:9} smE_filter events: {2:9} fid_filter events: {3:9}\n''' .format(simulated_events, stored_events, smE_filter_events, fid_filter_events))
def fanal_reco( det_name, # Detector name: 'new', 'next100', 'next500' event_type, # Event type: 'bb0nu', 'Tl208', 'Bi214' fwhm, # FWHM at Qbb e_min, # Minimum smeared energy for energy filtering e_max, # Maximum smeared energy for energy filtering spatial_def, # Spatial definition: 'low', 'high' veto_width, # Veto width for fiducial filtering min_veto_e, # Minimum energy in veto for fiducial filtering files_in, # Input files event_range, # Range of events to analyze: all, ... ?? file_out, # Output file compression, # Compression of output file: 'ZLIB1', 'ZLIB4', # 'ZLIB5', 'ZLIB9', 'BLOSC5', 'BLZ4HC5' verbosity_level): ### LOGGER logger = get_logger('FanalReco', verbosity_level) ### DETECTOR NAME & its ACTIVE dimensions det_name = getattr(DetName, det_name) ACTIVE_dimensions = get_active_size(det_name) ### RECONSTRUCTION DATA # Smearing energy settings fwhm_Qbb = fwhm * Qbb sigma_Qbb = fwhm_Qbb / 2.355 assert e_max > e_min, 'SmE_filter settings not valid. e_max must be higher than e_min.' # Spatial definition spatial_def = getattr(SpatialDef, spatial_def) # Voxel size voxel_size = get_voxel_size(spatial_def) # Fiducial limits fid_dimensions = get_fiducial_size(ACTIVE_dimensions, veto_width) ### PRINTING GENERAL INFO print( '\n***********************************************************************************' ) print('***** Detector: {}'.format(det_name.name)) print('***** Reconstructing {} events'.format(event_type)) print('***** Energy Resolution: {:.2f}% FWFM at Qbb'.format(fwhm / units.perCent)) print('***** Spatial definition: {}'.format(spatial_def.name)) print( '***********************************************************************************\n' ) print( '* Detector-Active dimensions [mm]: Zmin: {:7.1f} Zmax: {:7.1f} Rmax: {:7.1f}' .format(ACTIVE_dimensions.z_min, ACTIVE_dimensions.z_max, ACTIVE_dimensions.rad)) print( ' ... fiducial limits [mm]: Zmin: {:7.1f} Zmax: {:7.1f} Rmax: {:7.1f}\n' .format(fid_dimensions.z_min, fid_dimensions.z_max, fid_dimensions.rad)) print('* Sigma at Qbb: {:.3f} keV.\n'.format(sigma_Qbb / units.keV)) print('* Voxel_size: {} mm.\n'.format(voxel_size)) print('* {0} {1} input files:'.format(len(files_in), event_type)) for iFileName in files_in: print(' ', iFileName) ### OUTPUT FILE, ITS GROUPS & ATTRIBUTES # Output file oFile = tb.open_file(file_out, 'w', filters=tbl_filters(compression)) # Reco group Name reco_group_name = get_reco_group_name(fwhm / units.perCent, spatial_def) oFile.create_group('/', 'FANALIC') oFile.create_group('/FANALIC', reco_group_name[9:]) print('\n* Output file name:', file_out) print(' Reco group name: {}\n'.format(reco_group_name)) # Attributes oFile.set_node_attr(reco_group_name, 'input_sim_files', files_in) oFile.set_node_attr(reco_group_name, 'event_type', event_type) oFile.set_node_attr(reco_group_name, 'energy_resolution', fwhm / units.perCent) oFile.set_node_attr(reco_group_name, 'smE_filter_Emin', e_min) oFile.set_node_attr(reco_group_name, 'smE_filter_Emax', e_max) oFile.set_node_attr(reco_group_name, 'fiducial_filter_VetoWidth', veto_width) oFile.set_node_attr(reco_group_name, 'fiducial_filter_MinVetoE', min_veto_e) ### DATA TO STORE # Event counters simulated_events = 0 stored_events = 0 analyzed_events = 0 # Dictionaries for events & voxels data events_dict = get_events_reco_dict() voxels_dict = get_voxels_reco_dict() ### RECONSTRUCTION PROCEDURE # Looping through all the input files for iFileName in files_in: # Updating simulated and stored event counters configuration_df = pd.read_hdf(iFileName, '/MC/configuration', mode='r') simulated_events += int(configuration_df[configuration_df.param_key == 'num_events'].param_value) stored_events += int(configuration_df[configuration_df.param_key == 'saved_events'].param_value) with tb.open_file(iFileName, mode='r') as iFile: file_event_numbers = iFile.root.MC.extents.cols.evt_number print('* Processing {0} ({1} events) ...'.format( iFileName, len(file_event_numbers))) # Loading into memory all the particles & hits in the file file_mcParts = load_mcparticles(iFileName) file_mcHits = load_mchits(iFileName) # Looping through all the events in the file for event_number in file_event_numbers: # Updating counter of analyzed events analyzed_events += 1 #if not int(str(analyzed_events)[-int(math.log10(analyzed_events)):]): # print('* Num analyzed events: {}'.format(analyzed_events)) # Verbosing logger.info( 'Reconstructing event Id: {0} ...'.format(event_number)) # Getting mcParts of the event, using the event_number as the key event_mcParts = file_mcParts[event_number] num_parts = len(event_mcParts) # Getting mcHits of the event, using the event_number as the key event_mcHits = file_mcHits[event_number] active_mcHits = [ hit for hit in event_mcHits if hit.label == 'ACTIVE' ] num_hits = len(active_mcHits) # The event mc energy is the sum of the energy of all the hits event_mcE = sum([hit.E for hit in active_mcHits]) # Smearing the event energy event_smE = smear_evt_energy(event_mcE, sigma_Qbb, Qbb) # Applying the smE filter event_smE_filter = (e_min <= event_smE <= e_max) # Verbosing logger.info( ' Num mcHits: {0:3} mcE: {1:.1f} keV smE: {2:.1f} keV smE_filter: {3}' .format(num_hits, event_mcE / units.keV, event_smE / units.keV, event_smE_filter)) # For those events NOT passing the smE filter: # Storing data of NON smE_filter vents if not event_smE_filter: extend_events_reco_data(events_dict, event_number, evt_num_MCparts=num_parts, evt_num_MChits=num_hits, evt_mcE=event_mcE, evt_smE=event_smE, evt_smE_filter=event_smE_filter) # Only for those events passing the smE filter: else: # Smearing hit energies hits_smE = smear_hit_energies(active_mcHits, event_smE / event_mcE) # Translating hit positions hits_transPositions = translate_hit_positions( active_mcHits, DRIFT_VELOCITY) # Creating the smHits with the smeared energies and translated positions active_smHits = [] for i in range(num_hits): smHit = MCHit(hits_transPositions[i], active_mcHits[i].time, hits_smE[i], 'ACTIVE') active_smHits.append(smHit) # Filtering hits outside the ACTIVE region (due to translation) active_smHits = [hit for hit in active_smHits \ if hit.Z < ACTIVE_dimensions.z_max] # Voxelizing using the active_smHits ... event_voxels = voxelize_hits(active_smHits, voxel_size, strict_voxel_size=True) eff_voxel_size = event_voxels[0].size # Storing voxels info for voxel in event_voxels: extend_voxels_reco_data(voxels_dict, event_number, voxel) # Check fiduciality voxels_minZ, voxels_maxZ, voxels_maxRad, veto_energy, fiducial_filter = \ check_event_fiduciality(event_voxels, fid_dimensions, min_veto_e) # Storing data of NON smE_filter vents extend_events_reco_data(events_dict, event_number, evt_num_MCparts=num_parts, evt_num_MChits=num_hits, evt_mcE=event_mcE, evt_smE=event_smE, evt_smE_filter=event_smE_filter, evt_num_voxels=len(event_voxels), evt_voxel_sizeX=eff_voxel_size[0], evt_voxel_sizeY=eff_voxel_size[1], evt_voxel_sizeZ=eff_voxel_size[2], evt_voxels_minZ=voxels_minZ, evt_voxels_maxZ=voxels_maxZ, evt_voxels_maxRad=voxels_maxRad, evt_veto_energy=veto_energy, evt_fid_filter=fiducial_filter) # Verbosing logger.info( ' NumVoxels: {:3} minZ: {:.1f} mm maxZ: {:.1f} mm maxR: {:.1f} mm veto_E: {:.1f} keV fid_filter: {}' .format(len(event_voxels), voxels_minZ, voxels_maxZ, voxels_maxRad, veto_energy / units.keV, fiducial_filter)) for voxel in event_voxels: logger.debug( ' Voxel pos: ({:5.1f}, {:5.1f}, {:5.1f}) mm E: {:5.1f} keV' .format(voxel.X / units.mm, voxel.Y / units.mm, voxel.Z / units.mm, voxel.E / units.keV)) ### STORING DATA # Storing events and voxels dataframes print('\n* Storing data in the output file ...\n {}\n'.format(file_out)) store_events_reco_data(file_out, reco_group_name, events_dict) store_voxels_reco_data(file_out, reco_group_name, voxels_dict) # Storing event counters as attributes smE_filter_events = sum(events_dict['smE_filter']) fid_filter_events = sum(events_dict['fid_filter']) store_events_reco_counters(oFile, reco_group_name, simulated_events, stored_events, smE_filter_events, fid_filter_events) oFile.close() print('* Reconstruction done !!\n') # Printing reconstruction numbers print('* Event counters ...') print(''' Simulated events: {0:9} Stored events: {1:9} smE_filter events: {2:9} fid_filter events: {3:9}\n'''.format(simulated_events, stored_events, smE_filter_events, fid_filter_events))